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Abstract. This series of papers is dedicated to the study of motivic homotopy theory in
the context of brave new or spectral algebraic geometry. In Part II we prove a comparison

result with the classical motivic homotopy theory of Morel–Voevodsky. This comparison says

roughly that any A1-homotopy invariant cohomology theory in spectral algebraic geometry
is determined by its restriction to classical algebraic geometry. As an application we obtain a

derived nilpotent invariance result for a brave new analogue of Weibel’s homotopy invariant

K-theory.
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1. Introduction

1.1. Main results.

1.1.1. In Part I [Kha16] we constructed a brave new analogue of the motivic homotopy category
and studied some of its fundamental properties.

Our main goal in Part II is to prove (Theorem 3.4.2) that brave new motivic homotopy
theory is equivalent to classical motivic homotopy theory. More precisely, there is a canonical
equivalence of ∞-categories

(1.1) HE∞(S)
∼−→ Hcl(Scl)

for any (quasi-compact quasi-separated) spectral scheme S. Here HE∞(S) denotes the brave
new motivic homotopy category over S, and Hcl(Scl) denotes the classical motivic homotopy
category of Morel–Voevodsky over Scl, the underlying classical scheme of S.

In particular, for any (quasi-compact quasi-separated) classical scheme S, the brave new
motivic homotopy category HE∞(S) is equivalent to the classical motivic homotopy category
Hcl(S).

1.1.2. Recall that in the construction of HE∞(S), we invert the “brave new affine line”
Spec(S{t}), where S{t} denotes the free E∞-algebra over the sphere spectrum S on one generator
t (in degree zero).

In Part II we also consider a variant of this construction, denoted H[(S), where we invert the
“flat affine line” A1

[ , defined as the spectral scheme Spec(S[t]), where S[t] denotes the polynomial
E∞-algebra over S. We show (Theorem 4.5.5) that the above equivalence (1.1) factors through
equivalences

HE∞(S)
∼−→ H[(S)

∼−→ Hcl(Scl).

1.1.3. The final subject of study in Part II is a brave new analogue of Weibel’s homotopy
invariant K-theory, denoted KHE∞ . This is obtained from algebraic K-theory by imposing
homotopy invariance with respect to the brave new affine line.

We prove (Theorem 5.3.4) that this theory satisfies a derived nilpotent invariance property, i.e.
for any connective E∞-ring spectrum R it computes the classical homotopy invariant K-theory
of the ordinary ring π0(R):

KHE∞(R) ≈ KHcl(π0(R)).

There is also a variant KH[ where one imposes homotopy invariance with respect to the flat
affine line. This theory also has the above-mentioned derived nilpotent invariance property. An
independent proof of the latter fact, in the setting of connective E1-ring spectra, is due to B.
Antieau, D. Gepner and J. Heller (private communication).

Let us note that there is another variant of algebraic K-theory which is known to satisfy
derived nilpotent invariance. Namely, C. Barwick has proved that the G-theory (the K-theory
of coherent sheaves) of locally noetherian spectral Deligne–Mumford stacks satisfies derived
nilpotent invariance [Bar15, § 9].

1.2. Why do we care?
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1.2.1. One consequence of the equivalence (1.1) is the existence, in any generalized motivic
cohomology theory, of virtual fundamental classes associated to lci spectral schemes. This will
be the subject of a future paper.

For derived schemes (we refer to the theory built out of simplicial commutative rings), this
has been expected by experts. We found it a bit surprising that it remains true for spectral
schemes, which at first glance seem less closely related to classical algebraic geometry.

1.2.2. Another way to interpret the equivalence (1.1) is as follows.

Suppose that we have constructed some hypothetical theory of motivic cohomology over the
sphere spectrum S. Whatever this is, we might expect that it defines contravariant functors
X 7→ Γ(X,ZSpec(S)(p)) (p ∈ Z), i.e. presheaves of spectra on the category SmE∞

/ Spec(S) of smooth

spectral S-schemes, whose homotopy groups compute integral motivic cohomology in weight p:

Hq
mot(X,ZSpec(S)(p)) := π−q(Γ(X,ZSpec(S)(p))).

This presheaf should at least satisfy Nisnevich descent, so that one has Mayer–Vietoris long
exact sequences for Nisnevich squares.

Now suppose that we also impose the condition of homotopy invariance with respect to the
brave new affine line, i.e.

Hq
mot(X,ZSpec(S)(p))

∼−→ Hq
mot(X×A1,ZSpec(S)(p)) (p, q ∈ Z),

for all smooth spectral S-schemes X, where A1 = Spec(S{t}) denotes the brave new affine line,
whose ring of functions is the free E∞-ring spectrum on one generator t.

Then the equivalence (1.1) tells us that we must have

(1.2) Hq
mot(X,ZSpec(S)(p))

∼−→ Hq
mot(Xcl,ZSpec(Z)(p)) (p, q ∈ Z)

for all X. For example, the brave new motivic cohomology of the sphere spectrum Spec(S) is
forced to be just the classical motivic cohomology of Spec(Z).

Thus in order to obtain a theory of motivic cohomology that is interesting from the perspective
of chromatic stable homotopy theory, this means that it is necessary to consider a different
approach.

1.3. Contents. In Sect. 2 we consider an enlargement of the motivic homotopy category,
which is generated by spectral schemes that only satisfy a mild finiteness condition (but are
not necessary smooth). We call these “Sch-fibred” motivic spaces (as opposed to “Sm-fibred”
motivic spaces). This will be necessary to make sense of the nil-localization process we use
to prove the comparison theorem. We spend some time studying the relationship between
Sm-fibred and Sch-fibred motivic homotopy theory. This material also applies to the setting of
classical motivic homotopy theory, which may be of independent interest.

In Sect. 3 we prove the first main result, the comparison theorem. The proof uses the idea of
nil-localization, which is the localization at the set of morphisms of the form hS(Xcl)→ hS(X),
where Xcl denotes the underlying classical scheme of X. We show that the nil-localization of
the brave new motivic homotopy category HE∞(S) is the classical motivic homotopy category
Hcl(Scl). The key observation is that the localization theorem implies that Sm-fibred motivic
spaces are already nil-local, so nil-localization has no further effect.

Sect. 4 deals with the Sm[-variant of the theory, where we invert the flat affine line A1
[ .

We demonstrate the equivalence between the Sm[-fibred motivic spaces and Sm-fibred motivic
spaces. The main point is the existence of a morphism A1

[ → A1, which preserves the interval
structures on both objects.
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In Sect. 5 we apply our results to obtain the nilpotent invariance result for homotopy invariant
K-theory.

1.4. Conventions and notation. We will use the language of ∞-categories freely throughout
the text. The term “category” will mean “∞-category” by default. Though we will use the
language in a model-independent way, we fix for concreteness the model of quasi-categories as
developed by A. Joyal and J. Lurie. Our main references are [Lur09] and [Lur16a].

By assumption, all spectral schemes will be quasi-compact and quasi-separated, and all
smooth and étale morphisms will be of finite presentation.

1.5. Acknowledgments. We would like to thank Benjamin Antieau and David Gepner for
their encouragement and interest in this paper.

2. Sch-fibred motivic homotopy theory

In this section we consider an enlarged version of the motivic homotopy category, which
is generated by spectral schemes that only satisfy a mild finiteness condition over the base
(i.e., they are not required to be smooth over the base). We show that the usual motivic
homotopy category is equivalent to the full subcategory generated under colimits by smooth
spectral schemes. This larger category will have the same formal properties as HE∞(S), but the
localization theorem demonstrated in [Kha16] will not hold in this setting (see Remark 2.4.4).

Throughout this section, S will be a quasi-compact quasi-separated spectral scheme.

2.1. Sch-fibred spaces. In this paragraph we define the category of SchE∞-fibred motivic
spaces. The construction fits into the general paradigm discussed in [Kha16, § 3].

2.1.1. We say that a morphism of affine spectral schemes Spec(B) → Spec(A) is afp if B is
almost of finite presentation as an A-algebra, in the sense of [Lur16a, Def. 7.2.4.26].

This definition is globalized in the usual way:

Definition 2.1.2.

(i) A morphism of spectral schemes is locally afp if there exist affine Zariski covers (Yα ↪→ Y)α
and (Xβ ↪→ X)β such that, for each α, there exists an index β and a morphism of affine spectral
schemes Yα → Xβ which is almost of finite presentation and fits in a commutative square

Yα Xβ

Y X.

(ii) A morphism of spectral schemes Y → X is afp if it is quasi-compact, quasi-separated and
locally afp.

We write SchE∞
/S for the category of afp spectral schemes over S.

2.1.3. A SchE∞-fibred space over S is by definition a presheaf of spaces on the category SchE∞
/S .

We will write SpcE∞(S) for the category of SchE∞ -fibred spaces.

The Yoneda embedding defines a fully faithful functor

hS(−) : SchE∞
/S ↪→ SpcE∞(S).
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2.1.4. Recall the notion of Nisnevich square from [Kha16, ¶ 4.1]. We say that a SchE∞ -fibred
space F satisfies Nisnevich excision, or is Nisnevich-local, if:

(a) It is reduced, i.e. the space Γ(∅,F) is contractible.

(b) It sends any Nisnevich square of afp spectral S-schemes to a cartesian square of spaces.

Let SpcE∞Nis (S) denote the full subcategory of SpcE∞(S) spanned by Nisnevich-local spaces.

2.1.5. Let A1 denote the spectral affine line (see [Kha16, 2.6.10]). We say that a SchE∞ -fibred
space F satisfies A1-homotopy invariance, or is A1-local, if, for every spectral S-scheme X, the
canonical map

Γ(X,F)→ Γ(X×A1,F),

induced by the projection X×A1 → X, is invertible.

Let SpcE∞A1 (S) denote the full subcategory of SpcE∞(S) spanned by A1-local spaces.

2.1.6. A motivic SchE∞-fibred space is a SchE∞ -fibred space satisfying Nisnevich excision and
A1-homotopy invariance.

Let HE∞(S) denote the full subcategory of SpcE∞(S) spanned by motivic SchE∞ -fibred spaces.

2.1.7. This construction fits into the general framework of [Kha16, § 3], and we have:

Lemma 2.1.8.

(i) The category SpcE∞Nis (S) is an accessible left localization of SpcE∞(S), and the localization
functor F 7→ LNis(F) is exact.

(ii) The category SpcE∞A1 (S) is an accessible left localization of SpcE∞(S), and the localization

functor F 7→ LA1(F) admits the following description: for every SchE∞-fibred space F, there is
a canonical isomorphism

(2.1) Γ(X,LA1(F)) = lim−→
(Y→X)∈(AX)op

Γ(Y,F)

for each afp spectral S-scheme X. Here (AX)op is a sifted small category, opposite to the full

subcategory of SmE∞
/X spanned by compositions of A1-projections.

(iii) The category HE∞(S) is an accessible left localization of SpcE∞(S). Further, the localization
functor F 7→ Lmot(F) can be described as the transfinite composite

(2.2) Lmot(F) = lim−→
n>0

(LA1 ◦ LNis)
◦n(F).

(vi) The category HE∞(S) is generated under sifted colimits by objects of the form Lmot hS(X),
where X = Spec(A) is an affine afp spectral S-scheme.

Proof. See [Kha16, § 4], replacing all instances of the word “smooth” by “afp”. �

2.2. Sm-fibred spaces. In this paragraph we show that the SchE∞ -fibred variant of the motivic
homotopy category is indeed an enlargement of the usual (SmE∞ -fibred) version constructed in
[Kha16, § 4].

This is tautological at the level of presheaves, and it is only necessary to verify that the
inclusion functor SmE∞

/S ↪→ SchE∞
/S is well-behaved with respect to the various localizations.
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2.2.1. Let SmE∞
/S denote the category of smooth spectral S-schemes of finite presentation. In

the sequel, “smooth” will always mean “smooth of finite presentation”.

Recall from [Kha16, § 4] that a SmE∞-fibred space over S is a presheaf of spaces on SmE∞
/S .

We write SpcE∞(S) for the category of SmE∞-fibred spaces.

2.2.2. Let ιSm : SmE∞
/S ↪→ SchE∞

/S denote the inclusion functor. This induces a canonical fully

faithful functor
(ιSm)! : SpcE∞(S)→ SpcE∞(S),

left adjoint to the restriction functor (ιSm)∗. Its essential image can be described as the full
subcategory of SpcE∞(S) generated under colimits by objects of the form hS(X), with X a
smooth spectral S-scheme.

By abuse of notation we will identify SpcE∞(S) with its essential image in SpcE∞(S).

2.2.3. We form localizations SpcE∞Nis (S), SpcE∞A1 (S), and HE∞(S) of the category SpcE∞(S) (see
[Kha16, § 4] for details).

We have:

Lemma 2.2.4.

(i) The functor (ιSm)! preserves Nisnevich-local equivalences. Its right adjoint (ιSm)∗ preserves
Nisnevich-local spaces and Nisnevich-local equivalences.

(ii) The functor (ιSm)! preserves A1-local equivalences. Its right adjoint (ιSm)∗ preserves A1-local
spaces and A1-local equivalences.

Proof.

(i) It is clear that (ιSm)! preserves Nisnevich-local equivalences, so its right adjoint preserves
Nisnevich-local spaces by adjunction. To see that (ιSm)∗ preserves Nisnevich-local equivalences,
it suffices to show that ιSm is topologically cocontinuous. This is clear because if X is smooth
over S, and

U×X V V

U X

k

p

j

is a Nisnevich square over S, then both U and V will also be smooth over S.

(ii) It is clear that (ιSm)! preserves A1-local equivalences, so its right adjoint preserves A1-local
spaces by adjunction. For the second claim it suffices to show that, for any spectral S-scheme X,
the canonical morphism

i∗ hS(X×A1)→ i∗ hS(X)

is an A1-local equivalence of SmE∞ -fibred spaces. By universality of colimits it suffices to show
that, for any smooth spectral S-scheme Y and morphism of presheaves ϕ : hS(Y)→ i∗ hS(X),
the base change

i∗ hS(X×A1) ×
i∗ hS(X)

hS(Y)→ hS(Y)

is an A1-local equivalence. Since the morphism ϕ factors as hS(Y)→ i∗ hS(Y)→ i∗ hS(X), the
morphism in question is obtained by base change from the morphism

i∗ hS(X×A1) ×
i∗ hS(X)

i∗ hS(Y)→ i∗ hS(Y),

which is identified with the canonical morphism

hS(Y ×A1)→ hS(Y),



BRAVE NEW MOTIVIC HOMOTOPY THEORY II: HOMOTOPY INVARIANT K-THEORY 7

since i∗ and hS commute with limits and i∗i! = id. This is an A1-local equivalence, so the claim
follows. �

2.2.5. It follows that the functor (ιSm)∗ restricts to a well-defined functor

(ιSm)∗ : HE∞(S)→ HE∞(S),

which is right adjoint to Lmot ◦ (ιSm)!. Further, we have:

Proposition 2.2.6. The functor Lmot◦(ιSm)! : HE∞(S)→ HE∞(S) is fully faithful. Its essential
image is generated under colimits by the objects Lmot hS(X), for X a smooth spectral S-scheme.

Proof. Given a functor u with a left adjoint uL and a right adjoint uR, it is a standard fact that
uL is fully faithful if and only if uR is. Note that the functor (ιSm)∗ does indeed have a right
adjoint (at the level of motivic spaces): at the level of presheaves, it has a right adjoint (ιSm)∗
given by right Kan extension; but since (ιSm)∗ preserves motivic equivalences by Lemma 2.2.4,
(ιSm)∗ preserves motivic spaces (and hence restricts to a right adjoint).

Thus it suffices to show that (ιSm)∗ is fully faithful. This follows directly from the fact that
ιSm is fully faithful. �

Remark 2.2.7. Note that the same applies for the localization functors LNis and LA1 .

2.2.8. For the record, let us also state the classical analogue of Proposition 2.2.6.

Let Sch/Scl
denote the category of classical Scl-schemes (of finite presentation), where Scl

denotes the underlying classical scheme of S. Let Sm/Scl
denote the full subcategory spanned by

smooth classical Scl-schemes (of finite presentation).

Let Spccl(Scl) (resp. Spccl(S)) denote the category of Sch-fibred spaces (resp. Sm-fibred
spaces) over Scl, i.e. presheaves of spaces on Sch/Scl

(resp. on Sm/Scl
).

Let Hcl(S) (resp. Hcl(S)) denote the full subcategory spanned by Sch-fibred motivic spaces
(resp. Sm-fibred motivic spaces) over Scl.

Then we have:

Proposition 2.2.9. There is a canonical fully faithful functor

Lmot ◦ (ιSm)! : Hcl(Scl)→ Hcl(Scl),

whose essential image is spanned by objects of the form Lmot hScl
(X), where X is a smooth

classical Scl-scheme.

2.2.10. The following observation will be useful:

Lemma 2.2.11. The localization functor F 7→ LA1(F) commutes with the restriction functor

(ιSm)∗ on SchE∞-fibred spaces.

Proof. According to Lemma 2.1.8 and [Kha16, Lem. 4.2.3], both (ιSm)∗(LA1(F)) and LA1(ιSm)∗(F)
are given section-wise by the same formula

lim−→
(Y→X)∈(AX)op

Γ(Y,F)

for each smooth spectral S-scheme X. �

2.3. Functoriality. The method described in [Kha16, §§ 5–6] evidently adapts to give the
following basic1 functorialities (f], f

∗, f∗) for each of the categories considered so far.

1As opposed to the “exceptional” functorialities (f!, f
!).
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2.3.1. Let f : T→ S be a morphism of spectral schemes.

For SchE∞-fibred spaces we have the operations (f
Spc
] , f∗Spc, f

Spc
∗ ), as follows. The functor

f∗Spc sends a space of the form hS(X), with X a spectral S-scheme, to the space hT(X×S T). It
commutes with colimits and admits a right adjoint f

Spc
∗ . When f is afp, f∗ also admits a left

adjoint f
Spc
] , which sends a space of the form hT(X) to the space hS(X), where X is viewed as

an S-scheme by extending the structural map X→ T along f .

2.3.2. These operations induce operations (f
H
] , f

∗
H, f

H
∗ ) motivic SchE∞ -fibred spaces as follows.

First, the functor f
Spc
∗ preserves motivic spaces. Therefore we obtain an operation f

H
∗ on

motivic spaces, right adjoint to f∗H := Lmotf
∗
Spc. For f afp, the functor f∗Spc already preserves

motivic spaces and it will be right adjoint to f
H
] := Lmotf].

2.3.3. On SmE∞ -fibred motivic spaces, the operation f∗H restricts to an operation f∗H, which is

left adjoint to fH
∗ := (ιSm)∗f

H
∗ Lmot(ιSm)!. When f is smooth, the operation f

H
] also restricts to

an operation fH
] which is left adjoint to f∗H. These operations (fH

] , f
∗
H, f

H
∗ ) are evidently the

same as those constructed in [Kha16, §§ 5–6].

2.3.4. Whenever the functor f] exists, the operation f∗ satisfies left base change [Kha16, Def.
A.4.4] and the left projection formula [Kha16, Def. A.4.6] along it.

2.3.5. Since the base change functor SmE∞
/S → SmE∞

/T commutes with the inclusion ιSm :

SmE∞
/S ↪→ SchE∞

/S , we have:

Lemma 2.3.6.

(i) There are canonical 2-isomorphisms

(ιSm)! ◦ f∗Spc ≈ f∗Spc ◦ (ιSm)!

fSpc
∗ ◦ (ιSm)∗ ≈ (ιSm)∗ ◦ f∗Spc.

(ii) There are canonical 2-isomorphisms

Lmot(ιSm)! ◦ f∗H ≈ f∗H ◦ Lmot(ιSm)!

fH
∗ ◦ (ιSm)∗ ≈ (ιSm)∗ ◦ f∗H.

Similarly, when f is smooth, the forgetful functor SmE∞
/T → SmE∞

/S commutes with the

inclusion ιSm : SmE∞
/S ↪→ SchE∞

/S , so that we have:

Lemma 2.3.7.

(i) There are canonical 2-isomorphisms

(ιSm)! ◦ fSpc
] ≈ fSpc

] ◦ (ιSm)!

f∗Spc ◦ (ιSm)∗ ≈ (ιSm)∗ ◦ fSpc
∗ .

(ii) There are canonical 2-isomorphisms

Lmot(ιSm)! ◦ fH
] ≈ f

H
] ◦ Lmot(ιSm)!

f∗H ◦ (ιSm)∗ ≈ (ιSm)∗ ◦ fH
∗ .

2.4. Direct image along closed immersions.
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2.4.1. Just as in [Kha16, Prop. 7.1.2], we have:

Proposition 2.4.2. Let i : Z ↪→ S be a closed immersion of spectral schemes. The functor
(i∗)

H commutes with contractible2 colimits.

Proof. The proof of [Kha16, Prop. 7.1.2] also works on the afp site (i.e., the base change functor

SchE∞
/S → SchE∞

/Z is also topologically quasi-cocontinuous). �

We also have:

Theorem 2.4.3. Let i : Z ↪→ S be a closed immersion of spectral schemes with quasi-compact
open complement j : U ↪→ S. For any SmE∞-fibred motivic space F over S, there is a cocartesian
square

j
H
] j
∗
H(F) F

j
H
] (ptU) i

H
∗ i
∗
H(F)

of SmE∞-fibred motivic spaces over S.

Note that this does not follow tautologically from the localization theorem as stated in [Kha16],
since we do not (yet) know that the operation i∗ commutes with the inclusion Lmot(ιSm)! (but
see Corollary 2.4.6).

Proof. By Proposition 2.4.2 and Proposition 2.2.6, we may reduce to the case where F =
Lmot hS(X) for some smooth spectral S-scheme X. Then the proof of [Kha16, ¶ 8.5] applies
mutatis mutandis. �

Remark 2.4.4. The localization theorem [Kha16, Thm. 7.2.6] does not hold for arbitrary

SchE∞-fibred motivic spaces.

The point is that the category HE∞(S) has “too many” base change formulas. Indeed, for
any afp closed immersion i, we have a functor i

H
] satisfying a base change formula against f∗H.

By adjunction this means that its right adjoint i∗H satisfies base change against f
H
∗ . Thus, if

j : U ↪→ S is the open complement of i : Z ↪→ S, then associated to the cartesian square

∅ Z

U S,

i

j

we have for every FU ∈ HE∞(U) an isomorphism

(2.3) i∗Hj
H
∗ (FU) ≈ ptZ

in addition to the usual base change formulas i∗Hj
H
] ≈ ∅Z and j∗Hi

H
∗ ≈ ptU (see [Kha16, Lem.

7.2.2 and 7.2.4]).

For example, let F ∈ SHE∞(S)S1 be a SchE∞-fibred motivic spectrum over S. Consider the
commutative diagram (we will omit the decoration H from the notation in the remainder of this
remark)

j]j
∗(F) F j∗j

∗(F)

0 i∗i
∗(F) K,

2Recall that an ∞-category is contractible if the ∞-groupoid formed by formally adding inverses to all
morphisms is (weakly) contractible.
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where K is defined as the cofibre of the horizontal composite j]j
∗(F)→ j∗j

∗(F). Localization
would say that the left-hand square is cocartesian, and therefore that the right-hand square is
cocartesian (since the composite square is cocartesian by construction). Since we are in the
setting of S1-spectra, this means that the right-hand square is also cartesian.

The base change formulas mentioned above imply that both objects i∗(K) and j∗(K) are
zero. Hence by localization, K is itself zero, and we obtain a trivial splitting

F ≈ i∗i∗(F)× j∗j∗(F)

for any SchE∞ -fibred motivic spectrum F.

In view of the previous theorem, we can interpet the above observation as saying that j∗
does not generally commute with the inclusion Lmot(ιSm)! (i.e. the functors jH∗ and j

H
∗ are not

compatible), so that even if F is SmE∞ -fibred, and thus satisfies localization, the object K is in

general not SmE∞-fibred.

2.4.5. A corollary of Theorem 2.4.3 is that the functor i∗ commutes with the inclusion
Lmot(ιSm)!.

More precisely, the 2-isomorphism Lmot(ιSm)! ◦ i∗H ≈ i∗H ◦ Lmot(ιSm)! (Lemma 2.3.6) induces,

by the procedure described in [Kha16, ¶ A.2], a canonical 2-morphism

(2.4) Lmot(ιSm)! ◦ iH∗ → iH∗ ◦ Lmot(ιSm)!

which we claim is invertible:

Corollary 2.4.6. Let i : Z ↪→ S be a closed immersion of spectral schemes with quasi-compact
open complement. Then the canonical 2-morphism (2.4) is invertible.

Proof. Since the category HE∞(Z) is generated under sifted colimits by objects of the form
MZ(X), where X is a smooth spectral Z-scheme [Kha16, Lem. 4.3.5], it suffices to show that the
canonical morphism

Lmot(ιSm)!(i
H
∗ (MZ(X)))→ iH∗ (MZ(X))

is invertible, where X is as above.

By [Kha16, Prop. 2.12.2] it follows that we may assume that X is of the form Y×S Z, where
Y is a smooth spectral S-scheme.

By the localization theorem [Kha16, Thm. 7.2.6], we have a natural isomorphism

iH∗ (MZ(X)) ≈ MS(Y) t
MS(YU)

MS(U),

where U is the open complement of i : Z ↪→ S, and YU := Y×S U.

Applying Theorem 2.4.3 to F = MS(Y), we obtain a natural isomorphism

iH∗ (MZ(X)) ≈ MS(Y) t
MS(YU)

MS(U),

and the claim follows. �

2.5. Continuity. In this paragraph we demonstrate a continuity property. This will be useful
for the elimination of noetherian hypotheses (see the proof of Theorem 3.4.2).

For this purpose it will be convenient to form yet another enlargement of the category HE∞(S),
generated by spectral S-schemes of finite presentation.
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2.5.1. Recall that a morphism of affine spectral schemes Spec(B) → Spec(A) is of finite
presentation if B is a compact object in the category of A-algebras. We globalize this definition
in the same way as Definition 2.1.2. Write SchE∞

fp/S for the category of spectral schemes of finite

presentation over S.

Let SpcE∞fp (S) denote the category of SchE∞
fp -fibred spaces, i.e. presheaves of spaces on SchE∞

fp/S.

Let HE∞
fp (S) denote the category of SchE∞

fp -fibred motivic spaces, i.e. the full subcategory of

SpcE∞fp (S) spanned by Nisnevich-local A1-local spaces.

This construction has the same formal properties as HE∞(S). In particular it is generated
under sifted colimits by objects of the form Lmot hS(X), where X is an affine spectral S-scheme
of finite presentation (same proof as Lemma 2.1.8).

The procedure of Paragraph 2.3 equips HE∞
fp with the basic functorialities (f], f

∗, f∗). The
operation f] is defined when f is of finite presentation.

2.5.2. The inclusion ιSm : SmE∞
/S ↪→ SchE∞

/S factors through the full subcategory SchE∞
fp/S. By

abuse of notation we will write ιSm also for the inclusion SmE∞
/S ↪→ SchE∞

fp/S.

We have (same proof as Proposition 2.2.6):

Proposition 2.5.3. The functor Lmot◦(ιSm)! : HE∞(S)→ HE∞
fp (S) is fully faithful. Its essential

image is generated under colimits by the objects Lmot hS(X), for X a smooth spectral S-scheme.

2.5.4. Let S be an affine spectral scheme. Suppose that S can be written as the limit of a
cofiltered diagram (Sα)α of affine spectral schemes.

Consider the canonical functor

(2.5) lim−→
α

HE∞
fp (Sα)→ HE∞

fp (S)

induced by the inverse image functors (fα)∗, where fα : S→ Sα. The colimit3 here is taken the
category of presentable ∞-categories and left adjoint functors, and the transition arrows in the
filtered diagram are the inverse image functors (fα,β)∗. We have:

Proposition 2.5.5. The functor (2.5) is an equivalence.

Proof. The main ingredient in this proof is a theorem of Lurie [Lur16b, Thm. 4.4.2.2] that
provides an equivalence of categories

(2.6) lim−→
α

SchE∞
aff,fp/Sα

∼−→ SchE∞
aff,fp/S.

In order to apply this, it is convenient to consider a version of HE∞ built out of the category
SchE∞

aff,fp of affine spectral S-schemes of finite presentation. Thus let SpcE∞aff,fp(S) denote the

category of SchE∞
aff,fp-fibred spaces, i.e. presheaves of spaces on SchE∞

aff,fp/S. Let HE∞
aff,fp(S) denote

the category of SchE∞
aff,fp-fibred motivic spaces, i.e. the full subcategory of SpcE∞aff,fp(S) spanned by

Nisnevich-local A1-local spaces. By Zariski descent, the inclusion SchE∞
aff,fp/S ↪→ SchE∞

fp/S induces

an equivalence

HE∞
aff,fp(S)

∼−→ HE∞
fp (S).

Since this equivalence commutes with the inverse image functors (fα)∗, it will suffice to demon-

strate the claim for HE∞
aff,fp(S).

3It can also be computed as a limit, where the transition arrows are the right adjoints (fα,β)∗. This limit can

be taken in the category of ∞-categories.
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The equivalence (2.6) induces an equivalence

lim−→
α

SpcE∞aff,fp(Sα)
∼−→ SpcE∞aff,fp(S).

It suffices to note that this equivalence preserves and detects A1-projections and Nisnevich
covering families.

Indeed the equivalence (2.6) implies that for any affine spectral S-scheme X of finite presenta-
tion, there exists some index α and an affine spectral Sα-scheme Xα such that the projection
X×A1 → X is a base change of Xα ×A1 → Xα. Similarly the results of [Lur16b, § 4.6] imply
that any Nisnevich covering of X is a base change of a Nisnevich covering of some some affine
spectral Sα-scheme Xα. �

Corollary 2.5.6. The functor (2.5) restricts to an equivalence

lim−→
α

HE∞(Sα)
∼−→ HE∞(S).

Proof. It suffices to show that the equivalence of Proposition 2.5.5 preserves and detects SmE∞ -
fibred spaces.

Preservation is clear: it suffices to note that for any smooth spectral Sα-scheme Xα, the
image (fα)∗(MSα(Xα)) = MS(Xα×Sα S) is an SmE∞-fibred space over S.

Conversely, we need to show that every SmE∞-fibred space in the target comes from a
SmE∞-fibred space in the source. It suffices to consider spaces of the form MS(X), where X
is a smooth spectral S-scheme. By [Kha16, Prop. 2.9.10] and Zariski descent we may assume
that X admits an étale morphism to an affine space An

S . Since An
S is the limit of the cofiltered

diagram (An
Sα

)α, it follows from the equivalence (2.6) that there exists an index α and a spectral
An

Sα
-scheme Xα of finite presentation, such that X = Xα×An

Sα
An

S . By [Lur16b, Prop. 4.6.2.1]

we may in fact assume that Xα is étale over An
Sα

, and hence smooth over Sα. �

2.6. Sch-fibred spectra. In this paragraph we construct the S1-stabilization of the theory of
Sch-fibred spaces.

2.6.1. Let SptE∞(S)S1 denote the category SptS1(SpcE∞(S)•) of S1-spectrum objects in the

category of pointed SchE∞ -fibred spaces over S. This is equivalent to the category of presheaves
of spectra on SchE∞

/S .

We define full subcategories SptE∞Nis (S)S1 , SptE∞A1 (S)S1 , and SHE∞(S)S1 of Nisnevich-local,

A1-local, and motivic SchE∞ -fibred spectra, respectively. Equivalently, we have

SptE∞Nis (S)S1 = SptS1(SpcE∞Nis (S)•),

SptE∞A1 (S)S1 = SptS1(SpcE∞A1 (S)•),

SHE∞(S)S1 = SptS1(HE∞(S)•).

2.6.2. This construction fits into the general framework of [Kha16, § 3], and we have (cf.
[Kha16, § 4]):

Lemma 2.6.3.

(i) The category SptE∞Nis (S)S1 is an accessible left localization of SptE∞(S)S1 .

(ii) The category SptE∞A1 (S)S1 is an accessible left localization of SptE∞(S)S1 . Further, the
localization functor F 7→ LA1(F) preserves Nisnevich-local spectra, and admits the following
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description: for every SchE∞-fibred spectrum F, there is a canonical isomorphism

(2.7) Γ(X,LA1(F)) ≈ lim−→
(Y→X)∈(AX)op

Γ(Y,F)

for each spectral S-scheme X. Here (AX)op is a sifted small category, opposite to the full

subcategory of SmE∞
/X spanned by composites of A1-projections.

(iii) The category SHE∞(S)S1 is an accessible left localization of SptE∞(S)S1 . Further, the
localization functor F 7→ Lmot(F) can be described as the composite

(2.8) Lmot(F) = LA1LNis(F).

(vi) The category SHE∞(S)S1 is generated under sifted colimits by objects of the form Σ∞+ Lmot hS(X),
where X = Spec(A) is an affine afp spectral S-scheme.

2.6.4. Recall from [Kha16, § 4] that a SmE∞-fibred S1-spectrum over S is a presheaf of spectra

on the category SmE∞
/S . We write SptE∞(S)S1 for the category of SmE∞ -fibred S1-spectra over S.

Let SptE∞Nis (S)S1 , SptE∞A1 (S)S1 , and SHE∞(S)S1 denote the respective localizations of SptE∞(S)S1 .

Equivalently, each of these categories is the S1-stabilization of its respective unstable counterpart.

Taking S1-stabilizations, Proposition 2.2.6 gives:

Lemma 2.6.5. The functor Lmot ◦ (ιSm)! : SHE∞(S)S1 → SHE∞(S)S1 is fully faithful.

Proof. This follows from Proposition 2.2.6 and the fact that any limit of fully faithful functors
is fully faithful (recall that the category of spectrum objects is a certain limit of the unstable
categories, see [Kha16, ¶ 3.4]). �

2.6.6. Lemma 2.2.11 carries over to the stable setting:

Lemma 2.6.7. The localization functor F 7→ LA1(F) commutes with the restriction functor

(ιSm)∗ on SchE∞-fibred S1-spectra.

2.6.8. From Corollary 2.5.6 we deduce:

Corollary 2.6.9. Let S be an affine spectral scheme. Suppose that S can be written as the limit
of a cofiltered diagram (Sα)α of affine spectral schemes. Then there is a canonical equivalence

lim−→
α

SHE∞(Sα)S1
∼−→ SHE∞(S)S1 .

3. Nil-localization

In this section we prove the comparison between the brave new motivic homotopy category
HE∞(S) and its classical analogue Hcl(Scl).

The first step will be to present the classical motivic homotopy category Hcl(Scl) as a
localization of HE∞(S), at a certain class of morphisms we call “nil-local equivalences”. In order

to make sense of this nil-localization, we will first perform it at the level of SchE∞ -fibred spaces,
and then show that it restricts to SmE∞-fibred spaces.

Then we will re-interpret the localization theorem (Theorem 2.4.3) as the statement that

motivic SmE∞ -fibred spaces are already nil-local.

For technical reasons (see Remark 3.1.3), it will be convenient for this argument to assume that
the base scheme S is noetherian. Thus in this section, S will always denote a noetherian spectral
scheme, except when stated otherwise. However, the comparison theorem (Theorem 3.4.2) itself
will hold for general bases (we will explain how to reduce to the noetherian case).
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3.1. Nil-localization.

3.1.1. Let S be a noetherian spectral scheme. This means that S is quasi-compact quasi-
separated and locally noetherian, i.e. there exists an affine Zariski cover (Sα ↪→ S)α such that
for each α, the connective E∞-ring spectrum A = Γ(Sα,OS) is noetherian in the sense that
π0(A) is a noetherian commutative ring, and each π0(A)-module πi(A) is finitely generated.

When S is noetherian, the canonical morphism Scl ↪→ S is afp (this follows from [Lur16a,
Prop. 7.2.4.31]).

3.1.2. Consider the canonical functor

v : SchE∞
/S → Sch/Scl

,

which sends an afp spectral S-scheme X to the classical Scl-scheme Xcl.

The functor u is right adjoint to the fully faithful functor

u : Sch/Scl
→ SchE∞

/S

given by the assignment (X→ Scl) 7→ (X→ Scl ↪→ S).

Remark 3.1.3. Note that the functor u is only well-defined because the morphism Scl ↪→ S is
afp. This is in fact the only reason we assume that S is noetherian.

It is possible to remove this assumption by working with the site of all spectral S-schemes
(without any finiteness assumptions), but this introduces size issues which we prefer to avoid
here for the sake of simplicity of exposition. Instead, we will deduce the comparison theorem
(Theorem 3.4.2) over general bases by a noetherian approximation argument.

3.1.4. The functor v induces a canonical colimit-preserving functor

v! : SpcE∞(S)→ Spccl(Scl)

which sends the representable presheaf hS(X) to hScl
(Xcl), for every afp spectral S-scheme X.

This is left adjoint to the restriction functor v∗.

3.1.5. Note that v! is canonically identified with the functor u∗ of restriction along u; hence its
right adjoint v∗ is identified with u∗, the right adjoint of u∗. Since u is fully faithful, it follows
that u∗ = v∗ is. Hence we have:

Lemma 3.1.6. The functor v! : SpcE∞(S)→ Spccl(Scl) is a left localization.

We define:

Definition 3.1.7.

(i) A morphism of SchE∞-fibred spaces over S is a nil-local equivalence if it induces an isomor-
phism after application of v!.

(ii) A SchE∞-fibred space F over S is nil-local if it is contained in the essential image of v∗, or
equivalently if the canonical morphism

F → v∗v!(F)

is invertible.

Unravelling definitions, we have:



BRAVE NEW MOTIVIC HOMOTOPY THEORY II: HOMOTOPY INVARIANT K-THEORY 15

Lemma 3.1.8.

(i) A SchE∞-fibred space F is nil-local if and only if the canonical morphism

Γ(X,F)→ Γ(Xcl,F)

is invertible for every afp spectral S-scheme X.

(ii) The class of nil-local equivalences is the strongly saturated closure of the (essentially small)
set of canonical morphisms

hS(Xcl)→ hS(X),

where X is an afp spectral S-scheme.

3.2. Nil-localization of motivic spaces.

3.2.1. We have:

Lemma 3.2.2.

(i) The functor v! preserves A1-local equivalences (resp. Nisnevich-local equivalences).

(ii) The functor v∗ preserves A1-local spaces (resp. Nisnevich-local spaces).

Proof. The first statement follows from the fact that v preserves A1-projections (resp. Nisnevich
squares), and the second follows by adjunction. �

Hence the functor v∗ restricts to a functor

v∗ : Hcl(Scl)→ HE∞(S),

which is right adjoint to Lmotv!.

3.2.3. Since v∗ is fully faithful, we have:

Lemma 3.2.4. The functor Lmotv! : HE∞(S)→ Hcl(Scl) is a left localization at the set of the
canonical morphisms of the form

Lmot hS(Xcl)→ Lmot hS(X),

where X is an afp spectral S-scheme.

3.2.5. Note that the functor u is also topologically continuous, i.e. it sends Nisnevich squares
of classical Scl-schemes to Nisnevich squares of spectral S-schemes. Hence we have:

Lemma 3.2.6.

(i) The functor u! preserves Nisnevich-local equivalences.

(ii) The functor u∗ = v! preserves Nisnevich-local spaces.

Remark 3.2.7. Note that the same argument does not apply to A1-local equivalences, as u does
not send A1

cl to A1.

3.2.8. We also have:

Lemma 3.2.9.

(i) The functor v∗ preserves Nisnevich-local equivalences.

(ii) The functor v∗ preserves A1-local equivalences.
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Proof.

(i) The claim about Nisnevich-local equivalences follows from the fact that the functor v is
topologically cocontinuous. Indeed, let X be a spectral scheme over S, and let Q be a classical
Nisnevich square

U×Xcl
V V

U Xcl

over Xcl. The claim is that this lifts to a Nisnevich square Q̃ over X. This follows directly from
[Kha16, Lem. 2.10.4]: since both morphisms U→ Xcl and V→ Xcl are étale, both admit unique

lifts Ũ→ Xcl and Ṽ→ X, so that we obtain a Nisnevich square Q̃

Ũ×X Ṽ Ṽ

Ũ X

which refines Q.

(ii) It suffices to show that, for any classical Scl-scheme X, the canonical morphism

v∗ hS(X×A1
cl)→ v∗ hS(X)

is an A1-local equivalence.

By universality of colimits it suffices to show that, for any spectral S-scheme Y and morphism
of presheaves ϕ : hS(Y)→ v∗ hScl

(X), the base change

v∗ hS(X×A1
cl) ×

v∗ hScl
(X)

hS(Y)→ hS(Y)

is an A1-local equivalence. Just as in the proof of Lemma 2.2.4, (ii), one observes that this
morphism is a base change of the A1-local equivalence

hS(Y ×A1)→ hS(Y),

whence the claim. �

3.2.10. We have:

Lemma 3.2.11.

(i) The functor

Lmotv! : HE∞(S)→ Hcl(Scl)

sends SmE∞-fibred spaces to Sm-fibred spaces, and hence restricts to a functor

(3.1) Lmotv! : HE∞(S)→ Hcl(Scl).

(ii) The fully faithful functor

v∗ : Hcl(Scl) ↪→ HE∞(S)

restricts to a fully faithful functor

(3.2) v∗ : Hcl(Scl) ↪→ HE∞(S).

(iii) The functor (3.1) is the left localization at the set of morphisms F1 → F2 such that
(ιSm)!(F1)→ (ιSm)!(F2) is a nil-local equivalence.
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Proof. It suffices to show that the analogous claim at the level of SchE∞ -fibred spaces (i.e. before
taking motivic localizations). That is, it suffices to show that the functor v! : SpcE∞(S) →
Spccl(Scl) sends SmE∞-fibred spaces to Sm-fibred spaces. This follows from the fact that, for
any smooth spectral S-scheme X, the underlying classical scheme v(X) = Xcl is smooth (in the
classical sense) over Scl [Kha16, Lem. 2.9.11]. �

Let HE∞
nil (S) denote the essential image of v∗. That is, this is the full subcategory of HE∞(S)

spanned by motivic spaces F such that (ιSm)!(F) is nil-local.

Corollary 3.2.12. The restriction of the functor (3.1) defines a canonical equivalence of
categories

(3.3) Lmotv! : HE∞
nil (S)

∼−→ Hcl(Scl).

3.3. Nil-descent of motivic spaces.

3.3.1. The following is a consequence of the localization theorem (Theorem 2.4.3):

Proposition 3.3.2 (Nil-descent). Every SmE∞-fibred motivic space F over S is nil-local. That
is, the inclusion

HE∞
nil (S) ↪→ HE∞(S)

is an equivalence.

Proof. Let F be a SmE∞ -fibred motivic space. Let X be a smooth spectral S-scheme, and write
i : Xcl ↪→ X for the inclusion of its underlying classical scheme. The claim is that the canonical
map

i∗ : Γ(X, (ιSm)!F)→ Γ(Xcl, (ιSm)!F)

is invertible.

By adjunction, this map is obtained by application of the functor MapsHE∞ (X)(Lmot hX(X),−)
to the canonical map

f∗H ◦ Lmot(ιSm)!(F)→ iH∗ i
∗
Hf
∗
H ◦ Lmot(ιSm)!(F),

where f : X→ S is the structural morphism.

By Lemma 2.3.6 and Corollary 2.4.6 this map is canonically identified with the image by
Lmot(ιSm)! of the map

f∗H(F)→ iH∗ i
∗
Hf
∗
H(F).

Since i is a closed immersion with empty complement, the localization theorem [Kha16, Thm.
7.2.6] implies that this map is invertible. �

3.4. The comparison. In this paragraph we deduce the main result of this section. The
spectral scheme S is no longer required to be noetherian.

3.4.1. Let S be a (quasi-compact quasi-separated) spectral scheme. We have:

Theorem 3.4.2 (Comparison). The canonical adjunctions

Lmotv! : HE∞(S)� Hcl(Scl) : v∗,

Lmotv! : SHE∞(S)S1 � SHcl(Scl)S1 : v∗

are equivalences.
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Proof. Both categories in question have Zariski descent ([Kha16, Prop. 6.1.6] and [Hoy15,
Appendix C]), so we may assume that S is affine. By [Lur16a, Prop. 7.2.4.27] we may write it
as a cofiltered limit of affine spectral schemes which are of finite presentation over Spec(S), thus
in particular noetherian. Then by continuity (Proposition 2.5.5), and the analogous property for
the classical motivic homotopy category [Hoy15, Prop. C.7], we may reduce to the case where S
is noetherian.

In this case, the first claim follows from Corollary 3.2.12, in view of Proposition 3.3.2. The
second follows from the first by taking S1-stabilizations. �

In particular, any classical scheme may be viewed as a spectral scheme (with discrete structure
sheaf), and we have:

Corollary 3.4.3. Let S be a (quasi-compact quasi-separated) classical scheme. The canonical
adjunctions

Lmotv! : HE∞(S)� Hcl(S) : v∗,

Lmotv! : SHE∞(S)S1 � SHcl(S)S1 : v∗

are equivalences.

3.4.4. Unwinding the definitions of the functors involved in the equivalence of Theorem 3.4.2,
we arrive at the following formulation:

Corollary 3.4.5. Let S be a (quasi-compact quasi-separated) spectral scheme. Let F be an

SmE∞-fibred Nisnevich-local S1-spectrum over S. Then there is a canonical isomorphism

LA1(F)
∼−→ v∗LA1

cl
v!(F)

of SmE∞-fibred motivic spectra over S. In particular, for each smooth spectral S-scheme X, there
are canonical functorial isomorphisms of spectra

Γ(X,LA1(F))
∼−→ Γ(Xcl,LA1

cl
(F)).

Here we have written LA1
cl

for the classical A1-localization functor Sptcl(Scl)→ Sptcl
A1

cl
(Scl).

Proof. It follows from Theorem 3.4.2 that there is a canonical isomorphism

LA1(F)
∼−→ v∗Lmotv!LA1(F).

Recall that LA1 preserves Nisnevich-local spectra (Lemma 2.6.3) and v! = u∗ preserves Nisnevich-
local spaces (Lemma 3.2.6). Hence we have canonical functorial isomorphisms

Lmotv!LA1(F) ≈ LA1
cl
v!LA1(F) ≈ LA1

cl
v!(F)

by Lemma 3.2.2. The claim follows. �

4. Sm[-fibred motivic homotopy theory

4.1. Flat affine spaces.

4.1.1. Given a connective E∞-ring spectrum R, let R[t1, . . . , tn] denote the polynomial R-algebra
in n variables (n > 1).

This is by definition the monoid algebra R[Nn] = R ⊗ Σ∞(Nn)+, where N is the set of
natural numbers, viewed as a discrete (additive) E∞-monoid space.

Note that the underlying spectrum of R[t1, . . . , tn] is the direct sum ⊕(k1,...,kn)∈NnR. Further
we have an isomorphism of ordinary commutative rings π0(R[t1, . . . , tn]) ≈ π0(R)[t1, . . . , tn] for
each n.
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Remark 4.1.2. The notation is justified by the fact that, for an ordinary commutative ring R,
R[t1, . . . , tn] coincides with the usual polynomial algebra, viewed as a discrete E∞-ring spectrum.

4.1.3. For any spectral scheme S, let An
[,S denote the spectral scheme S× Spec(S[t1, . . . , tn]).

We call this the flat affine space of dimension n over S.

We will write An
[ := An

[,Spec(S).

The underlying classical scheme (An
[,S)cl coincides with the classical n-dimensional affine

space over Scl.

4.1.4. As in [Kha16, 2.6.4] we write S{t1, . . . , tn} for the free E∞-algebra on n generators (in
degree zero).

Consider the canonical morphism of E∞-ring spectra

(4.1) S{t1, . . . , tn} → S[t1, . . . , tn]

which sends ti 7→ ti. For any spectral scheme S, this gives rise to canonical morphisms

(4.2) An
[,S → An

S

for each n > 0. We have (see [Lur16a, Prop. 7.1.4.20]):

Proposition 4.1.5. Let S be a spectral scheme of characteristic zero4. Then the canonical
morphism (4.2) is invertible for each n > 0.

4.1.6. There is a multiplication morphism

A1
[,S ×A1

[,S → A1
[,S

induced by the diagonal map

Σ∞+ (N)→ Σ∞+ (N×N) ≈ Σ∞+ (N)⊗ Σ∞+ (N).

4.1.7. The projection A1
[,S → S admits two sections i0 and i1, the zero and unit sections,

respectively.

One way to define the relevant morphisms

S[t]⇒ S

is by induction along the Postnikov tower [Kha16, Prop. 2.7.5] (note that each truncation
(S[t])6n is canonically isomorphic to S6n[t]).

4.2. Fibre-smoothness.

4.2.1. Let p : Y → X be a morphism of spectral schemes.

Definition 4.2.2. The morphism p is fibre-smooth if it satisfies the following conditions:

(i) The morphism p is flat.

(ii) The induced morphism pcl : Ycl → Xcl on underlying classical schemes is smooth (in the
classical sense).

Note that we have:

Lemma 4.2.3.

(i) The set of fibre-smooth morphisms is stable under composition and base change.

(ii) Étale morphisms are fibre-smooth.

4Here we say that S is of characteristic zero if it admits a morphism S → Spec(HQ), or equivalently, if the
classical scheme Scl is of characteristic zero.
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4.2.4. The notion of fibre-smoothness has also been considered in [Lur16b]. The following
lemma shows that our definition coincides with that of the latter, in view of Corollary 11.2.4.2
in loc. cit.

Lemma 4.2.5. A morphism p : Y → X of affine spectral schemes is fibre-smooth if and only if
it satisfies the following conditions:

(a) The morphism p is flat.

(b) The underlying morphism of classical schemes pcl : Ycl → Xcl is locally of finite presentation.

(c) Let R → R′ be a surjective homomorphism of ordinary commutative rings with nilpotent
kernel. For every commutative square of the form

Γ(X,OX) R

Γ(Y,OY) R′,

there exists a diagonal arrow Γ(Y,OY)→ R and homotopies up to which both triangles commute.

Proof. According to [Gro67, § 17.3], the condition that pcl is smooth is equivalent (by definition)
to the condition that it is locally of finite presentation, and that we have the lifting condition of
(c) for the morphism of ordinary rings π0(Γ(X,OX))→ π0(Γ(Y,OY)). But since R and R′ are
ordinary rings, it follows by adjunction that this is equivalent to the lifting condition for the
morphism Γ(X,OX)→ Γ(Y,OY). �

4.2.6. We also have the following characterization:

Proposition 4.2.7. A morphism p : Y → X is fibre-smooth if and only if, Zariski-locally on Y,
there exists a factorization of p as a composite

(4.3) Y
q−→ X×An

[
r−→ X

for some integer n > 0, where q is étale and r is the canonical projection.

Proof. This follows from [Lur16b, Rem. 11.2.3.5 and 11.2.4.1]. �

4.3. Flat homotopy invariance. In this paragraph we show that the category of A1
[ -local

SchE∞-fibred spaces is a localization of the category of A1-local SchE∞-fibred spaces.

4.3.1. Let SpcE∞
A1
[

(S) denote the full subcategory of SpcE∞(S) spanned by SchE∞ -fibred spaces

F that satisfy homotopy invariance with respect to the flat affine line A1
[ , i.e. for each afp

spectral S-scheme X, the canonical morphism

Γ(X,F)→ Γ(X×A1,F)

is invertible.

Let H[(S) denote the full subcategory of SpcE∞(S) spanned by SchE∞-fibred spaces that
satisfy Nisnevich excision and A1

[ -homotopy invariance.

We have, by the general results of [Kha16, § 3]:

Lemma 4.3.2.

(i) The category SpcE∞
A1
[

(S) is an accessible left localization of SpcE∞(S). The localization functor

F 7→ LA1
[
(F) commutes with finite products, and admits the following description: for every
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SchE∞-fibred space F, there is a canonical isomorphism

(4.4) Γ(X,LA1
[
(F)) = lim−→

(Y→X)∈(A[X)op

Γ(Y,F)

for each afp spectral S-scheme X. Here (A[
X)op is a sifted small category, opposite to the full

subcategory of Sm[
/X spanned by compositions of A1

[ -projections.

(ii) The category H[(S) is an accessible left localization of SpcE∞(S). Further, the localization
functor F 7→ L[mot(F) can be described as the transfinite composite

(4.5) L[mot(F) = lim−→
n>0

(LA1
[
◦ LNis)

◦n(F).

(iii) The category H[(S) is generated under sifted colimits by objects of the form L[mot hS(X),
where X is an affine spectral S-scheme.

4.3.3. Note that the canonical morphism of spectral schemes (see 4.1.4)

(4.6) A1
[ → A1

preserves the zero and unit sections as well as the multiplicative structures of both intervals.

It follows that any A1-homotopy gives rise to an A1
[ -homotopy, which implies that A1-local

equivalences are A1
[ -local equivalences. Thus we have:

Lemma 4.3.4. The category SpcE∞
A1
[

(S) (resp. H[(S)) is a left localization of SpcE∞A1 (S) (resp.

HE∞(S)).

This means that the localization

L[mot : SpcE∞(S)→ H[(S)

factors through the localization

Lmot : SpcE∞(S)→ HE∞(S)

and a further localization

LA1
[

: HE∞(S)→ H[(S).

4.4. Sm[-fibred spaces.

4.4.1. Let Sm[
/S denote the full subcategory of SchE∞

/S spanned by fibre-smooth spectral S-

schemes.

A Sm[-fibred space over S is a presheaf of spaces on Sm[
/S.

We write Spc[(S) for the category of Sm[-fibred spaces.

4.4.2. Let ι[Sm : Sm[
/S ↪→ SchE∞

/S denote the inclusion functor. This induces a canonical fully

faithful functor

(ι[Sm)! : Spc[(S)→ SpcE∞(S),

left adjoint to the restriction functor (ι[Sm)∗. Its essential image can be described as the full
subcategory of SpcE∞(S) generated under colimits by objects of the form hS(X), with X a
fibre-smooth spectral S-scheme.

We will abuse notation by identifying Spc[(S) with its essential image in SpcE∞(S).
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4.4.3. Just as in [Kha16, § 4], we can form localizations Spc[Nis(S), Spc[A1
[
(S), and H[(S) of the

category Spc[(S). To be more precise, the latter is obtained by left localization with respect to
Nisnevich covers and the canonical morphisms

hS(X×A1
[ )→ hS(X)

for all fibre-smooth spectral S-schemes X.

We have (same proof as Lemma 2.2.4):

Lemma 4.4.4.

(i) The functor (ι[Sm)! preserves Nisnevich-local equivalences. Its right adjoint (ι[Sm)∗ preserves
Nisnevich-local spaces and Nisnevich-local equivalences.

(ii) The functor (ι[Sm)! preserves A1
[ -local equivalences. Its right adjoint (ι[Sm)∗ preserves A1

[ -local
spaces and A1

[ -local equivalences.

4.4.5. It follows that the functor (ι[Sm)∗ restricts to a well-defined functor

(ι[Sm)∗ : HE∞(S)→ H[(S),

which is right adjoint to Lmot ◦ (ι[Sm)!. Further, we have (same proof as Proposition 2.2.6):

Lemma 4.4.6. The functor Lmot ◦(ι[Sm)! : H[(S)→ HE∞(S) is fully faithful. Its essential image
is generated under colimits by the objects Lmot hS(X), for X a fibre-smooth spectral S-scheme.

4.4.7. A Sm[-fibred S1-spectrum over S is a presheaf of spectra on Sm[
/S, or equivalently an

S1-spectrum object in the category Spc[(S)•. We write Spt[(S)S1 for the category of Sm[-fibred
S1-spectra.

Let Spt[Nis(S)S1 , Spt[A1(S)S1 , and SH[(S)S1 denote the respective localizations of Spt[(S).
Each of these categories is the S1-stabilization of its respective unstable counterpart.

Taking S1-stabilizations, Lemma 4.4.6 gives:

Lemma 4.4.8. The functor Lmot ◦ (ι[Sm)! : SH[(S)S1 → SHE∞(S)S1 is fully faithful.

4.5. Sm-fibred vs. Sm[-fibred motivic spaces. In this paragraph we will show that there is
a canonical equivalence of categories

HE∞(S)
∼−→ H[(S).

4.5.1. Recall from Lemma 4.3.4 that the localization functor L[mot : SpcE∞(S)→ H[(S) factors
through an intermediate localization

(4.7) LA1
[

: HE∞(S)→ H[(S).

We have:

Lemma 4.5.2. The functor (4.7) sends SmE∞-fibred spaces to Sm[-fibred spaces, and restricts
to a localization functor

LA1
[

: HE∞(S)→ H[(S).

Proof. Since HE∞(S) is generated under colimits by objects of the form Lmot hS(X), where X is
a smooth spectral S-scheme, it suffices to show that L[mot hS(X) is contained in H[(S) for each
such X.

By [Kha16, Prop. 2.9.10], there exists a Zariski cover (Xα ↪→ X)α such that each morphism

Xα → S may be factorized as a composite Xα
pα−−→ Anα

S → S, where pα is étale and nα > 0.
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Since X is isomorphic to the colimit of the Čech nerve Č(Xα/X)•, it suffices to assume that X
admits an étale morphism to some affine space An

S .

In this case, we may form the base change

X[ X

An
[,S An

S

q p

along the canonical morphism An
[,S → An

S (4.1.4). This induces an isomorphism

Lmot hS(X[) ≈ Lmot hS(X)× Lmot hS(An
[,S),

and thus an isomorphism
L[mot hS(X[) ≈ L[mot hS(X)

after application of LA1
[
. The spectral scheme X[ is fibre-smooth over S by Proposition 4.2.7, so

the claim follows. �

4.5.3. By definition, the functor v : SchE∞
/S → Sch/Scl

(Paragraph 3.1) sends fibre-smooth

spectral S-schemes to smooth classical Scl-schemes.

Therefore, exactly as in Lemma 3.2.11, we have:

Lemma 4.5.4. The functor v induces a left localization

(4.8) Lmotv! : H[(S)→ Hcl(Scl).

By construction, this is compatible with the localization Lmotv! : HE∞(S)→ Hcl(Scl) in the
sense that we have a commutative triangle of localizations

HE∞(S) Hcl(Scl)

H[(S).

Lmotv!

L
A1
[ Lmotv!

Since the horizontal functor is an equivalence (Theorem 3.4.2), both intermediate localizations
must be equivalences. In particular:

Theorem 4.5.5. The canonical functors

LA1
[

: HE∞(S)→ H[(S),

Lmotv! : H[(S)→ Hcl(Scl)

are equivalences.

5. Homotopy invariant K-theory

In this section we will define a cohomology theory KHE∞ , a brave new analogue of Weibel’s
homotopy invariant K-theory. We will show that it is representable as a motivic SmE∞-fibred
S1-spectrum. As an application of our comparison result (Theorem 3.4.2) we will deduce a

derived nilpotent invariance property for KHE∞ .

We continue the convention that all spectral schemes are quasi-compact quasi-separated.

5.1. Algebraic K-theory. We recall a few standard facts about the algebraic K-theory of
spectral schemes.
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5.1.1. Let S be a spectral scheme. Write Qcoh(S) for the stable ∞-category of quasi-coherent
sheaves on S, and Perf(S) for the full exact subcategory of perfect complexes (see [Lur16b, Chap.
2]).

Recall:

Theorem 5.1.2. The assignments S 7→ Qcoh(S) and S 7→ Perf(S), viewed as presheaves of ∞-
categories on the ∞-category of quasi-compact quasi-separated spectral schemes, satisfy descent
with respect to the fpqc topology.

Proof. The claim for Qcoh follows immediately from [Lur16b, Thm. D.6.3.3]. The second claim
follows from the first in view of the fact that perfect complexes can be described as the dualizable
objects with respect to the canonical symmetric monoidal structure on Qcoh(S) [Lur16b, Prop.
6.2.6.2], and taking dualizable objects commutes with taking limits of symmetric monoidal
∞-categories. �

5.1.3. Let j : U ↪→ X be a quasi-compact open immersion between spectral schemes. Let
Qcoh(X)U denote the full subcategory of Qcoh(X) spanned by quasi-coherent sheaves F which
vanish on U, i.e. j∗(F) = 0. Similarly let Perf(X)U denote the full subcategory of Perf(X)
spanned by perfect complexes which vanish on U.

Theorem 5.1.4. Let j : U ↪→ X be a quasi-compact open immersion between spectral schemes.

(i) An object of Qcoh(X)U is compact if and only if it is a perfect complex.

(ii) The category Qcoh(X)U is compactly generated (by a single object).

(iii) The sequence of small stable ∞-categories

Perf(X)U → Perf(X)
j∗−→ Perf(U),

is exact in the sense of [BGT13].

Proof. In the case U = ∅, claims (i) and (ii) are [Lur16b, Thm. 9.6.1.1 and Cor. 9.6.3.2]; the
general case can be proved by an adaptation of these arguments. Alternatively, these claims
follow from [AG14, Prop. 6.9 and Thm. 6.11].

For claim (iii), it suffices by (i) and (ii) to pass to ind-completions and note that the sequence

Qcoh(X)U → Qcoh(X)
j∗−→ Qcoh(U)

is an exact sequence of stable compactly generated ∞-categories. �

5.1.5. Given a spectral scheme X, let K(X) denote its (nonconnective) algebraic K-theory (i.e.
the nonconnective algebraic K-theory of the stable ∞-category Perf(X); see [BGT13]). More
generally, let K(X)U denote the nonconnective algebraic K-theory of Perf(X)U.

A celebrated result of [TT07] says that, in the classical setting, K(X)U can be identified with
the homotopy fibre of the map K(X)→ K(U). This remains true in spectral algebraic geometry:

Theorem 5.1.6 (Thomason). Let j : U ↪→ X be a quasi-compact open immersion of spectral
schemes. There is a canonical exact triangle of spectra

K(X)U → K(X)→ K(U).

Proof. According to [BGT13, Sect. 9], nonconnective K-theory sends exact sequence of stable
∞-categories to exact triangles. Hence the result follows from Theorem 5.1.4. �

We obtain the following as a consequence:
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Theorem 5.1.7 (Thomason). The presheaf of spectra S 7→ K(S), on the category of quasi-
compact quasi-separated spectral schemes, satisfies Nisnevich descent.

Proof. According to [Kha16, Rem. 4.1.8], it suffices to show that it satisfies Nisnevich excision.
It is clear that K(∅) = 0, since Perf(∅) = 0. It remains to show that for every Nisnevich square

W V

U X

p

j

with j : U→ X an open immersion and p : V → X étale, the induced commutative square of
spectra

K(X) K(U)

K(V) K(W)

j∗

p∗

is cartesian.

This is equivalent to the invertibility of the induced morphism on fibres,

(5.1) Fib(K(X)→ K(U))→ Fib(K(V)→ K(W)).

By Theorem 5.1.6, this is identified with the canonical morphism

K(X)U → K(V)W

which is induced by the canonical functor

Perf(X)U → Perf(V)W,

which is an equivalence by Nisnevich excision for the presheaf X 7→ Perf(X) (Theorem 5.1.2). �

5.2. Homotopy invariant K-theory.

5.2.1. For each spectral scheme S, the presheaf of spectra

K : (SchE∞
/S )op → Spt

defines a SchE∞ -fibred S1-spectrum over S, which by Theorem 5.1.7 is Nisnevich-local.

We will denote this object by KS to emphasize that we consider it as a SchE∞ -fibred spectrum
over S.

5.2.2. Let KHE∞
S denote the A1-localization of the fibred spectrum KS. According to Lemma 2.6.3,

this is a motivic S1-spectrum which can be computed by the formula

KHE∞(X) = lim−→
(Y→X)∈(AX)op

K(Y),

for each smooth spectral S-scheme X (see loc. cit. for the notation AX).

5.2.3. Let KHE∞
S denote the SmE∞ -fibred S1-spectrum obtained by restriction of KHE∞

S to the

site SmE∞
/S , i.e.

KHE∞
S := (ιSm)∗(KHE∞

S ),

in the notation of Paragraph 2.2.

By Lemma 2.2.4, this is a motivic SmE∞ -fibred S1-spectrum.
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5.2.4. Let KS denote the restriction (ιSm)∗(KS). By Lemma 2.2.11, the SmE∞-fibred S1-

spectrum KHE∞
S can be described equivalently as the A1-localization of KS, i.e.:

KHE∞
S = LA1(KS).

5.3. Nilpotent invariance.

5.3.1. Let Kcl
Scl

denote the restriction of the K-theory presheaf

K : (SchE∞
/Scl

)op → Spt

to the site Sch/Scl
of classical Scl-schemes. That is,

(5.2) Kcl
Scl

:= u∗(KS)

in the notation of Paragraph 3.1.

This defines a classical Sch-fibred S1-spectrum over Scl, which is Nisnevich-local by Lemma 3.2.6.

5.3.2. Let KHcl
Scl

:= LA1
cl

(Kcl
S ) denote the A1

cl-localization of Kcl
S . Here A1

cl denotes the classical

affine line (over Spec(Z)).

This is a classical motivic S1-spectrum over Scl, which computes Weibel’s homotopy K-theory:

KHcl
Scl

(X) ≈ lim−→
[n]∈∆op

K(X×∆n
Scl

),

for any smooth classical Scl-scheme X, where ∆•Scl
is the cosimplicial classical Scl-scheme whose

nth term is the algebraic n-simplex over Scl. See [Cis13, § 2].

5.3.3. Let KHcl
Scl

denote the restriction of the Sch-fibred motivic S1-spectrum KHcl
Scl

to the site

Sm/Scl
of classical smooth Scl-schemes. This is a SmE∞-fibred motivic S1-spectrum.

We have:

Theorem 5.3.4 (Nilpotent invariance). For each spectral scheme S, there is a canonical
isomorphism

KHE∞
S

∼−→ v∗(KHcl
Scl

)

of SmE∞-fibred motivic S1-spectra over S. In particular, for each smooth spectral S-scheme X,
there are canonical functorial isomorphisms of spectra

KHE∞
S (X)

∼−→ KHcl
Scl

(Xcl).

Proof. Since the functor v! = u∗ sends KS 7→ Kcl
Scl

(5.2), this follows from Corollary 3.4.5. �

Remark 5.3.5. One can also consider the flat version KH[
S ∈ H[(S). By Theorem 4.5.5 it follows

that it will also have nilpotent invariance.

This variant KH[
S has also been considered by Antieau–Gepner–Heller, who have an al-

ternative proof of nilpotent invariance, which applies to connective E1-ring spectra (private
communication).
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