Exercise sheet 1

Prove all the propositions and/or theorems below.

Adjoint Functors.

Proposition 1. Let $F : C \rightleftharpoons D : G$ be an adjunction. Assume that the right adjoint G is fully faithful. If ever C is complete (cocomplete), so is D.

Given a functor between small categories $u : A \longrightarrow B$, we will write the functor of composition with u

$$u^*:\widehat{B}\longrightarrow \widehat{A}.$$

It has a left adjoint

$$u_1:\widehat{A}\longrightarrow \widehat{B}$$

obtained as the extension by colimits of the composition of u with the Yoneda embedding of B. In other words, the functor u is the unique functor which commutes with small colimits such that $u_1(h_a) = h_{u(a)}$ for any object a of A. One checks that the functor u^* also preserves small colimits, and thus has a right adjoint

 $u_*:\widehat{A}\longrightarrow\widehat{B}$

Proposition 2. *The following three conditions are equivalent.*

- (i) *The functor u is fully faithful.*
- (ii) The functor u_1 is fully faithful.
- (iii) The functor u_* is fully faithful.

Skeletons. We may apply the preceding construction in the following case. For any integer $n \ge 0$, let $\mathbf{\Delta}_{\le n}$ be the full subcategory whose objects are the sets of the form [k] for $k \le n$, and let $i_n : \mathbf{\Delta}_{\le n} \longrightarrow \mathbf{\Delta}$ be the inclusion functor. We thus have a sequence of adjoints $(i_n)_!$, i_n^* and $(i_n)_*$, and thus a pair of adjoint. One defines a pair of adjoint functors by setting, for any simplicial set:

$$sk_n(X) = (i_n)!(i_n^*(X))$$
 and $cosk_n(X) = (i_n)!(i_n^*(X))$.

Note that, *a priori*, the simplicial set $sk_n(X)$ has to be distinguished from the skeleton $Sk_n(X)$ (which is defined as a subobject of *X*).

Proposition 3. If, for a given integer $n \ge 0$, a morphism of simplicial sets $X \longrightarrow Y$ induces injections $X_k \longrightarrow Y_k$ for all $k \le n$, and if $Sk_n(X) = X$, then it is a monomorphism.

The preceding proposition is useful to prove:

Proposition 4. The co-unit morphism $sk_n(X) \longrightarrow X$ induces a canonical isomorphism

$$sk_n(X) \simeq Sk_n(X).$$

Groupoids. Let *Gpd* denote the full subcategory of *Cat* spanned by small groupoids, and let $\iota : Gpd \hookrightarrow Cat$ denote the inclusion.

Proposition 5. *The functor* ι *admits a left adjoint* π_1 *and a right adjoint* k.

The right adjoint sends any category C to k(C), its maximal subgroupoid. This is defined as the subcategory of C with the same objects and only the invertible morphisms.

The groupoid $\pi_1(C)$, sometimes called the *fundamental groupoid* of *C*, can be described as the localization of *C* at the set of all its morphisms (in the sense of Gabriel–Zisman).

Now consider the inclusion $i : Set \hookrightarrow Gpd$, where we view a set E as a groupoid i(E) with Ob(i(E)) = E and only identity morphisms.

Lemma 6. The functor $i : Set \hookrightarrow Gpd$ admits a left adjoint π_0 .

The set $\pi_0(K)$ is called the set of connected components of *K*.

Proposition 7. For a small category *C*, the following conditions are equivalent.

- (i) The category C is a groupoid (i.e. all morphisms of C are invertible).
- (ii) The simplicial set N(C) is an ∞ -groupoid.
- (iii) The simplicial set N(C) is a Kan complex.
- (iv) There exists a presheaf X on the category of non-empty finite sets (with all maps as morphisms) whose restriction to Δ is isomorphic to C.