DESCENT BY QUASI-SMOOTH BLOW-UPS IN
ALGEBRAIC K-THEORY

ADEEL A. KHAN

ABSTRACT. We construct a semi-orthogonal decomposition on the category
of perfect complexes on the blow-up of a derived Artin stack in a quasi-
smooth centre. This gives a generalization of Thomason’s blow-up formula
in algebraic K-theory to derived stacks. We also provide a new criterion for
descent in Voevodsky’s cdh topology, which we use to give a direct proof of
Cisinski’s theorem that Weibel’s homotopy invariant K-theory satisfies cdh
descent.

1. INTRODUCTION

1.1. Let X be a scheme and i : Z — X a regular closed immersion. This means
that Z is, Zariski-locally on X, the zero-locus of some regular sequence of functions
Jis-oo fa € T(X, Ox). Then the blow-up Bly x fits into a square

P(Nz/x) o, Blz,/x

(1.1.a) lq lp

Z— X,

where the exceptional divisor is the projective bundle associated to the conor-
mal sheaf Ny x, which under the assumptions is locally free of rank n. A result
of Thomason [Tho93b] asserts that after taking algebraic K-theory, the induced
square of spectra

K(X) —Y 5 K(Z)

l» l

K(Blz/x) — K(P(Nz/x))

is homotopy cartesian. Here K(X) denotes the Bass—Thomason—Trobaugh alge-
braic K-theory spectrum of perfect complexes on a scheme X. We may summarize
this property by saying that algebraic K-theory satisfies descent with respect to
blow-ups in regularly immersed centres.

Now suppose that i is more generally a quasi-smooth closed immersion of derived
schemes. This means that Z is, Zariski-locally on X, the derived zero-locus of some
arbitrary sequence of functions fi,...,f, € I'(X,0x). (When X is a classical
scheme and the sequence is regular, this is the same as the classical zero-locus,
and we are in the situation discussed above.) In the derived setting there is
still a conormal sheaf Ny ,x on Z, locally free of rank n, and one may still form
the blow-up square (1.1.a), see [Khal8]. Our goal in this paper is to generalize
Thomason’s result above to this situation. At the same time we also allow X to be
a derived Artin stack, and consider any additive invariant of stable co-categories
(see Definition 2.3.1). Examples of additive invariants include algebraic K-theory
K, connective algebraic K-theory K", topological Hochschild homology THH, and
topological cyclic homology TC.

Theorem A. Let E be an additive invariant of stable co-categories. Given a de-
rived Artin stack X and a quasi-smooth closed immersion i : Z — X of virtual
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codimension n = 1, form the blow-up square (1.1.a). Then the induced commuta-
tive square

E(X) —Y E(Z)

r !
E(Blz/x) — E(P(Nz/x))

is homotopy cartesian.

We deduce Theorem A from an analysis of the categories of perfect complexes
on Bly/x and on the exceptional divisor P(Nz,x). The relevant notion is that of
a semi-orthogonal decomposition, see Definition 2.2.2.

Theorem B. Let X be a derived Artin stack. For any locally free Ox-module €
of rank n+ 1, n > 0, consider the projective bundle ¢ : P(€) — X. Then we have:

For each 0 < k < n, the assignment F — ¢*(F) @ O(—k) defines a fully faithful
functor Perf(X) — Perf(P(€)), whose essential image we denote A(—k).

The sequence of full subcategories (A(0),...,A(—n)) forms a semi-orthogonal de-
composition of Perf(P(€)).

Theorem C. Let X be a derived Artin stack. For any quasi-smooth closed im-
mersion i : Z — X of virtual codimension n > 1, form the blow-up square (1.1.a).
Then we have:

The assignment I +— p*(TF) defines a fully faithful functor Perf(X) — Perf(Bly x),

whose essential image we denote B(0).

For each 1 < k < n—1, the assignment F — (ip)«(¢*(F) ® O(—=k)) defines a fully
faithful functor Perf(Z) — Perf(Blz, x), whose essential image we denote B(—k).

The sequence of full subcategories (B(0),...,B(—n+1)) forms a semi-orthogonal
decomposition of Perf(Bly/x).

We immediately deduce the projective bundle and blow-up formulas

BPE) ~ DBEX),  BBlyx) ~EX) e DE®),
m=0 k=1

for any additive invariant E, see Corollaries 3.4.1 and 4.5.2, from which Theorem A
immediately follows (see Subsect. 4.5).

1.2. The results mentioned above admit the following interesting special cases:

Suppose that X is a smooth projective variety over the field of complex numbers.
This case of Theorem B was proven by Orlov in [Orl92]. He also proved Theorem C
for any smooth subvariety Z — X.

More generally suppose that X is a quasi-compact quasi-separated classical scheme.
Then the projective bundle formula (Corollary 3.4.1) for algebraic K-theory was
proven by Thomason [TT90, Tho93a]. Similarly suppose that i : Z — X is a quasi-
smooth closed immersion of quasi-compact quasi-separated classical schemes. Then
it is automatically a regular closed immersion, and in this case Thomason also
proved Corollary 4.5.2 for algebraic K-theory [Tho93b]. In fact, the papers [Tho93a]
and [Tho93b] essentially contain under these assumptions proofs of Theorems B
and C, respectively, even if the term “semi-orthogonal decomposition” is not used
explicitly. For THH and TC, these cases of Corollaries 3.4.1 and 4.5.2 were proven
by Blumberg and Mandell [BM12].

More generally still, let X and Z be classical Artin stacks. These cases of The-
orems B and C are proven by by Bergh and Schniirer in [BS17]. However we
note that Corollaries 3.4.1 and 4.5.2 were obtained earlier by Krishna and Ravi in
[KR18], and their arguments in fact prove Theorems B and C for classical Artin
stacks.
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(d) Let X be a noetherian affine classical scheme, and let Z be the derived zero-locus
of some functions f,..., f, € I'(X,0x). Then the canonical morphism i : Z — X
is a quasi-smooth closed immersion. In this case, Theorem A for algebraic K-
theory was proven by Kerz-Strunk-Tamme [KST18] (where the blow-up Bly x
was explicitly modelled as the derived fibred product X x o= Bljg}/an), as part of
their proof of Weibel’s conjecture on negative K-theory.

1.3. Let KH denote homotopy invariant K-theory. Recall that this is the Al-
localization of the presheaf X +— K(X). That is, it is obtained by forcing the
property of Al-homotopy invariance: for every quasi-compact quasi-separated al-
gebraic space X, the map

KH(X) — KH(X x A')

is invertible (see [Wei89, Cis13]). As an application of Theorem A, we give a new
proof of the following theorem of Cisinski [Cis13]:

Theorem D. The presheaf of spectra S — KH(S) satisfies cdh descent on the site
of quasi-compact quasi-separated algebraic spaces.

This was first proven by Haesemeyer [Hae04] for schemes over a field of charac-
teristic zero, using resolution of singularities. Cisinski’s proof over general bases
(noetherian schemes of finite dimension) relies on Ayoub’s proper base change
theorem in motivic homotopy theory. Another proof of Theorem D (also in the
noetherian setting) was given recently by Kerz—Strunk—Tamme [KST18, Thm. C],
as an application of pro-cdh descent and their resolution of Weibel’s conjecture
on negative K-theory. The proof we give here is much more direct and uses a
new criterion for cdh descent (Theorem 5.1.2). This criterion says that cdh de-
scent is equivalent to Nisnevich descent, descent by quasi-smooth blow-ups, and
closed descent. Since algebraic K-theory satisfies the first two properties, the only
obstruction is the latter property, which vanishes after passing from K to KH.
A similar cdh descent criterion has been noticed independently by Markus Land
and Georg Tamme, see [LT18, Thm. A.2]. We do not know if it can be applied
here since we do not know that KH can be extended to an invariant of stable co-
categories which is truncating in the sense of op. cit. In fact the main new input
here is the result of [CK17] which asserts that its extension to derived schemes (or
algebraic spaces) does satisfy the property that KH(X) — KH(X)) is invertible
for all X.

Theorem D was extended to certain nice Artin stacks recently by Hoyois and
Hoyois-Krishna [Hoy16, HK17]. We do not know whether our proof can be ex-
tended to stacks, since we do not know whether, given a closed substack Z of a
stack X, there always exists a quasi-smooth closed immersion Z — X such that

Za = 7Z (at least Nisnevich-locally on X). This also seems to be an obstruction to
extending the pro-cdh descent results of [KST18] to stacks.

1.4. The organization of this paper is as follows. We begin in Sect. 2 with some
background on derived algebraic geometry and on semi-orthogonal decompositions
of stable oco-categories.

Sect. 3 is dedicated to the proof of Theorem B. We first show that the semi-
orthogonal decomposition exists on the larger stable co-category Qcoh(P(€&)) (The-
orem 3.2.1). Then we show that it restricts to Perf(P(&)) (Subsect. 3.3), and
deduce the projective bundle formula (Corollary 3.4.1) for any additive invari-
ant. We follow a similar pattern in Sect. 4 to prove Theorem C. There is a
semi-orthogonal decomposition on Qcoh(Blz,x) (Theorem 4.3.1) which then re-
stricts to Perf(Blz,x) (Subsect. 4.4). This gives both the blow-up formula (Corol-
lary 4.5.2) as well as Theorem A (4.5.3) for additive invariants. As input we prove
a Grothendieck duality statement for virtual Cartier divisors (Proposition 4.2.1)
that should be of independent interest.
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Sect. 5 contains our results on cdh descent and KH. We first give the general
cdh descent criterion (Theorems 5.1.2 and 5.2.4). We apply this criterion to KH
to give our proof of Theorem D (5.3.3).

1.5. Thanks to David Rydh for helpful discussions and to Marc Hoyois for com-
ments on a draft.

2. PRELIMINARIES

Throughout the paper we work with the language of co-categories as in [Lur09,
Lur12].

2.1. Derived algebraic geometry. This paper is set in the world of derived algebraic
geometry, as in [TV08, Lurl6, GR17].

2.1.1. Let SCRing denote the oco-category of simplicial commutative rings. A
derived stack is an étale sheaf of spaces X : SCRing — Spc. If X is corepresentable
by a simplicial commutative ring A, we write X = Spec(A) and call X an affine
derived scheme. A derived scheme is a derived stack X that admits a Zariski atlas
by affine derived schemes, i.e., a jointly surjective family (U; — X); of Zariski open
immersions with each U; an affine derived scheme. Allowing Nisnevich, étale or
smooth atlases, respectively, gives rise to the notions of derived algebraic spaces’,
derived Deligne—Mumford stacks, and derived Artin stacks. The precise definition
is slightly more involved, see e.g. [GR17, Vol. I, Sect. 4.1].

Any derived stack X admits an underlying classical stack which we denote X,.
If X is a derived scheme, algebraic space, Deligne-Mumford or Artin stack, then
X1 is a classical such.

2.1.2. Let X be a derived scheme and let f1,...,f, € I'(X,0x) be functions
classifying a morphism f : X — A" to affine space. The derived zero-locus of
these functions is given by the derived fibred product

7 — X

(2.1.a) J{ lf

{0} —— A™.

If X is classical, then Z is classical if and only if the sequence (f1, ..., f,) is regular
in the sense of [BGI71], in which case Z is regularly immersed. A closed immer-
sion of derived schemes i : Z — X is called quasi-smooth (of virtual codimension
n) if it is cut out Zariski-locally as the derived zero-locus of n functions on X.
Equivalently, this means that ¢ is locally finitely presented and its shifted cotan-
gent complex Nz x := Lz,x[—1] is locally free (of rank n). A closed immersion of
derived Artin stacks is quasi-smooth if it satisfies this condition smooth-locally.

A morphism of derived schemes f : Y — X is quasi-smooth if it can be factored,
Zariski-locally on Y, through a quasi-smooth closed immersion 7 : Y — X’ and a
smooth morphism X’ — X. A morphism of derived Artin stacks is quasi-smooth
if it satisfies this condition smooth-locally on Y. We refer to [Khal8] for more
details on quasi-smoothness.

IThat this agrees with the classical notion of algebraic space (at least under quasi-compactness
and quasi-separatedness hypotheses) follows from [RG71, Prop. 5.7.6]. That it agrees with Lurie’s
definition follows from [Lurl6, Ex. 3.7.1.5].
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2.1.3. Important in this paper is the following construction from [Khal8]. Given
any quasi-smooth closed immersion i : Z — X of derived Artin stacks, there is an
associated quasi-smooth blow-up square:

P(Nz/x) o, Blz/x

(2.1.b) lq lp

Z——— X
Here Blyz,/x is the blow-up of X in Z, which is a quasi-smooth proper derived
Artin stack over X, and P(Nz/x) is the projectivized normal bundle, which is
a smooth proper derived Artin stack over X. This square is universal with the
following properties: (a) the morphism ip is a quasi-smooth closed immersion of
virtual codimension 1, i.e., a virtual effective Cartier divisor; (b) the underlying
square of classical Artin stacks is cartesian; and (c) the canonical map ¢*Nz,x —
Npn, /x)/ Blzx is surjective on my. When X is a derived Deligne-Mumford stack
(resp. derived algebraic space, derived scheme), then so is Bly/x.

2.1.4. Given a derived stack X, the stable co-category of quasi-coherent sheaves
Qcoh(X) is the limit
Qcoh(X) = lim Qcoh(Spec(A))
Spec(A)—X
taken over all morphisms Spec(A) — X with A € SCRing. Here Qcoh(Spec(A))
is the stable co-category Moda of A-modules? in the sense of Lurie. Informally
speaking, a quasi-coherent sheaf ¥ on X is thus a collection of quasi-coherent
sheaves z*(F) € Qcoh(Spec(A)), for every simplicial commutative ring A and
every A-point x : Spec(A) — X, together with a homotopy coherent system of
compatibilities.
The full subcategory Perf(X) C Qcoh(X) is similarly the limit
Perf(X) = Jim Perf(Spec(A)),
Spec(A)—X

where Perf(Spec(A)) is the stable oo-category Mod2™ of perfect A-modules. In

other words, F € Qcoh(X) belongs to Perf(X) if and only if *(F) is perfect for
every simplicial commutative ring A and every morphism « : Spec(A) — X.

We will use repeatedly the fact that the assignments X +— Qcoh(X) and X
Perf(X), as presheaves of oo-categories, satisfy descent for the fpqc topology
([Lurl6, Cor. D.6.3.3], [GR17, Thm. 1.3.4]). This means in particular that given
any fpqc covering family (f, : Xo — X)a, the family of inverse image functors
& Qeoh(X) — Qeoh(X,,) is jointly conservative.

2.2. Semi-orthogonal decompositions. The following definitions were originally for-
mulated by [BK89] in the language of triangulated categories and are standard.

Definition 2.2.1. Let C be a stable co-category and D a stable full subcategory.
An object x € C is left orthogonal, resp. right orthogonal, to D if the mapping
space Mapsg(z,d), resp. Maps(d, x), is contractible for all objects d € D. We
let 1D C C and D+ C C denote the full subcategories of left orthogonal and right
orthogonal objects, respectively.

Definition 2.2.2. Let C be a stable co-category and let C(0),...,C(—n) be full
stable subcategories. Suppose that the following conditions hold:

For all integers i > j, there is an inclusion C(i) C +C(j).

The co-category C is generated by the subcategories C(0), ..., C(—n), under finite

limits and finite colimits.

2Note that if A is discrete (an ordinary commutative ring), then this is not the abelian
category of discrete A-modules, but rather the derived oco-category of this abelian category as in
[Lurl2, Chap. 1].
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Then we say that the sequence (C(0), ..., C(—n)) forms a semi-orthogonal decom-
position of C.

Semi-orthogonal decompositions of length 2 come from split short exact se-
quences of stable co-categories, as in [BGT13].

Definition 2.2.3.
A short ezact sequence of small stable co-categories is a diagram
cLche,
where i and p are exact, the composite p o i is null-homotopic, 4 is fully faith-

ful, and p induces an equivalence (C/C’)dem ~ (C”)idem (where (—)4°™ denotes
idempotent completion).

A short exact sequence of small stable co-categories
cLchc

is split if there exist functors ¢ : C — C’ and j : C” — C, right adjoint to ¢ and
p, respectively, such that the unit id — ¢ o ¢ and co-unit p o j — id are invertible.

Remark 2.2.4. Let C be a small stable co-category, and let (C(0),C(—1)) be a
semi-orthogonal decomposition. Then for any object = € C, there exists an exact
triangle
z(0) =z — z(—1),
where 2(0) € C(0) and z(—1) € C(—1). To see this, simply observe that the full
subcategory spanned by objects x for which such a triangle exists, is closed under
finite limits and colimits, and contains C(0) and C(—1). Moreover, the assign-
ments z — 2(0) and x — z(—1) determine well-defined functors ¢ : C — C(0)
and p : C — C(—1), respectively, which are right and left adjoint, respectively,
to the inclusions (see e.g. [Lurl6, Rem. 7.2.0.2]). It follows from this that any
semi-orthogonal decomposition (C(0), C(—1)) induces a split short exact sequence
C(0) » C & c(-1).
Lemma 2.2.5. Let C be a stable oco-category, and let (C(0),...,C(—n)) be a
sequence of full stable subcategories forming a semi-orthogonal decomposition of
C. For each 0 < m < n, let C<_,,, C C denote the union C(—m)U--- U C(—n),

and let C<_,—1 € C denote the full subcategory spanned by the zero object. Then
there are split short exact sequences

Cgfmfl — Cgfm — C(—m)

for each 0 < m < n.

Proof. Tt follows from the definitions that for each 0 < m < n, the sequence
(C(—m),Cg_m—1) forms a semi-orthogonal decomposition of C. Therefore the
claim follows from Remark 2.2.4. O

2.3. Additive and localizing invariants. The following definition is from [BGT13],
except that we do not require commutativity with filtered colimits.

Definition 2.3.1. Let A be a stable presentable co-category. Let E be an A-
valued functor E from the oo-category of small stable co-categories and exact
functors.

We say that E is an additive invariant if for any split short exact sequence
cHehe,
the induced map
E(C) & E(C”) 2 B(0)

is invertible, where j is a right adjoint to p.
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(ii) We say that E is a localizing invariant if for any short exact sequence

cLche,
the induced diagram
E(C’) — E(C) — E(C")

is an exact triangle.
Remark 2.3.2. Any localizing invariant is also additive.

Lemma 2.3.3. Let C be a stable co-category, and let (C(0),...,C(—n)) be a
sequence of full stable subcategories forming a semi-orthogonal decomposition of
C. Then for any additive invariant E there is a canonical isomorphism

E(C) ~ @D E(C(-m)).
m=0

Proof. Follows immediately from Lemma 2.2.5. d

We now recall that every localizing invariant satisfies Nisnevich descent, see e.g.
[CMNN, Prop. A.13].

Definition 2.3.4. A Nisnevich square of derived algebraic spaces is a commutative
square

W —YV

L

U—-X
where j is an open immersion, and p is étale and induces an isomorphism V—W ~
X — U. We say that a presheaf J satisfies Nisnevich descent if it sends the empty
scheme to a terminal object, and Nisnevich squares to homotopy cartesian squares.

Theorem 2.3.5. Let E be a localizing invariant. Regard E as a presheaf on the

oco-category of quasi-compact quasi-separated derived algebraic spaces by setting
E(X) = E(Perf(X)). Then E satisfies Nisnevich descent.

Remark 2.3.6. Tt follows from [Khal6, Thm. 2.2.7] that a presheaf satisfies Nis-
nevich descent in the above sense if and only if it satisfies Cech descent with respect
to the Grothendieck topology generated by Nisnevich squares.

3. THE PROJECTIVE BUNDLE FORMULA

3.1. Projective bundles. Let X be a derived stack and € a locally free Ox-module
of finite rank. Recall that the projective bundle associated to € is a derived stack
P(€) over X equipped with an invertible sheaf O(1) together with a surjection
& — 0O(1). More precisely, for any derived scheme S over X, with structural
morphism morphism z : S — X, the space of S-points of P(&) is the space of
pairs (£, u), where £ is a locally free Og-module of rank 1, and w : *(€) — £ is
surjective on mg. We recall the standard properties of this construction:

Proposition 3.1.1.

If f: X! = X is a morphism of derived stacks, then there is a canonical isomor-

phism P(f*(&)) — P(&) xx X' of derived stacks over X'.

If X is a derived scheme (resp. derived algebraic space, k-geometric derived Deligne—
Mumford stack, k-geometric derived Artin stack), then the same holds for the de-
rived stack P(E).

The projection P(€) — X is proper.

The relative cotangent complexr Lp(gy/x is canonically isomorphic to F ® O(—1),
where the locally free sheaf F is the fibre of the canonical map & — O(1). In partic-
ular, the morphism P(€) — X is smooth of relative dimension equal to rk(€) — 1.
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Proposition 3.1.2 (Serre). Let X be a derived Artin stack, and & a locally free
sheaf of rank n+ 1, n > 0. If ¢ : P(§) — X denotes the associated projective
bundle, then we have canonical isomorphisms

¢+0(0) ~ Ox, 2:0(=m)=0 (1<m<n)
in Qcoh(X).

Proof. Since Qcoh(—) satisfies fpqc descent and base change for p., we may reduce
to the case where X is affine and € is free. In this case the result follows imme-
diately from Serre’s computation (which holds in the derived setting by [Lurl6,
Thm. 5.4.2.6]). O

3.2. Semi-orthogonal decomposition on Qcoh(P(€)). In this subsection we will
show that the stable co-category Qcoh(P(€)) admits a canonical semi-orthogonal
decomposition.

Theorem 3.2.1. Let X be a derived Artin stack. Let & be a locally free Ox-module
of rankn+1,n >0, and q : P(&) — X the associated projective bundle. Then we
have:

For every integer m € Z, the assignment F — ¢*(F) @ 0(m) defines a fully faithful
functor Qeoh(X) — Qcoh(P(€)).

For every integer m € Z, let C(m) C Qcoh(P(&)) denote the essential image of the
functor in (i). Then the subcategories C(m),...,C(m—n) form a semi-orthogonal
decomposition of Qcoh(P(E)).

We will need the following facts (see Lemmas 7.2.2.2 and 5.6.2.2 in [Lurl6]):

Lemma 3.2.2. Let R be a simplicial commutative ring and X = Spec(R). Denote
by P} = P(O?{H) the n-dimensional projective space over R. Then for every
integer m € Z, there is a canonical isomorphism

lim O(m +[J]) = O(m +n+1)
IC[n]

in Qcoh(PR), where the colimit is taken over the proper subsets J of the set [n] =
{0,1,...,n}, and 0 < |J| < n denotes the cardinality of such a subset.

Lemma 3.2.3. Let R be a simplicial commutative ring and X = Spec(R). De-
note by P% = P(O;L(H) the n-dimensional projective space over R. Then for any
connective quasi-coherent sheaf F € Qcoh(Pg), there exists a map

P o(ds) = 7,
with do, € Z, which is surjective on .

Proof of Theorem 3.2.1. Since the functors —®0(k) are equivalences, it will suffice
to take k = 0 in both claims. For claim (i) we want to show that the unit map
F — ¢.¢*(F) is invertible for all F € Qcoh(X). Since the presheaf Qcoh(—)
satisfies fpqc descent and base change for p,, we may reduce recursively to the
case where X = Spec(R) is affine and & = 05" is free. Now both functors ¢*
and ¢, are exact and moreover commute with arbitrary colimits (the latter since
q is quasi-compact), and Qcoh(X) ~ Modp is generated by Ox under colimits and
finite limits. Therefore we may assume F = Oy, in which case the claim holds by
Proposition 3.1.2.

For claim (ii), let us first check the orthogonality condition in Definition 2.2.2.
Thus take F, G € Qcoh(X) and consider the mapping space

Maps(q*(),¢"(9) ® O(=m)) ~ Maps(F, ¢.(0(-m)) ®@ 9)

for 1 < m < n, where the identification results from the projection formula. Since
q«(O(—m)) ~ 0 by Proposition 3.1.2, this space is contractible.
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It now remains to show that every F € Qcoh(P(€)) belongs to the full subcate-
gory (C(0),...,C(—n)) C Qcoh(P(€)) generated under finite colimits and limits
by the subcategories C(0),...,C(—n). Set §_1 = F® O(-1) and define G,,, for
m > 0, so that we have exact triangles

(3.2.a) 0 (Gm_1 ®0(1)) =22 g1 @ O(1) = G-
For each m > —1, we claim that G,, is right orthogonal to each of the subcategories
C(0),...,C(m). For m = —1 the claim is vacuous, so take m > 0 and assume by

induction that it holds for m — 1. Since p*p.(Gm—1 ® O(1)) is contained in C(0), it
follows that G,, is right orthogonal to C(0). To show that G, is right orthogonal
to C(i), for 1 < i < m, it will suffice to show that the left-hand and middle terms
of the exact triangle (3.2.a) are both right orthogonal to C(i). For the left-hand
term this follows from the inclusion C(0) C C(i)*, demonstrated above. For the
middle term G,,—1 ® O(1), the claim follows by the induction hypothesis.

Now we claim that G, is zero. Using fpqc descent again, we may assume that
X = Spec(R) and € = O™ is free (since the sequence (§_1, Go, . . ., Gn) is stable
under base change). Using Lemma 3.2.3 we can build a map

P @O(ma)[ka] = Gn

which is surjective on all homotopy groups. From Lemma 3.2.2 it follows that
G, is right orthogonal to all C(i), i € Z. Thus ¢ must be null-homotopic, so
Gn =~ 0 as claimed. Working backwards, we deduce that G,y € C(-1), ...,
G0 € (C(-1),...,C(—n)), and then finally that F € (C(0),C(—1),...,C(—n)) as
claimed. g

3.3. Proof of Theorem B. We now deduce Theorem B from Theorem 3.2.1. First
note that the fully faithful functor ¥ — ¢*(F) ® O(m) of Theorem 3.2.1(i) re-
stricts to a fully faithful functor Perf(X) — Perf(P(€)), since ¢* preserves perfect
complexes. This shows Theorem B(i).

For part (ii) we argue again as in the proof of Theorem 3.2.1. The point is that

if F € Qcoh(P(€)) is perfect, then so is each G, € Qcoh(P(E)), since ¢* and g.
preserve perfect complexes [Lurl6, Thm. 6.1.3.2].

3.4. Projective bundle formula. From Theorem B and Lemma 2.3.3 we deduce:

Corollary 3.4.1. Let X be a derived Artin stack, € a locally free Ox-module of
rankn+ 1, n >0, and q : P(&) — X the associated projective bundle. Then for
any additive invariant E, there is a canonical isomorphism

E(P(€)) ~ P EX)

m=0

induced by the functors ¢*(—) ® O(—m) : Perf(X) — Perf(P(E)).

4. THE BLOW-UP FORMULA

4.1. Virtual Cartier divisors. Recall from [Khal8] that a virtual (effective) Cartier
divisor on a derived Artin stack X is a quasi-smooth closed immersion i : D — X
of virtual codimension 1. For any such ¢ : D — X, there is the canonical exact
triangle

Ox(—D) — O0x — Z'*(OD)7
where Ox(—D) is a locally free sheaf of rank 1, equipped with a canonical isomor-
phism i*(Ox (—D)) ~ Npx.

Lemma 4.1.1. Let X be a derived Artin stack and i : D — X a virtual Cartier
divisor. Then there is a canonical isomorphism
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Proof. Applying i* to the exact triangle Ox(—D) — Ox — i.(Op) (and rotating
it), we get the exact triangle
OD — Z*Z*(OD> — ND/X[I]-

*

The map Op — i*i.(Op) is induced by the natural transformation i*(n) : i* —
i*i41* (where 7 is the adjunction unit), so by the triangle identities it has a re-
traction given by the co-unit map i*i.(Op) — Op. In other words, the triangle
splits. O

4.2. Grothendieck duality. Let i : Z — X be a quasi-smooth closed immersion of

derived Artin stacks. The functor i, admits a right adjoint i', which for formal
reasons can be computed by the formula

i'(=) =i (=) @ wp/x,

where wp /x := i'(Ox) is called the relative dualizing sheaf. See [Lur16, Cor. 6.4.2.7].
When i is a virtual Cartier divisor, wp,x can be computed as follows:

Proposition 4.2.1 (Grothendieck duality). Let X be a derived Artin stack. Then
for any virtual Cartier divisor i : D — X, there is a canonical isomorphism
N]\S/X[_l] l> WD/X

of perfect complexes on D. In particular, there is a canonical identification i' ~
i* (=) ® Ny x[-1].

Proof. Write £ := Ox(—D) and consider again the exact triangle L — Ox —
i+(Op). By the projection formula, this can be refined to an exact triangle of
natural transformations id ® £ — id — i,1*, or, passing to right adjoints, an exact
triangle i,i' — id — id ® £V. In particular we get the exact triangle

(4.2.a) ivi' (Ox) = Ox — LY.

The associated map £Y[—1] — i.i'(Ox) gives by adjunction a canonical morphism
N xl—1] = i (£Y)[~1] = i'(0x),

which we claim is invertible. By fpqc descent and the fact that ' commutes with

the operation f*, for any morphism f [Lurl6, Prop. 6.4.2.1], we may assume that

X is affine. In this case the functor i, is conservative, so it will suffice to show that
the canonical map

(N ) [-1] = ' (Ox)
is invertible. Considering again the triangle ¥ ® L — F — 4,i*(F) above and
taking F = £V, we get the exact triangle

Ox = LY = 1.3"(LY) = i(Np %),

since £ is invertible. Comparing with (4.2.a) yields the claim. O

4.3. Semi-orthogonal decomposition on Qcoh(Bly x). In this subsection we prove:

Theorem 4.3.1. Let i : Z — X be a quasi-smooth closed immersion of virtual
codimension n. Consider the blow-up square

D2, X

[« [

Z —5X
The functor p* : Qcoh(}}) — Qcoh(f() is fully faithful. We denote its essential
image by D(0) C Qcoh(X).

The functor (ip)«(q*(—) ® O(—k)) : Qeoh(Z) — Qeoh(X) is fully faithful, for each
1< k< n—1. We denote its essential image by D(—k) C Qcoh(X).

For each 1 < k < n — 1, the full stable subcategory D(—k) C Qcoh(X) is right
orthogonal to each of D(0),...,D(—k +1).
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(iv) The stable co-category Qcoh(X) is generated by the full subcategories D(0), D(—1),
.., D(—n + 1) under finite colimits and finite limits. In particular, the sequence

(D(0),D(-1),...,D(—n+1)) forms a semi-orthogonal decomposition of Qcoh(X).

4.3.2. Proof of (i). The claim is that for any F € Qcoh(X), the unit map F —
p«p*(F) is invertible. By Zariski descent we may reduce to the case where X is
affine and 7 fits in a cartesian square of the form (2.1.a). Since Qcoh(X) is then
generated under colimits and finite limits by Ox, we may assume that ¥ = Ox. In
other words, it suffices to show that the canonical map Ox — p.(Ox) is invertible.

X Pl —— Bl{(]}/An
J{P l lpo
X

{0y —=— A,

)

—

iD
q

N ——

i
Since the left-hand square is the (derived) base change of the right-hand square
along the morphism f : X — A", it follows that the map Ox — p.(Og) is the
inverse image of the canonical map Oan — (po)s«(Op1 (o}/ an)- Thus we reduce to
the case where ¢ is the immersion {0} — A", [BGI71, Exp. VII].

4.3.3. Proof of (ii). It suffices to show the unit map ¥ — q.(ip)'(ip).«q*(F) is
invertible for all ¥ € Qcoh(Z). As in the previous claim we may assume X is
affine and that ¥ = Oyz. Using Proposition 4.2.1 and the canonical identification
Np,x = Op(1), the unit map is identified with

0z = ¢«((ip)* (i)« (Op) @ Op(=1))[~1] = ¢«(Op(-1)) & ¢«(Op),

where the second identification comes from Lemma 4.1.1. Since ¢ : D — Z is the
projection of the projective bundle P(Nz x), it follows from Proposition 3.1.2 that
we have identifications ¢.(Op(—1)) ~ 0 and ¢.(Op) ~ Oz, under which the map
in question is the identity.

4.3.4. Proof of (iii). To see that D(—k) is right orthogonal to D(0), observe that
by Theorem 3.2.1, the mapping space

Maps(p*(Fx), (in)«(¢" (Fz) ® O(—k))) ~ Maps(q"i"(Fx), ¢" (Fz) ® O(=k))
is contractible for every Fx € Qcoh(X) and Fz € Qcoh(Z).
To see that D(—k) is right orthogonal to D(—%'), for 1 < k' < k, consider the
mapping space
Maps((in)«(q"(Fz) ® O(=K)), (in)«(q" (F7) ® O(—k))),

for Fz,F7, € Qcoh(Z). Using fpgc descent and base change for (ip). against f*
for any morphism f : U — X, we may reduce to the case where X is affine. Since
Qcoh(Z) is then generated under colimits and finite limits by Oz, we may assume
that Fz = F, = Oz. Then we have

Maps((ip)«(O(=k)), (in)(O(=k))) =~ Maps((in)"(ip)«(O(=k")), O(—k))
~ Maps(O(—k') & O(—k' + 1)[1], O(—k))

by Lemma 4.1.1 and the projection formula, and this space is contractible by
Theorem 3.2.1.

4.3.5. Proof of (iv). Denote by D the full subcategory of Qcoh(f() generated by
D(0), D(—1), ..., D(—n + 1) under finite colimits and finite limits. The claim is
that the inclusion D C Qcoh(X) is an equality. Note that O € D(0) € D and
(ip)+(Op(—k)) € D(—k) € D for 1 < k < n— 1. Consider the exact triangle
0% (—D) = Og — (ip)«(Op) and recall that Og¢(—D) ~ O%(1). Tensoring with
O(—k) and using the projection formula, we get the exact triangle

Ox(=k+1) = Og(=k) = (ip)«(On(-FK))
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for each 1 < k < n — 1. Taking k = 1 we deduce that O¢(—1) € D. Continuing
recursively we find that Ogx(—k) e D forall 1<k <n—1.

Now let F € Qcoh(X). Denote by Gy € Qcoh(X) the cofibre of the co-unit
p*p«(F) = F — Gp; note that Gg is right orthogonal to D(0). For 1 < k< n-—1
define Gj, recursively by the exact triangles

(i) (0 ¢+ (D) (Sr—1) ® O(K)) @ O(—k)) < G, — G

Just as in the proof of Theorem 3.2.1, a simple induction argument shows that
each Gy, is right orthogonal to all of the subcategories D(0),...,D(k—1). We now
claim that G,,_; is zero; it will follow by recursion that F belongs to D, as desired.

Since the objects G are stable under base change, we may use fpqc descent
and base change to assume that X is affine. Moreover we may assume that 7 :
Z — X fits in a cartesian square of the form (2.1.a). By [Khal8, 3.3.6], p :

X — X factors through a quasi-smooth closed immersion i’ : X < P;?l. Recall
from Lecture 7 that there is a canonical isomorphism @Jc[n—l] O(#J) ~ O(n)

in Qeoh(PY™"). Applying (i')*, we get lim, oy Ox(#]) = 0x(n) in Qcoh(X).
In particular, every Ox (k) belongs to D for all k& € Z. Recall also that we may
find a map @, O(da)[na] — i, (G,—1) which is surjective on all homotopy groups.
By adjunction this corresponds to a map @, O(da)[na] = Sn—1 (which is also
surjective on homotopy groups). But the source belongs to D, and the target is
right orthogonal to D, so this map is null-homotopic. Thus §,,_1 is zero.

4.4. Proof of Theorem C. We now deduce Theorem C from Theorem 4.3.1. First
note that the fully faithful functor F — p*(F) of Theorem 4.3.1(i) preserves perfect
complexes and therefore restricts to a fully faithful functor Perf(X) — Perf(Blz,x).
This shows Theorem C(i).

Similarly, part (ii) follows from the fact that the functors ¢* and (ip). preserve
perfect complexes. For the latter, this is because ip is of finite tor-amplitude
[Lurl6, Thm. 6.1.3.2].

For part (iii) we argue again as in the proof of Theorem 4.3.1(iv). The point
is that if 3 € Qcoh(Blz/x) is perfect, then so is each G, € Qcoh(P(€)), since ¢*,
g, (ip)+ and (ip)" all preserve perfect complexes. For the latter this follows from
Proposition 4.2.1.

4.5. Blow-up formula.

4.5.1. By Theorem C and Lemma 2.3.3 we get:

Corollary 4.5.2. Let E be an additive invariant. Then there is a canonical iso-

morphism
n—1

E(Blz/x) ~ E(X) ® @ E(Z),
k=1

4.5.3. Proof of Theorem A. Combine Corollaries 4.5.2 and 3.4.1 (with € = Ny /x).

5. THE CDH TOPOLOGY

5.1. A cdh descent criterion. Recall the following notion due to Voevodsky [Voel0]:

Definition 5.1.1. Suppose given a commutative square of quasi-compact quasi-
separated algebraic spaces

(5.1.a)

N —— ™

><<T"<:

—_
N
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We say that (5.1.a) is a proper cdh square, or abstract blow-up square, if i is a closed
immersion, p is proper and induces an isomorphism p_l(X = Z)red ~ (X = Z)red,
and the square is cartesian.

Voevodsky’s cdh topology is generated by Nisnevich squares and proper cdh
squares. In this section we will prove Theorem D, which asserts that homotopy
invariant K-theory satisfies cdh descent. To prove it we will begin by showing
that the class of proper cdh squares is generated by quasi-smooth blow-up squares
(2.1.b) and closed squares, i.e., cartesian squares of the form

N7 —— 7

Z——X
where ¢ and ¢’ are closed immersions, Z N Z’ denotes the (classical) fibred product

Z xx 7', and the morphism Z U Z’ — X is surjective on underlying topological
spaces.

Theorem 5.1.2. Let Alg be the category of qcgs algebraic spaces. Then a presheaf
F on Alg satisfies cdh descent if and only if it satisfies Nisnevich descent, closed
descent, and quasi-smooth blow-up descent.

Remark 5.1.3. Given any class of commutative squares of algebraic spaces, we
say that a presheaf satisfies descent for this class if it sends all such squares to
homotopy cartesian squares, and the empty scheme to a terminal object.

Remark 5.1.4. In order to make sense of the quasi-smooth blow-up descent con-
dition for a presheaf F on Alg, we tacitly extend F to the oco-category of derived
algebraic spaces by simply setting I'(X, F) = I'(X, F) for every derived algebraic
space X. In other words, the condition is that for every quasi-smooth blow-up
square as in (2.1.b), the induced square

Xy, ) ———— I'(Za, F)

l l

L((Blz/x)a,F) —— T'(P(Nz/xlz.))

is homotopy cartesian. Note that it suffices to consider only classical X, as J is
invariant under passing to the derived base change of the square along X, — X.

Remark 5.1.5. There are a few variants of Theorem 5.1.2 with the same proof. For
example, let F be a presheaf defined on the site of classical qcqs schemes. Then F
satisfies proper cdh descent if and only if it satisfies Zariski descent, closed descent,
and quasi-smooth blow-up descent.

5.2. Proof of Theorem 5.1.2. Tt is slightly more natural (though not strictly nec-
essary) to formulate Theorem 5.1.2 on the bigger site of qcqs derived algebraic
spaces. In fact, as far as the cdh topology is concerned, one can freely pass be-
tween the two sites, for reasons we explain presently.

5.2.1. Let DAlg denote the co-category of qcqs derived algebraic spaces. Recall
that Alg embeds into DAlg as a full subcategory, and the inclusion admits a
right adjoint v : DAlg — Alg given by the assignment X +— X. It follows
tautologically that we may regard the co-category of presheaves on Alg as a left
Bousfield localization of the co-category of presheaves on DAlg:

Proposition 5.2.2. The functor of restriction along v induces a fully faithful em-
bedding of the co-category of presheaves on Alg into the co-category of presheaves
on DAlg. Its essential image is the full subcategory spanned by presheaves F sat-
isfying the property that for every derived algebraic spaces X, the canonical map

I'X,F) = TI'(Xq,F)

18 invertible. Moreover, this embedding admits a left adjoint, given by left Kan
extension along v.
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5.2.3. On the site DAlg, we define a proper cdh square, resp. closed square, to be
a commutative square that induces a proper cdh square, resp. closed square, on
underlying classical algebraic spaces. Every quasi-smooth blow-up square (2.1.b)
is a proper cdh square in this sense. The class of cdh squares is as usual the union
of the classes of Nisnevich squares (Definition 2.3.4) and proper cdh squares. Note
that the square

o J—

Xcl — X
is a closed square for any qcqs derived algebraic space X, so the canonical map
I'X,F) —» I'(Xa, F) is invertible as soon as F satisfies closed descent. For that
reason, the discussion in this section takes place entirely in the essential image of
the functor described in Proposition 5.2.2. All in all we see that Theorem 5.1.2 is
equivalent to the following statement:

Theorem 5.2.4. Let DAlg be the oo-category of qcgs derived algebraic spaces.
Then a presheaf F on DAlg satisfies cdh descent if and only if it satisfies Nisnevich
descent, closed descent, and descent by quasi-smooth blow-ups.

Proof. Since Nisnevich squares, closed squares, and quasi-smooth blow-up squares
are all cdh squares, the conditions are clearly necessary. Conversely suppose that
JF satisfies the conditions and consider a proper cdh square Q of qcgs derived
algebraic spaces

E—Y

| P

7z —= X
It will suffice to show that the induced square T'(Q, ¥F) is homotopy cartesian. By
closed descent, we may as well replace Q by the underlying square of classical
algebraic spaces. A well-known argument using Raynaud—Gruson’s technique of
platification par éclatements [RG71, 1, Cor. 5.7.12] allows one to reduce to the
case where Y = Bly/x is the blow-up of X centred in Z (and E = P(Cy/x) is
the projectivized normal cone). If Z is regularly immersed then the square is a
quasi-smooth blow-up square and so we are already done. In general we argue as
follows. By Nisnevich descent we may assume that X is affine, say X = Spec(A).
Any choice of generators fi,...,f, € A for the ideal defining 7 gives rise to a
quasi-smooth derived scheme Z, defined as the derived zero-locus of the fi, such
that Za = Z. Now the square Q factors as follows:

r'Xx,9) ——— (Z,5) —~— I'(Z,9)

| |

T(Blyx, ) — T(P(N;x). 5)

| |

['(Blz/x,F) —— I'(P(Cz/x), )

The upper square is induced by a quasi-smooth blow-up square, hence is cartesian.
The lower square is induced by a closed square, hence is also cartesian. The map
[(Z,F) — I'(Z, ) is also invertible because of closed descent. Therefore it follows
that the outer composite square is also cartesian, as claimed. O

5.3. Homotopy invariant K-theory.

5.3.1. For any qcgs algebraic space X, its homotopy invariant K-theory spectrum
is given by the formula
I'X,KH) = @ K(X x A™).
[n]e Acp
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That is, I'(X, KH) is the geometric realization of the simplicial diagram K(X x A*®),
where A* is regarded as a cosimplicial scheme in the usual way (see e.g. [MV99,
p. 45]). This extends the usual definition [Wei89, TT90], and is a way to formally
impose the property of A'-homotopy invariance: for any qcgs algebraic space X,
the projection p : X x A! — X induces an isomorphism of spectra

p* :T(X,KH) — I'(X x A', KH).

5.3.2. The above definition is equally sensible when X is a qcqs derived algebraic
space, and defines a presheaf of spectra KH : (DAlg)°® — Spt. This construction
was studied in [CK17] in the more exotic setting of spectral algebraic geometry,
but the proofs apply mutatis mutandis also in the derived setting. We now prove
Theorem D:

5.3.3. Proof of Theorem D. We apply the criterion of Theorem 5.2.4. Since the
presheaf K : (DAlg)°P — Spt already satisfies Nisnevich descent and quasi-smooth
blow-up descent, the same holds for KH in view of the formula (5.3.1). In more
detail, given a quasi-smooth closed immersion Z — X, denote by X = Bl /X its
blow-up and by D = P(Ny,x) the exceptional divisor. Then for every [n] € A°P
we have a quasi-smooth blow-up square

Dx A" — X x A"

| |

ZxA" —— X x A",
and by Theorem A we have cartesian squares

KX x A") —— K(Z x A™)

! l

K(X x A") —— K(D x A™).

We conclude by passing to the colimit over n. Exactly the same argument works
for Nisnevich squares.

It remains only to show that KH satisfies closed descent. It was proven in [CK17]
that for any derived algebraic space X, the canonical map KH(X) — KH(X) is
invertible. Therefore it will suffice to show that KH sends closed squares of classical
algebraic spaces to homotopy cartesian squares. By Nisnevich descent, we may
also restrict our attention to closed squares of affine classical schemes. Now this
is easy, see [TT90, Exer. 9.11(f)] or [Wei89, Cor. 4.10].
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