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1. Introduction

1.1. Let X be a scheme, Z a closed subscheme, and X̃ the blow-up of X in Z.

Recall that X̃ admits the following universal property: for any morphism f : S → X
such that the schematic fibre f−1(Z) is an effective Cartier divisor on S, there exists

a unique morphism S → X̃ over X.

In this paper we prove a stronger universal property which gives a complete
description of the functor represented by the blow-up X̃, when Z → X is a regular
immersion. Namely, we show that there is a canonical bijection between the set of
X-morphisms S → X̃ and the set of virtual effective Cartier divisors on S lying
over (X,Z). In a word, a virtual effective Cartier divisor is a closed subscheme that
is equipped with some additional structure that remembers that it is cut out locally
by a single equation (or “of virtual codimension 1”).

1.2. We also use the notion of virtual Cartier divisors to construct blow-ups of
quasi-smooth closed immersions of derived schemes and stacks. This generalizes a
local construction that was used by Kerz–Strunk–Tamme in their proof of Weibel’s
conjecture on negative K-theory [KST18] (see 4.1.10). Our construction has been
applied to similar problems in algebraic K-theory, such as descent by derived blow-
ups [Kha20] and Weibel’s conjecture for stacks [BKRS22]. See also [BO21] for a
similar application of descent by derived blow-ups in the setting of flat cohomology.

Derived blow-ups also give rise to a derived version of Verdier’s deformation to the
normal cone (Theorem 4.1.13). This has been applied to give a new construction of
Kontsevich’s virtual fundamental class using derived algebraic geometry, and to prove
virtual Grothendieck–Riemann–Roch formulas, see [Kha19, Kha22]. Moreover, our
methods are very robust and with straightforward modifications also work in other
settings like nonarchimedean analytic geometry (giving rise to nonarchimedean
Gromov–Witten invariants as conjectured by Kontsevich–Soibelman). Derived
deformation to the normal cone is also an important ingredient in Annala’s work on
algebraic cobordism [Ann21a, Ann21b, Ann23].

Hekking [Hek21] has recently constructed blow-ups and derived deformation to
the normal cone for non-quasi-smooth morphisms. In the upcoming paper [HKR] we
will show that these constructions can also be described in terms of virtual Cartier
divisors, just as in the quasi-smooth case here.

1.3. The organization of this paper is as follows. In Sect. 2 we study regular closed
immersions from the perspective of derived algebraic geometry; this material is
well-known to the experts. In Sect. 3 we define virtual effective Cartier divisors and
show that they coincide with generalized effective Cartier divisors. Sect. 4 contains
our results on blow-ups. The derived blow-up is constructed in 4.1.1/4.1.4 and its
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properties are summarized in Theorem 4.1.5. The universal property mentioned
above is in 4.1.8. The remainder of the section is concerned with the proofs. Finally,
in Sect. 5 we generalize the construction to simultaneous blow-ups in multiple
centres. In Subsect. 5.2 we discuss local regular immersions, that is, quasi-smooth
finite unramified morphisms, which generalize regular closed immersions. The main
properties of simultaneous blow-ups are summarized in Theorem 5.3.3.

1.4. We would like to thank Toni Annala, Denis-Charles Cisinski, Jeroen Hekking,
Marc Hoyois, Shane Kelly, Akhil Mathew, and the anonymous referee for useful
comments.

This work was partially completed during the first author’s stay as a post-doctoral
fellow at the Mittag-Leffler Institute in Djursholm, Sweden, as part of the program
“Algebro-Geometric and Homotopical Methods” in spring 2017, and partially during
his stay at the Max Planck Institute for Mathematics in summer 2017. The second
author was supported by the Swedish Research Council (2015-05554) and the Göran
Gustafsson Foundation for Research in Natural Sciences and Medicine.

2. Quasi-smooth immersions

2.1. We begin by reviewing the notion of regular closed immersion in classical
algebraic geometry.

2.1.1. Let A be a commutative ring. For an element f ∈ A, the Koszul complex
KoszA(f) is the chain complex

KoszA(f) :=
(
A

f−→ A
)
,

concentrated in degrees 0 and 1. Thus H0(KoszA(f)) = A/f and H1(KoszA(f)) =
AnnA(f) is the annihilator. In particular KoszA(f) is acyclic in positive degrees,
and hence quasi-isomorphic to A/f , if and only if f is regular (a non-zero divisor).
More generally, given a sequence of elements (f1, . . . , fn), the Koszul complex
KoszA(f1, . . . , fn) is defined as the tensor product (over A)

KoszA(f1, . . . , fn) =
⊗
i

(
A

fi−→ A
)
.

We say that the sequence (f1, . . . , fn) is regular if the Koszul complex is acyclic in pos-
itive degrees. This is called a Koszul-regular sequence in the Stacks Project [Stacks,
062D]. When A is noetherian and fi belong to the radical, this is equivalent to the
usual inductive definition: f1 is regular, f2 is regular in A/(f1), etc. (see [EGA IV4,
Cor. 19.5.2] and [SGA 6, Exp. VII, Prop. 1.3]).

2.1.2. Any sequence (f1, . . . , fn) determines a homomorphism Z[T1, . . . , Tn] → A,
Ti 7→ fi, and the Koszul complex KoszA(f1, . . . , fn) is quasi-isomorphic to the
derived tensor product

A⊗L
Z[T1,...,Tn]

Z[T1, . . . , Tn]/(T1, . . . , Tn);

indeed the sequence (T1, . . . , Tn) is regular, so that KoszZ[T1,...,Tn](T1, . . . , Tn) pro-
vides a free resolution of Z[T1, . . . , Tn]/(T1, . . . , Tn), and the Koszul complex is
stable under arbitrary extension of scalars.

http://stacks.math.columbia.edu/tag/062D
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2.1.3. Let i : Z ↪→ X be a closed immersion of schemes. We say that i is regular if
its ideal of definition I ⊂ OX is Zariski-locally generated by a regular sequence. This
is equivalent to the definition in [SGA 6, Exp. VII, Déf. 1.4], and to the definition
in [EGA IV4, Déf. 16.9.2] when X is locally noetherian. In the Stacks Project this
is called a Koszul-regular ideal [Stacks, 07CV]. When i is regular, the conormal
sheaf NZ/X = I/I2 is locally free of finite rank. Moreover, the relative cotangent
complex LZ/X is canonically identified with NZ/X [1]. For us an effective Cartier
divisor on a scheme X will be a scheme D equipped with a regular closed immersion
iD : D ↪→ X of codimension 1.

2.2. We now re-interpret the above discussion in the language of derived algebraic
geometry. The basic idea is that the Koszul complex KoszA(f1, . . . , fn) can be
viewed as the “ring of functions” on a certain derived subscheme of Spec(A). In
order to make sense of this, one should work with derived commutative rings, a.k.a.
simplicial commutative rings up to weak homotopy equivalence, which following
Quillen is the natural setting for derived tensor products of commutative algebras.

2.2.1. We use the language of ∞-categories; our reference is [HTT]. Let Spc be the

∞-category of ∞-groupoids; we will also use “space” as a synonym for ∞-groupoid.1

For any ∞-category C, there are mapping spaces MapsC(x, y) ∈ Spc for any pair of
objects x, y ∈ C.

2.2.2. Let DCRing be the ∞-category of derived commutative rings2; we refer to

[SAG, § 25.1] or [ČS24, 5.1] for a detailed account. If we forget the multiplication
on a derived commutative ring A, we get by the Dold–Kan correspondence an
“underlying chain complex”. If we forget both the addition and multiplication we get
an “underlying space”. We say that a derived commutative ring A is 0-truncated or
“discrete” if the underlying space (pointed at 0) has no higher homotopy groups (i.e.,
can be identified with a set); the full subcategory of discrete derived commutative
rings is canonically equivalent to the category CRing of ordinary commutative rings,
and under this identification the 0-truncation functor is given by A 7→ π0(A).

Using Quillen’s machinery of non-abelian derived functors one defines derived
tensor products of derived commutative rings: they are computed using simplicial
resolutions by polynomial algebras Z[T1, . . . , Tn]. For example, the derived tensor
product

A⊗L
Z[T1,...,Tn]

Z[T1, . . . , Tn]/(T1, . . . , Tn)

can be viewed as a derived commutative ring, for any commutative ring A and
any homomorphism Z[T1, . . . , Tn] → A. The underlying chain complex recovers the
Koszul complex of the corresponding elements (as an object of ModZ, the stable
∞-category of chain complexes of Z-modules).

1The ∞-category Spc can be modelled by topological spaces up to weak homotopy equivalence,
but we will not rely on this model. In particular, the phrase “x is a point of the space X” should be

read as “x is an object of the ∞-groupoid X”; it does not refer to a literal point of any particular
topological space of homotopy type X.

2This is the ∞-category of functors A : (Poly)op → Spc, from the opposite of the category
Poly of polynomial algebras Z[T1, . . . , Tn] (n ⩾ 0) and ring homomorphisms, to the ∞-category of
spaces, which send finite coproducts in Poly to finite products of spaces. We can think of such as
the data of an underlying space A(Z[T ]) ∈ Spc equipped with certain operations as encoded by
the category Poly.

http://stacks.math.columbia.edu/tag/07CV
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2.2.3. Derived algebraic geometry is an extension of classical algebraic geometry
that allows one to make sense of “Spec(A)” where A is a derived commutative ring.
We refer to [SAG] or [TV08] for details.

The object Spec(A) is an affine derived scheme which has an “underlying classical
scheme” Spec(A)cl = Spec(π0(A)), but is further equipped with a quasi-coherent
sheaf of derived commutative rings OSpec(A). It can thus be viewed as an infinitesimal
thickening of Spec(A)cl with “higher nilpotents” living in the higher homotopy
groups. For example, given affine schemes X = Spec(A) and Y = Spec(B) over
S = Spec(R), there is a derived version of the fibred product:

X
R
×
S
Y = Spec(A⊗L

R B),

which is a derived scheme with (X ×R
S Y )cl = X ×S Y .

A general derived scheme is Zariski-locally of the form Spec(A) for A ∈ DCRing.
Derived fibred products are homotopy limits in the ∞-category of derived schemes.
The category of classical schemes embeds fully faithfully into the ∞-category of
derived schemes, and its essential image is spanned by derived schemes X whose
structure sheaf OX is discrete (i.e., takes values in discrete derived commutative
rings). This embedding is left adjoint to (−) → (−)cl and hence preserves colimits.
The embedding does not preserve fibred products though. We will say that a derived
scheme is “classical” if it is in the essential image.

The discussion of Subsect. 2.1 can now be rephrased as follows.

Proposition 2.2.4. Let i : Z ↪→ X be a closed immersion of schemes. Then i is
regular if and only if Zariski-locally on X, there exists a morphism f : X → An and
a commutative square

Z X

{0} An,

which is homotopy cartesian in the ∞-category of derived schemes.

Here An = Spec(Z[T1, . . . , Tn]) denotes n-dimensional affine space over Spec(Z),
and {0} = Spec(Z[T1, . . . , Tn]/(T1, . . . , Tn)) denotes the inclusion of the origin.

2.3. We will now extend the notion of regularity to the derived setting.

2.3.1. Let A be a derived commutative ring. Let f1, . . . , fn ∈ A be a sequence of
elements (i.e., points in the underlying space of A). Let A//(f1, . . . , fn) denote the
derived commutative ring defined by the homotopy cocartesian square

Z[T1, . . . , Tn] Z[T1, . . . , Tn]/(T1, . . . , Tn)

A A//(f1, . . . , fn).

Ti 7→fi (2.3.a)

That is, A//(f1, . . . , fn) is given by the derived tensor product

A⊗L
Z[T1,...,Tn]

Z[T1, . . . , Tn]/(T1, . . . , Tn).

We have π0(A//(f1, . . . , fn)) = π0(A)/(f1, . . . , fn) where we write fi again for its
connected component in π0(A). The underlying A-module of A//(f1, . . . , fn) is given
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by

L⊗
i

Cofib(A
fi−→ A),

where Cofib denotes the homotopy cofibre (in the stable ∞-category of A-modules).

Example 2.3.2. If A is discrete and the sequence (f1, . . . , fn) is regular, then the
canonical homomorphism A//(f1, . . . , fn) → A/(f1, . . . , fn) is an isomorphism.

Example 2.3.3. Let A be discrete and consider A//(0) ∈ DCRing. Its underlying
chain complex is given by A⊕A[1] (with zero differential). In particular we have
π0(A//(0)) = π1(A//(0)) = A.

2.3.4. By construction, A//(f1, . . . , fn) admits the following universal property:

Lemma 2.3.5. Let A be a derived commutative ring and f1, . . . , fn ∈ A a sequence
of points in the underlying space of A. Then for any A-algebra B ∈ DCRingA, there
is a canonical isomorphism of spaces

MapsDCRingA
(A//(f1, . . . , fn), B) ≃

∏
1⩽i⩽n

MapsB(f
′
i , 0),

where f ′i are the images of fi in B. That is, the space of A-algebra homomorphisms
A//(f1, . . . , fn) → B is isomorphic to the space of paths f ′i ≃ 0, for each 1 ⩽ i ⩽ n,
in the underlying space of B.

Proof. For any A-algebra B, the ∞-groupoid of commutative squares

Z[T1, . . . , Tn] Z[T1, . . . , Tn]/(T1, . . . , Tn)

A B

Ti 7→fi

is nothing else than the space of identifications between the two possible composites
Z[T1, . . . , Tn] → B. Since Z[T1, . . . , Tn] is free as a derived commutative ring, this
is the same as the space of identifications between the two sequences (f1, . . . , fn)
and (0, . . . , 0) of points in the underlying space of B. □

2.3.6. Let i : Z ↪→ X be a closed immersion of derived schemes (i.e., the underlying
morphism of classical schemes icl : Zcl → Xcl is a closed immersion). We say that i
is quasi-smooth if Zariski-locally on X, there exists a morphism f : X → An and a
homotopy cartesian square

Z X

{0} An,

in the ∞-category of derived schemes. In other words, Z ↪→ X is locally of the
form Spec(A//(f1, . . . , fn)) ↪→ Spec(A), for some f1, . . . , fn ∈ A. If X and Z are
classical, then a closed immersion i : Z ↪→ X is quasi-smooth if and only if it is a
regular immersion. By Proposition 2.2.4 this agrees with our previous definition
when X and Z are classical. However, even if X is classical, there exist quasi-smooth
immersions Z ↪→ X with Z non-classical (as long as X is nonempty).
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2.3.7. We now give a differential characterization of quasi-smooth immersions.3

Proposition 2.3.8. Let i : Z ↪→ X be a closed immersion of derived schemes.
Then i is quasi-smooth if and only if it is locally of finite presentation and the shifted
cotangent complex LZ/X [−1] is a locally free OZ-module of finite rank.

Proof. The condition is clearly necessary: since it is Zariski-local and stable under
arbitrary derived base change, we may assume that i is the inclusion of the origin
{0} ↪→ An, n ⩾ 0, in which case L{0}/An [−1] = N{0}/An is free of rank n.

Conversely, suppose that X = Spec(A) and Z = Spec(B) are affine, and the
shifted cotangent complex LB/A[−1] ∈ ModB is free of rank n. Let F denote the
homotopy fibre of the morphism φ : A → B in the stable ∞-category ModA, so
that there is a canonical isomorphism of π0(B)-modules π1(LB/A) ≃ π0(F ⊗L

A B)
[SAG, Prop. 25.3.6.1]. Choose a basis df1, . . . , dfn for π1(LB/A) and note that the

corresponding elements of π0(F ⊗L
A B) lift to elements f̃1, . . . , f̃n ∈ π0(F ), since φ :

A→ B is surjective on π0; moreover, we can assume by Nakayama’s lemma that the
f̃i generate π0(F ) as a π0(A)-module. Lifting them to points in the underlying space
of F , we get points fi ∈ A equipped with paths φ(fi) ≃ 0 in B, and hence a canonical
homomorphism of derived commutative rings A//(f1, . . . , fn) → B (Lemma 2.3.5).
By construction it induces an isomorphism π0(A)/(f1, . . . , fn) ≃ π0(B) on connected
components, so by [SAG, Cor. 25.3.6.6] it suffices to show that its relative cotangent
complex vanishes, which follows by examining the exact triangle

L(A//(fi)i)/A ⊗L
A//(fi)i

B → LB/A → LB/(A//(fi)i)

in ModB . □

Given a quasi-smooth closed immersion i : Z ↪→ X, we write NZ/X = LZ/X [−1]
and take this as the definition of the conormal sheaf. By the above characterization,
this is a locally free OZ -module of finite rank. It also follows that quasi-smoothness
is an fpqc-local property, in view of [SAG, Prop. 2.9.1.4].

Example 2.3.9. If X and Z are smooth over some base S, then any closed immersion
i : Z ↪→ X is quasi-smooth. This follows from the exact triangle

i∗LX/S → LZ/S → LZ/X .

Example 2.3.10. If i admits a smooth retraction, then it is quasi-smooth. This is a
special case of Example 2.3.9.

2.3.11. Let i : Z ↪→ X be a quasi-smooth closed immersion of derived schemes. The
virtual codimension of i, defined Zariski-locally on Z, is the rank of the locally free OZ -
module NZ/X . We will sometimes denote it by codim.vir(Z,X). Locally this number
is determined by the formula codim.vir(Spec(A//(f1, . . . , fn)),Spec(A)) = n for any
A ∈ DCRing and points f1, . . . , fn ∈ A. Note that the virtual codimension is stable
under arbitrary derived base change: codim.vir(Z,X) = codim.vir(Z ×R

X X ′, X ′)
for any morphism f : X ′ → X of derived schemes.

3In the setting of derived algebraic geometry in characteristic zero, Proposition 2.3.8 also
appears as [AG15, Prop. 2.1.10]. However, the proof given there is not correct: in the notation
of loc. cit., the vector bundle clN∗(Z1/Z2) is the virtual normal bundle (which depends on the
derived structures), not the classical conormal sheaf to clZ1 in clZ2, unless Z1 and Z2 are already
classical.
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2.3.12. Define the topological (Krull) codimension codim.top(Z,X) as the topologi-
cal codimension of Zcl in Xcl. If Xcl is locally noetherian then we have an inequality
codim.vir(Z,X) ⩾ codim.top(Z,X). This is an equality (at a point x ∈ Z) if the
derived scheme Z ×R

X Xcl is classical (in a Zariski neighbourhood of x). If Xcl is
Cohen–Macaulay (e.g. regular) at the point x, then the converse also holds.

2.3.13. A morphism of derived schemes f : Y → X is called quasi-smooth if it
admits, Zariski-locally on Y , a factorization

Y
i−→ X ′ p−→ X,

with i a quasi-smooth closed immersion and p smooth. Quasi-smooth morphisms
between classical schemes are usually called lci (local complete intersection).

Proposition 2.3.14. Let f : Y → X be a morphism of derived schemes. Then f
is quasi-smooth if and only if it is locally of finite presentation and the cotangent
complex LY/X is of Tor-amplitude ⩽ 1.

Proof. By [SAG, Prop. 2.8.4.2], the question is local on Y . If f admits a factorization
as above, then it is clear that f is locally of finite presentation. The exact triangle
i∗LX′/X → LY/X → LY/X′ shows that LY/X is also of Tor-amplitude ⩽ 1. For the
converse direction, let φ : A→ B be a homomorphism of derived commutative rings
which is locally of finite presentation and such that LB/A is of Tor-amplitude ⩽ 1.
Then π0(A) → π0(B) is of finite presentation in the sense of ordinary commutative
algebra, so we may find a homomorphism A′ = A[T1, . . . , Tn] → B, for some n ⩾ 0,
that extends φ and is surjective on π0. The homomorphism A→ A′ is smooth, so
it will suffice to show that LB/A′ [−1] is locally free of finite rank (or equivalently,

since π0(LB/A′) = Ω1
π0(B)/π0(A′) = 0, that LB/A′ is of Tor-amplitude ⩽ 1). This

follows from the exact triangle LA′/A ⊗A′ B → LB/A → LB/A′ . □

3. Virtual Cartier divisors

3.1. Virtual Cartier divisors.

3.1.1. Let X be a derived scheme. A virtual effective Cartier divisor on X is a
derived scheme D together with a quasi-smooth closed immersion iD : D ↪→ X of
virtual codimension 1. Thus locally, a virtual effective Cartier divisor on Spec(A)
is of the form Spec(A//(f)) for some f ∈ A. We will omit the adjective “effective”
since we do not treat non-effective divisors.

Remark 3.1.2. Note that for any derived scheme X, the collection of virtual Cartier
divisors over X forms an ∞-groupoid VDiv(X). It can be described as the full
subgroupoid of (DSch/X)≃ whose objects are virtual Cartier divisors D ↪→ X.
Moreover, since the condition of being a virtual Cartier divisor is stable under
(derived) base change and fpqc-local, the assignment X 7→ VDiv(X) determines a
subsheaf of the fpqc sheaf X 7→ (DSchaff/X)≃.

Example 3.1.3. Suppose that X is classical. Then any classical (effective) Cartier
divisor on X is a virtual Cartier divisor.
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3.1.4. We record the following computation that will be useful later:

Lemma 3.1.5. Let A be a derived commutative ring and f ∈ A an element. For
any point g ∈ A, there is a canonical isomorphism of ∞-groupoids

MapsA//(f)(g, 0) ≃ Fibg(A
f−→ A),

between the space of paths g ≃ 0 in the underlying space of A//(f), and the space of
pairs (a, α), where a ∈ A is a point and α : fa ≃ g is a path in A.

Proof. There is a fibre sequence

A
f−→ A→ A//(f)

of underlying spaces. □

3.2. Generalized Cartier divisors.

3.2.1. Let X be a derived scheme. A generalized (effective) Cartier divisor over
X is a pair (L, s), where L is a locally free OX -module of rank one and s is a
homomorphism L → OX of OX -modules (see e.g. [Ols16, Def. 10.3.2]).

Remark 3.2.2. According to [Ill15], generalized Cartier divisors were first introduced
by Deligne in a 1988 letter to Illusie, under the name “divisors” (where the quotation
marks are part of the terminology).

3.2.3. Any generalized Cartier divisor (L, s) on X gives rise to a virtual Cartier
divisor as follows. Denote by L the line bundle VX(L) = SpecX(SymOX

(L)), and
let D denote the derived fibred product

D X

X L

i

s

0

where 0 is the zero section; in other words, D is the derived zero-locus of the section s.
Then i : D → X is a virtual Cartier divisor with conormal sheaf ND/X = L|D.

3.2.4. Let GDiv denote the derived stack classifying generalized Cartier divisors
over S. To be precise, it is the fpqc sheaf of ∞-groupoids

GDiv : (DSchaff)op → Spc, S 7→ (Pic(S)/OS
)≃.

Here Pic(S)/OS
is the ∞-category of pairs (L, s) with L ∈ Pic(S) a locally free sheaf

of rank one and s a homomorphism L → OS (not necessarily invertible), and (−)≃

denotes the operation of discarding the non-invertible morphisms.

3.2.5. Generalized Cartier divisors are classified by the stack [A1/Gm]: the quotient

of the affine line A1 by the canonical Gm-action by scaling. This was first observed
by L. Lafforgue in 2000 [Ill15], see also [Ols16, Prop. 10.3.7]. We next show that
this remains valid in derived algebraic geometry, and moreover, that generalized
Cartier divisors are the same thing as virtual Cartier divisors.

Proposition 3.2.6. There are canonical isomorphisms of derived stacks

VDivop
∼−→ GDiv

∼−→ [A1/Gm].
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3.2.7. Before proving Proposition 3.2.6 we need to make a brief but slightly technical
digression. Let D ↪→ X be a virtual Cartier divisor. Suppose given a quasi-coherent
OX -algebra A and a homomorphism φ : OD → A of OX -modules. We would like to
show that, if φ fits in a commutative triangle

OX OD

A,

η
φ

where η is the unit, then φ lifts to a homomorphism of OX -algebras in an essentially
unique manner.

More precisely, let QcohAlg(X) denote the ∞-category of quasi-coherent OX -
algebras, and Qcoh(X)OX\− the ∞-category of quasi-coherent OX -modules F

equipped with a homomorphism OX → F. Then we have:

Lemma 3.2.8. Let X be a derived scheme and D ↪→ X a virtual Cartier divisor.
For any quasi-coherent OX-algebra A, the canonical map

MapsQcohAlg(X)(OD,A) → MapsQcoh(X)OX\−
(OD,A)

is invertible.

Proof. The assignments X 7→ QcohAlg(X) and X 7→ Qcoh(X)OX\− both form
sheaves of ∞-categories, so the question is local on X. Therefore we may assume
that X = Spec(A), for a derived commutative ring A, and D = Spec(A//(f))
for some f ∈ A. Note that for any B ∈ DCRingA, the ∞-groupoid of A-algebra
homomorphisms A//(f) → B is the ∞-groupoid of commutative squares in DCRingA

A[T ] A

A B

T 7→0

T 7→f

as in the proof of Lemma 2.3.5. This is equivalently the ∞-groupoid of commutative
triangles in ModA

A A

B

f

0

which is equivalently the ∞-groupoid of A-module homomorphisms A//(f) → B

extending A→ B, in view of the exact triangle A
f−→ A→ A//(f). □

3.2.9. Proof of Proposition 3.2.6. We first prove that there is an isomorphism

GDiv ≃ [A1/Gm]. Note that we have a forgetful map GDiv → Pic≃ = BGm

taking a generalized divisor (L, s) to the sheaf L. We now consider the derived base
change U → GDiv of the canonical section SpecZ → BGm that takes a scheme
T to the trivial line bundle OT . The derived fibred product U can be described
as the sheaf S 7→ (L, s, φ) where φ : OS → L is an isomorphism. But U ≃ A1 via
the identification (L, s, φ) 7→ s ◦ φ. The resulting map A1 → GDiv takes a section
f ∈ Γ(S,OS) to the generalized divisor (OS , f) and is a Gm-torsor exhibiting GDiv
as the stack quotient [A1/Gm].

We now construct the isomorphism (VDiv)op ≃ GDiv. Given an affine derived
scheme S and a virtual Cartier divisor i : D ↪→ S, consider the induced homo-
morphism i♯ : OS → i∗(OD) and form its homotopy fibre F, which is equipped
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with a canonical map s : F → OS . Note that F is locally free of rank one, be-
cause Zariski-locally on S, the exact triangle F → OS → i∗(OD) takes the form

OS
f−→ OS → OS//(f) for some f ∈ Γ(S,OS). The assignment (i : D ↪→ S) 7→ (F, s)

is clearly contravariantly functorial and can be regarded as a map of sheaves
p : (VDiv)op → GDiv. Observe that the construction of 3.2.3 shows that this map
is surjective on π0.

Let S be an affine derived scheme and let D ↪→ S and D′ ↪→ S be virtual Cartier
divisors. To show that p is invertible it will now suffice to show that the induced
map

pD,D′ : MapsVDiv(S)(D,D
′) → MapsGDiv(S)((L

′, s′), (L, s))

is invertible, where (L, s) and (L′, s′) are the associated generalized Cartier divisors.
The target is the ∞-groupoid of commutative squares of OS-modules

L′ OS

L OS

s′

u

s

where u is an isomorphism. Taking cofibres horizontally, this is tautologically
equivalent to the ∞-groupoid of OS-module isomorphisms OD′ → OD compatible
with the maps OS → OD and OS → OD′ (via a specified commutative triangle). By
Lemma 3.2.8, this is identified with the ∞-groupoid of OS-algebra isomorphisms
OD′ → OD, which is the source of pD,D′ .

3.2.10. Let i : D ↪→ X be a virtual Cartier divisor. We denote by OX(−D) the
invertible sheaf on X determined by the exact triangle

OX(−D) → OX → i∗(OD)

as in the proof of Proposition 3.2.6 above.

4. Blow-ups

4.1. Construction and main properties.

4.1.1. Let i : Z ↪→ X be a quasi-smooth closed immersion of derived schemes. For
any derived scheme S and morphism f : S → X, a virtual Cartier divisor on S lying
over (X,Z) is the datum of a commutative square

D S

Z X

g

iD

f

i

(4.1.a)

satisfying the following conditions:

(a) The morphism iD : D → S exhibits D as a virtual Cartier divisor on S.

(b) The underlying square of classical schemes is cartesian.

(c) The canonical morphism

g∗NZ/X → ND/S (4.1.b)

is surjective (on π0).
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Example 4.1.2. Suppose that X, Z, and S are classical schemes. If the classical
schematic fibre f−1(Z) is a classical Cartier divisor on S, then f−1(Z) also de-
fines a virtual Cartier divisor lying over (X,Z). Condition (c) follows from [SAG,
Cor. 25.3.6.4], also see Remark 4.1.3(iii).

Remarks 4.1.3. Let SZ denote the derived fibred product S×R
X Z.

(i) If the square (4.1.a) is homotopy cartesian, that is, if D ≃ SZ , then the morphism
(4.1.b) is an isomorphism. If i is of virtual codimension n > 1 then this is never the
case.

(ii) We can think of a virtual Cartier divisor on S lying over (X,Z) equivalently as a
derived scheme D over SZ such that (a) the induced morphism iD : D → SZ ↪→ S
is a virtual Cartier divisor; (b) the morphism D → SZ induces an isomorphism
Dcl ≃ (SZ)cl on underlying classical schemes; and (c) the canonical morphism
h∗NSZ/S → ND/S is surjective, where h : D → SZ . This latter condition is
equivalent to the relative cotangent complex LD/SZ

being 2-connective (π⩽1 = 0).

(iii) The closed immersion h : D → SZ induces a map ϕ : OSZ
→ h∗OD which always is

surjective on π0. Condition (b) is equivalent to π0(ϕ) being an isomorphism. Since
π1(LD/SZ

) = π0(Fib(h
∗ϕ)) by the connectivity properties of the Hurewicz map ϵϕ

[SAG, Prop. 25.3.6.1], we see that condition (c) is equivalent to the surjectivity
of π1(h

∗ϕ). By Nakayama, this is equivalent to the surjectivity of π1(ϕ) when
|D| = |SZ |, i.e., under condition (b). We conclude that (b)+(c) is equivalent to:
π0(ϕ) is an isomorphism and π1(ϕ) is surjective.

(iv) Let I = Fib(OX → i∗OZ) be the homotopy fibre. Recall (see 3.2.10) that OS(−D)
is the invertible sheaf on S given as the fibre of OS → (iD)∗(OD). The commutative
square (4.1.a) induces a morphism ψ : f∗I → OS(−D). Since Fib(ψ)[1] ≃ Fib(ϕ)
we conclude that (b)+(c) is equivalent to the surjectivity of ψ (on π0).

4.1.4. The collection of virtual Cartier divisors on S lying over (X,Z) forms an ∞-
groupoid which we denote BlZX(S → X). Moreover, the construction is functorial
and defines a presheaf of ∞-groupoids

BlZX : (DSch/X)op → Spc

on the site of derived schemes over X. Indeed consider the presheaf F : (S → X) 7→
(DSchaff/SZ

)≃, which sends S → X to the ∞-groupoid obtained by discarding non-
invertible morphisms in the ∞-category DSchaff/SZ

of affine morphisms Y → SZ ,
and note that BlZX defines a sub-presheaf since the conditions (a), (b) and (c) are
stable under derived base change. Since these conditions are also étale-local, and F

satisfies (hyper)descent for the étale topology, the presheaf BlZX is also an étale
(hyper)sheaf. In particular, it defines a derived stack BlZX over X, which we call
the blow-up; we denote by πZ/X the structural morphism BlZX → X. The main
properties of the construction BlZX are summed up below:

Theorem 4.1.5. Let i : Z ↪→ X be a quasi-smooth closed immersion of derived
schemes and let I = Fib(OX → i∗OZ) be the homotopy fibre.

(i) The derived stack BlZX is (representable by) a derived scheme.

(ii) The construction BlZX → X commutes with arbitrary derived base change. That
is, (BlZX)×R

X X ′ = BlZ×R
XX′X ′ for every morphism X ′ → X of derived schemes.

(iii) The construction BlZX → X has covariant functoriality in X along quasi-smooth
closed immersions. That is, for any quasi-smooth closed immersion X → Y , there
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is a canonical quasi-smooth closed immersion

BlZX → BlZY

of derived schemes over Y .

(iv) There is a canonical closed immersion E = PZ(NZ/X) ↪→ BlZX which exhibits the
projectivized normal bundle as the universal virtual Cartier divisor lying over (X,Z).
There is also a canonical closed immersion BlZX → PX(I) and O(−E) ≃ O(1)|BlZX

is very ample.4

(v) The structural morphism πZ/X : BlZX → X is quasi-smooth, projective and induces

an isomorphism BlZX ∖PZ(NZ/X)
∼−→ X ∖ Z.

(vi) Suppose that X and Z are classical schemes. Then the derived scheme BlZX is

classical, and coincides with the classical blow-up BlclZX.

(vii) In general, (BlZX)cl = Pcl
Xcl

(
π0(I)

)
where Pcl(−) = Proj(Sym(−)) is the homoge-

neous spectrum of the underived symmetric algebra.

(viii) If i is a virtual Cartier divisor, then the morphism πZ/X : BlZX → X is invertible.

(ix) If i = idX , then the blow-up BlXX is empty.

The proof will be delayed a few pages (see Subsect. 4.3).

4.1.6. Theorem 4.1.5 admits the following immediate generalization. Given a closed
immersion i : Z ↪→ X of derived stacks, we say that i is quasi-smooth if, fpqc-locally
on X, it is a quasi-smooth closed immersion of derived schemes. Then the discussion
above applies mutatis mutandis to define a derived stack BlZX, classifying virtual
Cartier divisors lying over (X,Z). Moreover, if X is an (n-geometric) derived
Deligne–Mumford (resp. Artin) stack in the sense of [TV08], then the same is true
of BlZX.

4.1.7. The following universal property for the classical blow-up BlclZX follows from
part (vi) and the definition of BlZX:

Corollary 4.1.8. Let i : Z ↪→ X be a regular closed immersion between classical
schemes. For any classical scheme S over X, the set of X-morphisms S → BlclZX
is in bijection with the set of virtual Cartier divisors on S lying over (X,Z).

Remark 4.1.9. In the situation of the Corollary, assertion (vi) in the Theorem implies
that for any classical scheme S → X, the ∞-groupoid BlZX(S → X) of virtual
Cartier divisors on S lying over (X,Z) is discrete (i.e., can indeed be identified with
a set).

4.1.10. Suppose that X = Spec(A) is a classical noetherian affine scheme, Z =
Spec(A/I) is a closed subscheme, and f1, . . . , fn are generators of the ideal I. In
this situation the authors of [KST18] consider the derived scheme

X
R
×
An

Blcl{0}A
n,

where f : X → An corresponds to the elements fi. Parts (ii) and (vi) of the
Theorem above show that this derived scheme is nothing else than the blow-up

4Given a connective quasi-coherent sheaf E on a derived stack Y , PY (E) denotes the derived
stack over Y defined as follows. For any derived scheme S and any S-point s : S → Y , the S-points
of PY (E) are pairs (L, u) where L is an invertible sheaf on S and u is an OS-linear morphism
s∗E → L which is surjective (on π0).
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of Spec(A) in the quasi-smooth derived subscheme Z̃ = Spec(A//(f1, . . . , fn)). In
particular it follows that the construction of op. cit. is intrinsic not to the elements
fi, but only to their derived zero-locus Z̃.

4.1.11. Let X be a classical scheme and Z a finitely presented closed subscheme.
Although the ideal I defining Z is not always globally generated, we can often
find a vector bundle E and a surjection φ : E → I. This is for example the case
when X is quasi-projective or, more generally, has the resolution property. The
data (E, φ) endows Z with a quasi-smooth derived structure W as follows. The
induced morphism E → I → OX corresponds to a section s of the vector bundle
E = VX(E) = SpecX(SymOX

(E)). Consider the derived fibred product

W X

X E.

i

s

0

Then W → X is a quasi-smooth closed immersion and Wcl = Z. Note that the
classical blow-up BlclZX need not equal the underlying classical scheme of the derived
blow-up BlWX but is always the schematic closure of X ∖ Z in BlXE ×E X =
(BlWX)cl.

4.1.12. An immediate application of Theorem 4.1.5 is the existence of a deformation
to the normal bundle, for any quasi-smooth closed immersion. This was first
constructed by Verdier [Ver76] for regular closed immersions of classical schemes.
The construction gives a deformation of any quasi-smooth closed immersion Z ↪→ X
to the zero-section Z ↪→ NZ/X of its normal bundle NZ/X = SpecZ(SymOZ

(NZ/X)).

Theorem 4.1.13. Let i : Z ↪→ X be a quasi-smooth closed immersion of derived
stacks. Then there exists a canonical factorization of i× id, the deformation to the
normal bundle:

i× id : Z ×A1 j
↪−→ DZ/X

π−−→ X ×A1

satisfying the following properties

(i) The factorization is stable under arbitrary derived base change along X.

(ii) j is a quasi-smooth closed immersion.

(iii) π is quasi-smooth and quasi-projective.

(iv) Restricting to Gm = A1 ∖ {0} we obtain

i× id : Z ×Gm

jgen
↪−−−→ X ×Gm

πgen−−−→ X ×Gm

where jgen = i× id and πgen = id.

(v) Restricting to {0} we obtain

i : Z
j0
↪−−→ NZ/X

π0−−→ X

where j0 is the zero-section and π0 the composition of the projection NZ/X → Z and
i : Z ↪→ X.

In particular, we have a virtual Cartier divisor NZ/X ↪→ DZ/X .

Proof. We begin by considering the following projective variant:

π : DZ/X = BlZ×{0}(X ×A1) → X ×A1.
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We have a quasi-smooth closed immersion

j : Z ×A1 = BlZ×{0}(Z ×A1) ↪→ BlZ×{0}(X ×A1) = DZ/X

by Theorem 4.1.5 (iii) and (viii). Since

Z × {0} = (Z ×A1)×X×A1 (X × {0})

we have that the intersection of BlZ×{0}(Z × A1) and BlZ×{0}(X × {0}) inside

DZ/X is BlZ×{0}(Z × {0}) = ∅. We thus define

DZ/X = DZ/X ∖ BlZ×{0}(X × {0})

and let j and π be the restrictions of j and π. It remains to prove (v). The
complement of X×Gm in DZ/X is the exceptional divisor of the blow-up of X×A1

minus the exceptional divisor of the blow-up of X × {0}, that is:

DZ/X ∖ (X ×Gm) = PZ(NZ×{0}/X×A1)∖PZ(NZ/X).

As NZ×{0}/X×A1 splits as the direct sum NZ/X ⊕ OZ , this is NZ/X . The fact that

this is the fibre over {0}, i.e., that the induced morphism NZ/X → DZ/X ×R
A1{0} is

invertible, can be checked locally on X. Since the morphism is stable under derived
base change (Theorem 4.1.5 (ii)), it suffices to consider the case of the inclusion of
the origin in affine space, which is clear. □

Remark 4.1.14. One can give an even simpler description of the deformation space
DZ/X : it is the (derived) Weil restriction of Z along the inclusion X = X × {0} ↪→
X ×A1. This latter construction makes sense for any quasi-smooth morphism (not
necessarily a closed immersion) and can be used to give an intrinsic construction
of virtual Gysin maps and virtual fundamental classes in the Chow groups or
generalized cohomology theories. See [Kha19, Thm. 1.3], [HKR].

4.2. A special case. In this subsection we will study the special case of the
quasi-smooth closed immersion {0} ↪→ An, n ⩾ 1. We will identify An with
Spec(Z[T1, . . . , Tn]) and write Y := Bl{0}A

n for convenience.

4.2.1. For each 1 ⩽ k ⩽ n, let Ak = Z[T1/Tk, . . . , Tn/Tk, Tk]. The commutative
squares

Spec(Ak/(Tk)) Spec(Ak)

Spec(Z[T1, . . . , Tn]/(T1, . . . , Tn)) Spec(Z[T1, . . . , Tn])

define virtual Cartier divisors lying over (An, {0}), which are classified by canonical
morphisms Spec(Ak) → Y .

Lemma 4.2.2.

(i) For each 1 ⩽ k ⩽ n, the morphism Spec(Ak) → Y is a monomorphism. That is, its
homotopy fibres are empty or contractible.

(ii) The induced morphism
∐

k Spec(Ak) → Y is an effective epimorphism. In other

words, the family
(
Spec(Ak) ↪→ Y

)
k
defines a Zariski atlas for the derived stack Y .

(iii) The derived stack Y is a classical scheme. Moreover, it is isomorphic to the classical

blow-up Blcl{0}A
n.
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4.2.3. Proof of Lemma 4.2.2(i). Let S = Spec(R) be an affine derived scheme and
f : S → An a morphism corresponding to points f1, . . . , fn ∈ R. It suffices to show
that the induced map of spaces

θ : Maps/An(S,Spec(Ak)) → Y (S → An)

is a monomorphism. Set A := Maps/An(S, Spec(Ak)) and B := Y (S → An). We
will view A and B as ∞-groupoids and show that θ is fully faithful.

First observe that the source A can be described as

A = MapsDCRingZ[T1,...,Tn]
(Ak, R) ≃

∏
r ̸=k

Fibfr (R
fk−→ R),

since Ak = Z[T1/Tk, . . . , Tn/Tk, Tk] is free, as a derived commutative Z[T1, . . . , Tn]-

algebra, on generators X1, . . . , X̂k, . . . , Xn with relations TkXr − Tr, r ̸= k (be-
cause the sequence (TkXr − Tr)r ̸=k is regular, see the proof of [SGA 6, Exp. VII,
Prop. 1.8(ii)]). Thus its objects can be identified with tuples (ar, αr)r ̸=k, where
ar ∈ R are points and αr : fkar ≃ fr are paths in (the underlying space of) R.

The target B is by definition a sub-∞-groupoid of (DSchaff/S×R
An{0})

≃, that is,

(DCRingR//(f1,...,fn))
≃, where the notation (−)≃ means that we take the sub-∞-

groupoid of the ∞-category consisting of only invertible morphisms. Thus its objects
are morphisms R//(f1, . . . , fn) → R′, where R′ is a derived commutative ring. These
are equivalently R-algebras R′ equipped with paths fj ≃ 0 in R′, 1 ⩽ j ⩽ n.

The map θ : A→ B sends an object a = (ar, αr)r ̸=k ∈ A to the object θ(a) ∈ B
given by the R-algebra R//(fk) together with certain paths θ(a)j : fj ≃ 0 in R//(fk),
1 ⩽ j ⩽ n. The path θ(a)k is the “tautological” path and the other paths θ(a)r,
r ̸= k, are induced by composing α−1

r with θ(a)kar. Let a′ be another object of
A and θ(a′) its image in B. The space of paths θ(a) ≃ θ(a′) can be described as
follows:

MapsB(θ(a), θ(a
′)) = MapsDCRingR//(f1,...,fn)

(R//(fk), R//(fk))

= Fibθ(a′)

(
MapsDCRingR

(R//(fk), R//(fk))

θ(a)∗−−−→ MapsDCRingR
(R//(f1, . . . , fn), R//(fk))

)
= Fib(θ(a′)j)j

(
MapsR//(fk)

(fk, 0) →
n∏

j=1

MapsR//(fk)
(fj , 0)

)
=

∏
r ̸=k

MapsR//(fk)
(θ(a)r, θ(a

′)r).

Under the above identifications the map MapsA(a, a
′) → MapsB(θ(a), θ(a

′)) is
identified with the canonical map

∏
r ̸=k

Maps
Fibfr (R

fk−→R)
((ar, αr), (a

′
r, α

′
r)) →

∏
r ̸=k

MapsR//(fk)
(θ(a)r, θ(a

′)r)

which is invertible by Lemma 3.1.5.
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4.2.4. Proof of Lemma 4.2.2(ii). Let S be a derived scheme, f : S → An a morphism,
and D a virtual Cartier divisor on S lying over (An, {0}). The claim is that Zariski-
locally on S, D fits into a cartesian square

D S

Spec
(
Ak/(Tk)

)
Spec(Ak)

{0} An

□

for some k. We can assume that S is affine, say S = Spec(R) for some R ∈ DCRing,
so that f corresponds to points f1, . . . , fn ∈ R. The fact that D lies over (An, {0})
then implies that locally, the conormal sheaf ND/S has a basis given by dfk for some k.
It follows that the induced morphism D → Spec(R//(f1, . . . , fn)) → Spec(R//(fk))
is invertible, arguing as in the end of the proof of Proposition 2.3.8.

4.2.5. Proof of Lemma 4.2.2(iii). Assertions (i) and (ii) provide a Zariski cover for

Y by the standard affine cover of Blcl{0}A
n, so the claim follows.

Remark 4.2.6. Once one knows that Y is classical scheme, it is easy to check directly
that Y satisfies the classical universal property of Blcl{0}A

n. That is, suppose S is
a classical scheme and f : S → An is a morphism. If the classical schematic fibre
f−1({0}) is a classical Cartier divisor on S, then it lies over (An, {0}) as a virtual
Cartier divisor, and is moreover the unique such; in particular, there exists a unique
morphism S → Y over An.

4.3. Proof of the main theorem (Theorem 4.1.5).

4.3.1. Proof of (ii). Let i : Z ↪→ X be a quasi-smooth closed immersion of derived
schemes, and i′ : Z ′ ↪→ X ′ its derived base change along a morphism p : X ′ → X.
Given a derived scheme S′ over X ′, any virtual Cartier divisor D′ on S′ lying
over (X ′, Z ′) also lies over (X,Z). In particular there is a canonical morphism
BlZ′X ′ → BlZX ×R

X X ′. We prove the following more precise formulation of the
statement:

Claim 4.3.2. The canonical morphism of derived stacks BlZ′X ′ → BlZX ×R
X X ′ is

invertible.

Proof. Use the description mentioned in Remark 4.1.3(ii): for any S′ → X ′, the
∞-groupoids BlZ′X ′(S′ → X ′) and (BlZX ×R

X X ′)(S′ → X ′) both define the same
full sub-∞-groupoid of (DSch/S′ ×R

X′ Z
′)≃ = (DSch/S′ ×R

X Z)
≃. □

4.3.3. Proof of (i). It suffices to show this Zariski-locally on the base X, so we can
assume that i : Z ↪→ X is a derived base change of {0} ↪→ An. Derived fibred
products of derived schemes are representable, so by Theorem 4.1.5(ii) (proven in
4.3.1 above) we can reduce to the special case considered in Lemma 4.2.2.

4.3.4. Proof of (iv) and (vii). Let E denote the “universal virtual Cartier divisor”
lying over (X,Z), classified by the identity morphism BlZX → BlZX. This is a
derived scheme E equipped with a canonical morphism τ : E → Z, a canonical locally
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free sheaf Luniv
Z/X := NE/BlZX of rank 1, and a canonical surjection τ∗NZ/X → Luniv

Z/X .

This data is classified by a canonical morphism

E → PZ(NZ/X)

of derived schemes over Z. Similarly, the canonical surjection π∗
X/ZI → O(−E) (see

Remark 4.1.3(iv)) is classified by a canonical morphism

BlZX → PX(I).

Claim 4.3.5. The morphism E → PZ(NZ/X) is invertible and the morphism
BlZX → PX(I) is a closed immersion which is an isomorphism on classical trun-
cations. In particular, there is a canonical closed immersion PZ(NZ/X) ↪→ BlZX
which exhibits the projectivized normal bundle as the universal virtual Cartier divisor
lying over (X,Z).

Proof. The assertions are local and stable under derived base change, so we reduce to
the case of {0} ↪→ An. Then we can apply the well-known universal property of the
classical blow-up (Remark 4.2.6): since the classical fibred product Bl{0}A

n ×An{0}
is the classical effective Cartier divisor P{0}(N{0}/An), the conclusion is that there
is a unique virtual Cartier divisor P{0}(N{0}/An) ↪→ Bl{0}A

n lying over (An, {0}),
classified by the identity of Bl{0}A

n. This gives the first assertion. The second
assertion is that Bl{0}A

n → Proj(Sym I) is an isomorphism of classical schemes
where I = (T1, T2, . . . , Tn) ⊂ Z[T1, . . . , Tn]. But I is regular so Sym(I) coincides
with the Rees algebra R(I) [Mic64, Ch. 1, Thm. 1]. The result follows. □

Remark 4.3.6. The closed immersion BlZX → PX(I) is an isomorphism if and
only if the virtual codimension of Z ↪→ X is at most 2. Indeed, it is enough
to consider the situation of Z = {0} in X = An so I = (T1, T2, . . . , Tn). Then
BlZX = Proj(Sym(I)) and PX(I) = Proj(LSym(I)). An explicit calculation shows
that LSym(I) = Sym(I)[0] when n ⩽ 2. One also calculates that the cotangent
complex of the special fibre of Proj(L Sym(I)) is perfect of Tor-amplitude [0, n− 1]
so Proj(LSym(I)) → X is not quasi-smooth when n ⩾ 3, hence cannot equal the
quasi-smooth morphism Proj(Sym(I)) → X.

4.3.7. Proof of (v). We have already seen that πZ/X is projective. The other
properties are Zariski-local on the target and stable under arbitrary derived base
change, so we again reduce to the case of {0} ↪→ An. Then these are well-known
properties of the classical blow-up. In fact, the projection Bl{0}A

n → An factors

through a regular closed immersion Bl{0}A
n ↪→ Pn−1

An , see [SGA 6, Exp. VII,
Prop. 1.8(ii)].

4.3.8. Proof of (vi). Suppose that X and Z are classical schemes. To show that BlZX
is classical, we can assume that X = Spec(R) and Z = Spec(R//(f1, . . . , fn)) =
Spec(R/(f1, . . . , fn)), where R is a commutative ring and (f1, . . . , fn) is a regular
sequence. Then by Theorem 4.1.5(ii) and Lemma 4.2.2, the derived scheme BlZX
admits a Zariski cover by the schemes

Spec(R)
R
×
An

Spec(Ak) = Spec
(
R[X1, . . . , X̂k, . . . , Xn]//(Xrfk − fr)r ̸=k

)
,

where Ak = Z[T1/Tk, . . . , Tn/Tk, Tk] as in Subsect. 4.2. Thus the claim follows
from the fact that the sequence (Xrfk − fr)r ̸=k is regular (see the proof of [SGA 6,
Exp. VII, Prop. 1.8(ii)]).

To show that BlZX moreover coincides with BlclZX, we can assume Z ↪→ X is
a derived base change of {0} ↪→ An along some morphism f : X → An. Then
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we have canonical isomorphisms BlZX ≃ Bl{0}A
n ×R

An X ≃ Bl{0}A
n ×An X by

Theorem 4.1.5(ii) and the first part of (vi). On the other hand the classical blow-up

BlclZX is the classical base change Blcl{0}A
n ×An X by [SGA 6, Exp. VII, Prop. 1.8(i)].

Therefore the claim follows from the special case of {0} ↪→ An (Lemma 4.2.2).

4.3.9. Proof of (viii). Suppose that i : Z ↪→ X is of virtual codimension 1. Then
given a derived scheme S over X, a virtual Cartier divisor D ↪→ S lies over (X,Z)
if and only if the square (4.1.a) is homotopy cartesian. Indeed, if the canonical
morphism (4.1.b) is surjective then it is an isomorphism and LD/SZ

= 0 so D → SZ

is an isomorphism. In other words, (X,Z) is in this case itself the universal virtual
Cartier divisor lying over (X,Z).

4.3.10. Proof of (ix). Suppose that i is the identity of X. Then given a derived
scheme S over X, a virtual Cartier divisor D ↪→ S lies over (X,X) if and only if
S = D = ∅. Indeed, the surjectivity of (4.1.b) implies that D = ∅ and hence that
S = ∅.

4.3.11. Proof of (iii). The existence of the canonical morphism BlZX → BlZY
follows from the observation that any virtual Cartier divisor lying over (X,Z) also
lies over (Y,Z). In other words, this morphism is classified by the commutative
square

PZ(NZ/X) BlZX

Z Y,

viewed as a virtual Cartier divisor lying over (Z, Y ). That BlZX → BlZY is a quasi-
smooth closed immersion can be checked locally on Y . We can thus assume that
Z ↪→ X ↪→ Y is a derived base change of {0} ↪→ Ar ↪→ An. Then BlZX → BlZY is
a derived base change of Bl{0}A

r → Bl{0}A
n which is a closed immersion between

smooth schemes, hence quasi-smooth.

5. Simultaneous blow-up in multiple centres

5.1. We begin by reviewing the traditional approach to blowing up several centres
on classical schemes.

5.1.1. Let X be a smooth scheme and let Z1 and Z2 be smooth closed subschemes.
In many situations, one wants to blow-up both Z1 and Z2. More precisely, one
wants a smooth scheme dominating both BlZ1X and BlZ2X. Consider the following
three blow-up procedures:

(a) First blow-up Z1, then blow-up the strict transform of Z2.

(b) First blow-up Z2, then blow-up the strict transform of Z1.

(c) First blow-up Z1 ∩ Z2, then blow-up the strict transform of Z1 ∪ Z2 which is now
the disjoint union of the strict transforms of Z1 and Z2.

For these blow-ups to be smooth, one needs Z1 ∩ Z2 to be smooth which can be
done using embedded resolution of singularities in characteristic zero.

Let Xa, Xb and Xc be the results of these three procedures. In general, the Xa

and Xb are non-isomorphic and do not dominate both BlZ1
X and BlZ2

X whereas
Xc dominates Xa, Xb, BlZ1

X and BlZ2
X.



VIRTUAL CARTIER DIVISORS AND BLOW-UPS 19

5.1.2. When Z1 ∩ Z2 is smooth, then the following are equivalent.

(i) Xa = Xb.

(ii) Z1 and Z2 meet transversely, that is, codim(Z1, X) + codim(Z2, X) = codim(Z1 ∩
Z2, X).

(iii) Z1 → X and Z2 → X are Tor-independent, that is, the derived intersection Z1 ×R
X Z2

is a classical scheme.

When these conditions hold, then Xa = Xb = BlZ1
X ×R

X BlZ2X = BlZ1
X×XBlZ2

X.

5.1.3. In derived algebraic geometry, it is not a problem if Z1 ∩ Z2 is singular or if
the intersection is not transversal. Given a quasi-smooth derived scheme X and two
quasi-smooth closed immersions Z1 ↪→ X and Z2 ↪→ X the derived fibred product
BlZ1X ×R

X BlZ2X is a quasi-smooth derived scheme that dominates both BlZ1X
and BlZ2

X.

The goal of this section is a construction where the simultaneous blow-up
BlZ1

X ×R
X BlZ2

X of Z1 and Z2 is described as the blow-up of X in Z1 ⨿ Z2.

Example 5.1.4. If Z1 → X and Z2 → X are Tor-independent, then so are BlZ1
X →

X and BlZ2
X → X, that is, the derived fibred product BlZ1

X ×R
X BlZ2

X is a
classical scheme. The converse is not true: Bl{0}A

2 → A2 is Tor-independent along

itself but {0} → A2 is not Tor-independent along itself. This is a low-dimensional
phenomenon though: Bl{0}A

n → An is not Tor-independent along itself for n ⩾ 3.

5.2. Local regular immersions.

5.2.1. Let i : Z → X be a morphism of derived schemes. We say that i is unramified
if i is locally of finite type and the relative cotangent complex LZ/X is 1-connective
(i.e., πi(LZ/X) = 0 for i < 1). This is equivalent to requiring that the underlying
morphism of classical schemes is unramified (in the sense that icl : Zcl → Xcl

is locally of finite type, and ΩZcl/Xcl
= π0(LZ/X) = 0). Equivalently, i factors

Zariski-locally on Z as a closed immersion followed by an étale morphism [EGA IV4,
Cor. 18.4.7]. In the category of derived algebraic spaces, such a factorization exists
globally [Ryd11].

Example 5.2.2. A morphism of derived schemes is finite if the underlying morphism
of classical schemes is finite. It follows from [EGA IV4, Cor. 18.4.7] that a morphism
i : Z → X is finite and unramified if and only if, étale-locally on X, i is a finite
disjoint union of closed immersions.

5.2.3. When i : Z → X is quasi-smooth, it is unramified if and only if it factors
Zariski-locally on Z as a quasi-smooth closed immersion followed by an étale mor-
phism.5 Alternatively, we have the following characterization, analogous to that of
quasi-smooth closed immersions (Proposition 2.3.8).

Proposition 5.2.4. Let i : Z → X be a morphism of derived schemes. Then i is
quasi-smooth and unramified if and only if it is locally of finite presentation and the
shifted cotangent complex LZ/X [−1] is a locally free OZ-module of finite rank.

Proof. We note that both conditions imply that i is unramified. Locally on Z, we
can thus find a factorization Z ↪→ X ′ → X with X ′ → X étale and Z ↪→ X ′ a

5Note that, given morphisms X → Y → S with Y → S smooth, X → Y is quasi-smooth if and
only if X → S is quasi-smooth.
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closed immersion. Then there is a canonical isomorphism LZ/X ≃ LZ/X′ , so the
result follows from Proposition 2.3.8. □

In analogy with the case of quasi-smooth immersions, we let NZ/X = LZ/X [−1]
and take this as the definition of the conormal sheaf of a quasi-smooth unramified
morphism. The virtual codimension of Z → X is the rank of NZ/X .

5.2.5. Let X be a derived scheme. A local virtual Cartier divisor on X is a derived
scheme D together with a quasi-smooth unramified morphism iD : D → X of virtual
codimension 1. Thus Zariski-locally on D and étale-locally on X, a local virtual
Cartier divisor is a virtual Cartier divisor.

5.3. Derived blow-ups in unramified centres.

5.3.1. Let i : Z → X be a quasi-smooth finite unramified morphism of derived
schemes. For any derived scheme S and morphism f : S → X, a virtual Cartier
divisor on S lying over (X,Z) is the datum of a commutative square

D S

Z X

g

iD

f

i

satisfying the following conditions:

(a) The morphism iD : D → S exhibits D as a local virtual Cartier divisor on S.

(b) The underlying square of classical schemes is cartesian.

(c) The canonical morphism

g∗NZ/X → ND/S

is surjective (on π0).

Note that the second condition implies that D → S is finite. It also implies that if
Z → X is a closed immersion, then so is D → S. Thus in that case, the ∞-groupoid
of virtual Cartier divisors on S over (X,Z) and the ∞-groupoid of local virtual
Cartier divisors on S over (X,Z) coincide.

5.3.2. As in 4.1.4, we obtain a presheaf of ∞-groupoids

BlZX : (DSch/X)op → Spc

where BlZX(S → X) is the ∞-groupoid of local virtual Cartier divisors over (X,Z).
Note that if Z → X is a quasi-smooth closed immersion, then this definition agrees
with the one in 4.1.4.

Theorem 5.3.3. Let Z → X be a quasi-smooth finite unramified morphism of
derived schemes.

(i) The derived stack BlZX is (representable by) a derived algebraic space.

(ii) The construction BlZX → X commutes with arbitrary derived base change, that is,
(BlZX)×R

X X ′ = BlZ×R
XX′X ′ for every morphism X ′ → X of derived schemes.

(iii) The diagonal ∆ : Z → Z ×R
X Z is a closed immersion (with open image). Let

W = Z ×R
X Z ∖ Z be its open and closed complement: it is quasi-smooth fi-

nite and unramified over Z. There is a canonical finite unramified morphism
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PZ(NZ/X)×R
Z BlWZ → BlZX which is the universal local virtual Cartier divisor

lying over (X,Z).

(iv) The structural morphism πZ/X : BlZX → X is proper and quasi-smooth.

(v) When Z = Z1 ⨿ · · · ⨿ Zn, then BlZX = BlZ1
X ×R

X . . .×R
X BlZn

X.

(vi) If g : X → Y is an étale morphism such that Z → X → Y is finite, then BlZY is
the Weil restriction g∗BlZX.

5.4. Proof of Theorem 5.3.3.

5.4.1. Proof of (ii). This is proven exactly as Theorem 4.1.5(ii), see 4.3.1.

5.4.2. Proof of (v). If Z = Z1 ⨿ · · · ⨿ Zn is a disjoint union and D is a local virtual

Cartier divisor on T lying over (X,Z), then D = D1 ⨿ · · · ⨿Dn where Di = g−1(Zi)
is a local virtual Cartier divisor lying over (X,Zi). The result follows.

5.4.3. Proof of (i) and (iv). For a morphism p : X ′ → X, let i′ : Z ′ → X ′ denote the
derived base change of i along p. It is enough to show that BlZX×XX

′ = BlZ′X ′ is
a derived scheme which is proper and quasi-smooth over X ′ for some étale surjection
p. Since i is finite, we can find an étale surjection p such that Z ′ → X ′ is a disjoint
union of closed immersions i′k : Z ′

k → X ′, see 5.2.2. From (v) and Theorem 4.1.5, we
see that BlZ′X ′ = BlZ′

1
X ′ ×R

X′ . . .×R
X′ BlZ′

n
X ′ is a derived scheme, quasi-smooth

and proper over X ′.

5.4.4. Proof of (iii). We pick an étale presentation as before. It is enough to prove
that the universal local virtual Cartier divisor of BlZ′X ′ is as stated. The universal
local virtual Cartier divisor of BlZ′X ′ over Z ′

k is the derived fibred product over
X ′ of PZ′

k
(NZ′

k/X
′) and the BlZ′

ℓ
X ′ for all ℓ ̸= k. This fibred product is isomorphic

to the derived fibred product over Z ′
k of PZ′

k
(NZ′

k/X
′) and the BlZ′

ℓ ×
R
X′ Z

′
k
Z ′
k for

all ℓ ̸= k. The latter is BlW ′Z ′
k where W ′ =

∐
ℓ ̸=k

(
Z ′
ℓ ×R

X′ Z ′
k

)
= W ×R

X X ′. The
universal local virtual Cartier divisor of BlZX is thus the derived fibred product
over Z of PZ(NZ/X) and BlWZ.

5.4.5. Proof of (vi). Let D be a local virtual Cartier divisor on T over (Z, Y ). Then
D → T factors as D → X ×Y T → T . Since g : X → Y is étale, D → X ×Y T is
also a local virtual Cartier divisor. This gives a map BlZY → g∗BlZX. Conversely,
if D is a local virtual Cartier divisor on X ×Y T over (Z,X), then the composite
D → X ×Y T → T is a local virtual Cartier divisor over (Z, Y ). This gives a map
g∗BlZX → BlZY which is inverse to the previous map.
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