Exercise sheet 7

1. Fully faithful functors

1.1. Recall that a functor of ∞ -categories $u : X \to Y$ is called *fully faithful* if, for each pair of objects x, x' of X, the canonical map

(1.1) $X(x, x') \to Y(u(x), u(x'))$

is an equivalence of ∞ -groupoids.

Exercise 1.1.1. Show that $u: X \to Y$ is fully faithful if and only if the canonical map

(1.2)
$$S(X) \to (X^{op} \times X) \underset{V^{op} \times Y}{\times} S(Y)$$

is a fibre-wise equivalence over $X^{op} \times X$, where S(-) denotes the twisted diagonal.

1.2. Given a simplicial set K, let $S \subset K_0$ be a subset of 0-simplices. Define a simplicial subset $K_S \subset K$ whose *n*-simplices are maps $\Delta^n \to K$ which send each vertex of Δ^n to a 0-simplex in $S \subset K_0$.

Exercise 1.2.1.

(i) The inclusion $K_S \hookrightarrow K$ has the right lifting property with respect to any map of simplicial sets $A \to B$ which induces a bijection $A_0 \to B_0$ on 0-simplices.

(ii) Suppose that K is an ∞ -category. Then K_S is an ∞ -category, and the map $K_S \hookrightarrow K$ is a fully faithful functor.

(iii) Suppose that for any isomorphism $x \to y$ in K, the 0-simplex x belongs to S iff y does. Then the inclusion $K_S \hookrightarrow K$ is further an isofibration.

1.3. Let $u : X \to Y$ be a functor. Let $S \subset Y_0$ be the subset of 0-simplices which are in the essential image of u, and consider the simplicial subset $Y_S \subset Y$ as above.

Exercise 1.3.1. The functor u is fully faithful if and only if the induced functor

 $u_{\rm S}: {\rm X} \to {\rm Y}_{\rm S}$

is an equivalence of ∞ -categories.

Exercise 1.3.2. The functor $u : X \to Y$ is fully faithful if and only if there exists a factorization $X \xrightarrow{v} X' \xrightarrow{w} Y$.

where v is an equivalence of ∞ -categories and w has the right lifting property with respect to the boundary inclusions $\partial \Delta^n \hookrightarrow \Delta^n$ for $n \ge 1$.

Hint: factor u into a trivial cofibration, followed by a fibration in the Joyal model structure.

2. Final objects

2.1. Recall that an object x of an ∞ -category X is *final* if the map $x : \Delta^0 \to X$ is final. We have seen that this is equivalent to the condition that the ∞ -groupoid X(a, x) is contractible for all objects a in X.

Exercise 2.1.1. Let X be an ∞ -category and consider the full subcategory X_{final} of final objects of X. Then X_{final} is an ∞ -groupoid which is empty or contractible.

2.2. Let **S** denote the ∞ -category of left fibrations with **U**-small fibres.

Exercise 2.2.1. The ∞ -category **S** admits a final object.