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To my little brother, on the occasion of his birthday.

Abstract. We prove a K-theoretic excess intersection formula for de-
rived Artin stacks. When restricted to classical schemes, it gives a
refinement and new proof of R. Thomason’s formula.
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Introduction

Suppose given a commutative square of derived Artin stacks

X ′ Y ′

X Y

f ′

p q

f

where f and f ′ are quasi-smooth closed immersions. We call this an excess
intersection square if the following conditions hold:

(i) The square is cartesian on underlying classical stacks, i.e., the canonical
morphism X ′ → X ×Y Y ′ induces an isomorphism X ′

cl ≃ (X ×Y Y ′)cl.

(ii) The canonical morphism of (shifted) relative cotangent complexes

p∗LX/Y[−1] → LX ′/Y ′[−1]
is surjective (on π0). In particular, its fibre ∆ is locally free of finite rank.

For a derived stack X , let K(X) denote the algebraic K-theory space of
perfect complexes on X . In this note we prove the following theorem:

Theorem 0.1. For any excess intersection square as above, there is a canon-
ical homotopy

q∗f∗(−) ≃ f ′∗(p∗(−) ∪ e(∆))
of maps K(X) → K(Y ′), where e(∆) ∈ K(X ′) is the Euler class of the excess
sheaf.
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Applied to quotient stacks, this gives an equivariant excess intersection
formula:

Corollary 0.2. Let G be a flat group algebraic space of finite presentation
over an algebraic space S. For any excess intersection square of G-equivariant
derived algebraic spaces

X′ Y′

X Y,

f ′

p q

f

where f and f ′ are regular closed immersions, there is a canonical homotopy

q∗f∗(−) ≃ f ′∗(p∗(−) ∪ e(∆))

of maps KG(X) → KG(Y′). Here ∆ is the excess sheaf as above and KG is
the algebraic K-theory of G-equivariant perfect complexes.

Derived stacks arise naturally in moduli theory, especially in curve counting
theories such as Gromov–Witten theory and Donaldson–Thomas theory. The
moduli problems arising in these theories are typically singular, but are
nevertheless quasi-smooth when regarded as derived stacks. As an example,
Theorem 0.1 can be applied to derived moduli stacks of stable maps and
allows a one-line K-theoretic proof of a conjecture of Cox, Katz and Lee
[CKL] (cf. [Ke, Cor. 2.2.6, Eq. (4)]) relating the genus zero Gromov–Witten
invariants of a smooth projective variety with those of the zero locus of a
section of a convex vector bundle. Via the virtual Grothendieck–Riemann–
Roch theorem of [Kh3] one also recovers the Chow group level formula proven
in [KKP].

The present paper, together with [Kh2] and [Kh1], is part of a general
program that sets up a K-theoretic formalism of intersection theory on derived
schemes and stacks following [SGA6]. In particular, the current result was
applied in [Kh1] to generalize the Grothendieck–Riemann–Roch theorem of
[SGA6] to quasi-smooth projective morphisms of derived schemes. If X is
a (possibly derived) scheme, then for any quasi-smooth closed immersion
i ∶ Z→ X, the class

i∗(1) = [i∗(OZ)] ∈ K(X)
is the K-theoretic version of the cohomological virtual fundamental class [Z]
constructed in [Kh3, (3.21)]. The GRR formula implies in particular that
this class lives in the expected degree of the γ-filtration (determined by the
relative virtual dimension). Thus one gets a map from the free abelian group
on quasi-smooth closed subschemes (“derived cycles”), graded by virtual
dimension, to the graded pieces of the γ-filtration on K-theory.

Both Theorem 0.1 and Corollary 0.2 seem to be new even in the setting
of classical algebraic geometry. A closed immersion of classical stacks is
quasi-smooth if and only if it is regular (a.k.a. a local complete intersection)
in the sense of [SGA6, Exp. VII, Déf. 1.4] (see [KR, 2.3.6]), so in that case
the statement becomes:
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Corollary 0.3. For any cartesian square of Artin stacks

X ′ Y ′

X Y,

f ′

p q

f

where f and f ′ are regular closed immersions, there is a canonical homotopy

q∗f∗(−) ≃ f ′∗(p∗(−) ∪ e(∆))

of maps K(X) → K(Y ′), where ∆ is the excess sheaf.

For quasi-compact quasi-separated schemes, the excess intersection formula
was proven by Thomason [Th, Thm. 3.1]. Even in that case our result is more
precise in that the proof provides an explicit chain of homotopies between
the two sides.

For a homotopy cartesian1 square, the excess sheaf ∆ vanishes, so the excess
intersection formula reduces to the base change formula. More interesting
are the following two special cases:

Corollary 0.4 (Self-intersections). For any quasi-smooth closed immersion
f ∶ X ↪ Y of derived Artin stacks, there is a canonical homotopy

f∗f∗ ≃ (−) ∪ e(NX/Y)

of maps K(X) → K(X).

This is the result of applying Theorem 0.1 to the self-intersection square

X X

X Y,
f

f

where the excess sheaf is the conormal sheaf NX/Y = LX/Y[−1]. A self-
intersection formula for regular equivariant classical algebraic spaces was
previously obtained by G. Vezzosi and A. Vistoli in [VV, Thm. 2.1]2. Note
that the equivariant version of this formula can be used to give a simple
derivation of the virtual Atiyah–Bott formula for localizing to the fixed points
of a torus action as in [Qu, Sect. 3] and [CFK, Sect. 5].

Similarly, we get a generalization of the “formule clef” (key formula) of
[SGA6, Exp. VII]:

1We remind the reader that a commutative square of classical stacks is homotopy
cartesian (in the ∞-category of derived stacks) if and only if it is cartesian and Tor-
independent.

2Moreover, the refined statement we prove here, identifying an explicit homotopy
between the two sides of the formula, is strong enough to correct the gap in the proof of
[VV, Thm. 3.2] that the authors point out in the erratum.
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Corollary 0.5 (Blow-ups). For any quasi-smooth closed immersion f ∶ X ↪
Y of derived Artin stacks, consider the blow-up square

P(NX/Y) BlX (Y)

X Y.

i

p q

f

Then there is a canonical homotopy

q∗f∗ ≃ i∗(p∗(−) ∪ e(∆))
of maps K(X) → K(BlX (Y)).

The blow-up square is the universal excess square over f ∶ X → Y such
that the upper morphism i is a virtual Cartier divisor; see [KR].

The proof of Theorem 0.1 is inspired by Fulton’s proof of the Grothendieck–
Riemann–Roch formula [Fu, Chap. 15], and uses a similar argument involving
the deformation space BlX×{∞}(Y ×P1) to reduce to the case where f and

f ′ are zero sections of (projective completions of) vector bundles. Due to the
failure of A1-homotopy invariance in algebraic K-theory (of singular spaces),
the reduction is much more subtle than for the analogous result in motivic
Borel–Moore homology (= higher Chow groups, under suitable hypotheses),
which was proven in [Kh3, Prop. 3.15].

The reader will find that the proof also goes through for any “additive
invariant” in place of algebraic K-theory, i.e., for invariants of stable ∞-
categories that satisfy additivity in the sense of Waldhausen.

1. Derived symmetric powers

Let X be a derived Artin stack. We denote by Qcoh(X) the stable
presentable ∞-category of quasi-coherent OX -modules, and by Qcoh(X)⩾0

the full subcategory of connective objects. Recall that Qcoh(X) is the limit

lim←Ð
u∶X→X

Qcoh(X)

taken over the ∞-category Lis(X) of smooth morphisms u ∶ X→ X , where X
is an affine derived scheme. In other words, the sheaf X ↦ Qcoh(X) is right
Kan extended from affines. For an affine X = Spec(R), Qcoh(X) is equivalent
to the stable ∞-category of (nonconnective) modules over the simplicial
commutative ring R, in the sense of [SAG, Not. 25.2.1.1]. Similarly for the
connective and perfect subcategories Qcoh(−)⩾0 and Perf(−), respectively.
Recall that K(X) is defined as the algebraic K-theory space of the stable
∞-category Perf(X). See [Kh2] or [Kh4] for more details on these definitions.
We will in particular make use of the base change and projection formulas
(see [Kh4, Rem. 1.9] or [SAG, Cor. 3.4.2.2 (3), Rem. 3.4.2.6]).

By QcohAlg(X) we denote the presentable ∞-category of quasi-coherent
OX -algebras. This admits a similar description as above, and for Spec(R) is
equivalent to the ∞-category of R-algebras.
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The derived symmetric algebra functor

Sym∗
OX ∶ Qcoh(X)⩾0 → QcohAlg(X)

is left adjoint to the forgetful functor. For any morphism f ∶ X ′ → X there
are natural isomorphisms

f∗(Sym∗
OX (F)) ≃ Sym∗

OX′ (f
∗F)

for every F ∈ Qcoh(X)⩾0 (since the forgetful functors commute with f∗).

The derived symmetric algebra Sym∗
OX (F) can be described in terms of

the derived symmetric powers Symn
OX (F). These are constructed in the

affine case in [SAG, Sect. 25.2.2], and extend to stacks by descent. (We warn
the reader that, even for ordinary commutative rings, the derived symmetric
powers are different from the classical ones on non-flat modules; see [SAG,
Prop. 25.2.3.4] or [Qui, Sect. 7] for a classical introduction.)

Construction 1.1. Let q ∶ (SCRMod)⩾0 → SCRing denote the cocartesian
fibration associated to the presheaf of ∞-categories R ↦ (ModR)⩾0; its
objects are pairs (R,M), where R ∈ SCRing is a simplicial commutative ring
and M ∈ (ModR)⩾0 is a connective R-module. By [SAG, Constr. 25.2.2.1],
there is for each integer n ⩾ 0 a functor (SCRMod)⩾0 → (SCRMod)⩾0 given
informally by the assignment

(R,M) ↦ (R,Symn
R(M)).

This functor preserves q-cocartesian morphisms [SAG, Prop. 25.2.3.1] and
therefore induces functors

Symn
R ∶ (ModR)⩾0 → (ModR)⩾0,

which define a natural transformation of functors as R varies. By right Kan
extension, this extends to a natural transformation on the ∞-category of
derived Artin stacks. In other words for every derived Artin stack X we have
functors

Symn
OX ∶ Qcoh(X)⩾0 → Qcoh(X)⩾0,

which commute with f∗.

Lemma 1.2. Let X be a derived Artin stack. Then for every connective
quasi-coherent sheaf E ∈ Qcoh(X)⩾0, there is a canonical isomorphism

Sym∗
OX (E) ≃ ⊕

n⩾0

Symn
OX (E)

in Qcoh(X).

Proof. As X varies, both Sym∗
OX (−) and ⊕n Symn

OX (−) define natural trans-
formations Qcoh(−)⩾0 → Qcoh(−)⩾0 of presheaves on the ∞-category of
derived Artin stacks. On the restrictions to affines, the two are canonically
equivalent by [SAG, Constr. 25.2.2.6]. Since Qcoh(−)⩾0 is right Kan extended
from affines, the claim follows. �

Lemma 1.3. Let X be a derived Artin stack and E ′ → E → E ′′ a cofibre se-
quence of connective perfect complexes. Then there are canonical equivalences

[Symn
OX (E)] ≃ ⊕

i+j=n

[Symi
OX (E

′) ⊗OX Symj
OX (E

′′)]
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for every n ⩾ 0. If Symn
OX (E) = 0 for all sufficiently large n ≫ 0, and

similarly for E ′ and E ′′, then also

[Sym∗
OX (E)] ≃ [Sym∗

OX (E
′) ⊗OX Sym∗

OX (E
′′)]

in K(X).

Proof. For every such cofibre sequence and every integer n ⩾ 0, there is a
canonical filtration

Symn
OX (E

′) = F0,n → F1,n → ⋯→ Fn,n = Symn
OX (E)

together with cofibre sequences

Fi−1,n → Fi,n → Symn−i
OX (E

′) ⊗OX Symi
OX (E

′′)
for each 0 < i ⩽ n. This is constructed in [SAG, Constr. 25.2.5.4] for affines
and the construction extends to stacks by a similar right Kan extension
procedure. Since Symn

OX (E) is perfect for all n [SAG, Prop. 25.2.5.3] (and

similarly for E ′ and E ′′), these cofibre sequences give rise to the desired
equivalences in K(X). The second claim follows from Lemma 1.2, since the
assumption guarantees Sym∗

OX (E) is also perfect (and similarly for E ′ and

E ′′). �

Definition 1.4. The Euler class of a finite locally free sheaf E is defined by

e(E) = [Sym∗
OX (E[1])] = ∑

n⩾0

(−1)n ⋅ [Symn
OX (E[1])] ∈ K(X).

There are canonical isomorphisms Symn
OX (E[1]) ≃ ΛnOX (E)[n] (cf. [SAG,

Prop. 25.2.4.2]), where ΛnOX (−) denotes the derived exterior power, so this

agrees with the usual definition of the Euler class (often denoted λ−1(E)).

2. Projective bundles

Given a connective perfect complex F on a derived Artin stack X , there
is an associated “generalized vector bundle”

VX (F) = SpecX (Sym∗
OX (F)),

defined as the relative spectrum of its derived symmetric algebra. It is the
moduli of cosections F → OX ; that is, for any derived scheme S over X , the
space of S-points of VX (F) over X is the space of OS-linear homomorphisms
F∣S → OS.

This construction can exhibit some surprising behaviour. For example,
if E is a finite locally free sheaf, consider the morphism p ∶ VX (E[1]) → X .
This is a quasi-smooth closed immersion that fits in the homotopy cartesian
square

VX (E[1]) X

X VX (E),

p

p s

s
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where s is the zero section. By the base change formula we obtain a canonical
isomorphism

s∗s∗ ≃ p∗p∗ ≃ (−) ⊗OX Sym∗
OX (E[1])

of functors Perf(X) → Perf(X), where the second isomorphism follows from
p∗(O) = Sym∗

OX (E[1]) and the projection formula. We have just proven the
following lemma in the special case where t = s:
Lemma 2.1. Let X be a derived Artin stack. Given a finite locally free sheaf
E and a cosection t ∶ E → OX , we let i ∶ Z → X denote its derived zero locus,
so that there is a homotopy cartesian square

Z X

X VX (E).

i

i t

s

Then there is an essentially unique homotopy

i∗i
∗ ≃ (−) ∪ e(E)

of maps K(X) → K(X).

Proof. The result of composing such a square with the open immersion
VX (E) → P(E ⊕O) is still homotopy cartesian (see [Kh2, Subsect. 3.1] for
background on projective bundles in this setting). Let s̄ ∶ X → P(E ⊕O) and
t̄ ∶ X → P(E ⊕O), respectively, denote the induced morphisms. By the base
change formula we have

i∗i
∗ ≃ t̄∗s̄∗

as functors Perf(X) → Perf(X). In the case t = s, we have as above s̄∗s̄∗ ≃
(−) ⊗OX Sym∗

OX (E[1]), so in particular s̄∗s̄∗ ≃ (−) ∪ e(E) in K-theory. Thus
it will suffice to exhibit an (essentially unique) homotopy between the two
maps K(P(E ⊕O)) → K(X) induced by s̄∗ and t̄∗. But from the projective
bundle formula [Kh2, Cor. 3.4.1] it follows that there is an exact triangle

K(PX (E))
∞∗ÐÐ→ K(PX (E ⊕O)) ū∗Ð→ K(X),

for any ū ∶ X → P(E ⊕ O) induced by a section u ∶ X → VX (E). In other
words, both maps in question are the cofibre of the same map ∞∗, whence
the desired homotopy. �

Let π ∶ P(E ⊕O) → X denote the projection. We have on P(E ⊕O) the
canonical exact triangle of locally free sheaves

Q→ π∗(E) ⊕O → O(1).
Recall that the zero section s̄ ∶ X → P(E ⊕O) can be written as the derived
zero locus of the canonical cosection

Q→ π∗(E) ⊕O
pr2ÐÐ→ O.

Thus we get:

Corollary 2.2. There is a canonical homotopy

s̄∗(−) ≃ e(Q) ∪ π∗(−)
of maps K(X) → K(P(E ⊕O)).
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Proof. By Lemma 2.1, s̄∗(O) ≃ e(Q). By the projection formula, s̄∗(−) ≃
s̄∗(O) ∪ π∗(−) ≃ e(Q) ∪ π∗(−). �

We are now ready to prove a special case of Theorem 0.1. Let p ∶ X ′ → X
be a morphism of derived Artin stacks. Let E and E ′ be finite locally free
sheaves on X and X ′, respectively, together with a surjection

p∗(E) ↠ E ′

whose fibre we denote ∆. This induces an excess intersection square

X ′ P(E ′ ⊕O)

X P(E ⊕O),

s̄′

p q

s̄

where s̄ and s̄′ are the zero sections.

Claim 2.3. The excess intersection formula

q∗s̄∗ ≃ s̄′∗(p∗(−) ∪ e(∆))

holds for the above square.

Proof. Let π ∶ P(E ⊕O) → X and π′ ∶ P(E ′ ⊕O) → X ′ denote the respective
projections. Let Q and Q′ denote the respective universal hyperplane sheaves
on P(E ⊕ O) and P(E ′ ⊕ O). The surjection p∗(E) → E ′ gives rise to a
canonical morphism q∗Q → Q′, whose fibre is (π′)∗(∆). Thus Lemma 1.3
provides a canonical homotopy

e(q∗Q) ≃ e((π′)∗∆) ∪ e(Q′)

in K(P(E ′ ⊕O)). Now two applications of Corollary 2.2 give:

q∗s̄∗ ≃ q∗(π∗(−) ∪ e(Q))
≃ (π′)∗p∗(−) ∪ e(q∗Q)
≃ (π′)∗p∗(−) ∪ e((π′)∗∆) ∪ e(Q′)
≃ (π′)∗(p∗(−) ∪ e(∆)) ∪ e(Q′)
≃ s̄′∗(p∗(−) ∪ e(∆)),

as desired. �

3. Deformation space

Let f ∶ X → Y be a quasi-smooth closed immersion of derived Artin stacks.
Write M for the blow-up BlX×{∞}(Y×P1) as in [KR]. It fits in a commutative
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diagram

X X ×P1 X

Y M P(NX/Y ⊕O)

{0} P1 {∞}

s0

f f̂

s∞

f∞
σ0

π0 π̂

σ∞

π∞

The two left-hand squares and upper right-hand square are homotopy carte-
sian. The morphism f̂ is

X ×P1 = BlX×{∞}(X ×P1) → BlX×{∞}(Y ×P1),

induced by f × id ∶ X ×P1 → Y ×P1, and the morphism f∞ is the zero section.

Denote by M∞ ∶= M×RP1{∞} the special fibre, and by i∞ ∶ M∞ →M the
inclusion. Then we have a canonical homotopy

(3.1) (σ0)∗(σ0)∗ ≃ (i∞)∗(i∞)∗

of maps K(M) → K(M). Indeed, we have 0∗(O) ≃ ∞∗(O) in K(P1), so by
the base change formula there is a canonical identification

(σ0)∗(O) ≃ (σ0)∗(π0)∗(O) ≃ π̂∗0∗(O)
≃ π̂∗∞∗(O) ≃ (i∞)∗(π∞)∗(O) ≃ (i∞)∗(O)

in K(M). Thus the claim follows from the projection formula.

The fibre M∞ fits in a homotopy cartesian and cocartesian square

P(NX/Y) BlX (Y)

P(NX/Y ⊕O) M∞.

That is, M∞ is the sum of the two virtual Cartier divisors P(NX/Y ⊕ O)
and BlX (Y) on M. We denote by i∞ ∶ M∞ → M the inclusion, and by
b ∶ BlX (Y) →M, and c ∶ P(NX/Y) →M the composites with i∞. We have a
canonical homotopy

(3.2) (i∞)∗(i∞)∗ ≃ (σ∞)∗(σ∞)∗ + b∗b∗ − c∗c∗

of maps K(M) → K(M), by the following lemma.

Lemma 3.3. Let D↪ X and D′ ↪ X be virtual Cartier divisors on a derived
Artin stack X . Denote by D ∩D′ = D×RX D′ their intersection and by

D +D′ = D ⊔
D∩D′

D′

their sum. Then we have a canonical homotopy

(iD+D′)∗(iD+D′)∗ ≃ (iD)∗(iD)∗ + (iD′)∗(iD′)∗ − (iD∩D′)∗(iD∩D′)∗

of maps K(X) → K(X).
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Proof. By definition of D +D′ we have

(iD+D′)∗(OD+D′) ≃ (iD)∗(OD) ×
(iD∩D′)∗(OD∩D′)

(iD′)∗(OD′)

in Perf(X). This induces in K(X) a canonical homotopy

(iD+D′)∗(OD+D′) ≃ (iD)∗(OD) + (iD′)∗(OD′) − (iD∩D′)∗(OD∩D′).
We conclude using the projection formula. �

Since the intersection

BlX (Y) ×
M
(X ×P1) = BlX (Y) ×

M∞
X = P(NX/Y) ×

P(NX/Y⊕O)
X

is empty, we have b∗f̂∗ = 0 and c∗f̂∗ = 0 by the base change formula. Thus
(3.1) and (3.2) induce the homotopy

(3.4) (σ0)∗(σ0)∗f̂∗ ≃ (i∞)∗(i∞)∗f̂∗ ≃ (σ∞)∗(σ∞)∗f̂∗
of maps K(X ×P1) → K(M).

4. Proof

Consider an excess intersection square of the form

X ′ Y ′

X Y.

f ′

p q

f

We keep the notation of the previous section, so M = BlX×{∞}(Y × P1),
etc. We consider all the same constructions for f ′ ∶ X ′ → Y ′, with notation
decorated by primes: M′ = BlX ′×{∞}(Y ′×P1), and so on. We have morphisms
of excess intersection squares

X ′ Y ′

X Y.

f ′

p q

f

↪
X ′ ×P1 M′

X ×P1 M

f̂ ′

p̂ q̂

f̂

↩
X ′ P(NX ′/Y ′ ⊕O)

X P(NX/Y ⊕O).

f ′∞

p q∞

f∞

That the middle square is an excess intersection square is clear from the
observation that the surjectivity condition (ii) can be checked on the fibres
of X ′ ×P1.

Consider the canonical morphisms r ∶ X × P1 → X , ρ ∶ M → Y (as well
as their primed versions), retractions of s0 ∶ X → X ×P1 and σ0 ∶ Y → M,
respectively. Using r ○ s0 = id and the base change formula, we have

q∗f∗ ≃ q∗f∗(s0)∗r∗

≃ q∗(σ0)∗f̂∗r∗

≃ (σ′0)∗q̂∗f̂∗r∗
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and similarly

(q∞)∗(f∞)∗ ≃ (q∞)∗(f∞)∗(s∞)∗r∗

≃ (q∞)∗(σ∞)∗f̂∗r∗

≃ (σ′∞)∗q̂∗f̂∗r∗.

Thus (3.4) induces an equivalence

(σ′0)∗q∗f∗ ≃ (σ′0)∗(σ′0)∗q̂∗f̂∗r∗ ≃ (σ′∞)∗(σ′∞)∗q̂∗f̂∗r∗ ≃ (σ′∞)∗(q∞)∗(f∞)∗.

Applying ρ′∗ gives

q∗f∗ ≃ ρ′∗(σ′∞)∗(q∞)∗(f∞)∗
since ρ′ ○ σ′0 = id. Finally, Claim 2.3 yields the desired equivalence

q∗f∗ ≃ ρ′∗(σ′∞)∗(f ′∞)∗(p∗(−) ∪ e(∆)) ≃ f ′∗(p∗(−) ∪ e(∆)).
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