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Motivic sheaves (Morel, Voevodsky, Ayoub, Cisinski–Déglise)

For schemes X , there are triangulated categories SH(X ) of motivic

sheaves.

These are equipped with the six operations: ⊗, Hom, f ∗, f∗, f!, f
!.
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Borel–Moore homology theories

Let E ∈ SH(k) be a motivic spectrum.

For f : X → Spec(k), define

HBM
s (X ;E )(r) := HomSH(k)(1(r)[s], f∗f

!(E )).

E = HZ ⇝ CH∗(−, ∗): higher Chow (Voevodsky, Cisinski–Déglise)

E = KGL ⇝ G∗(−): G-theory (Jin)

E = MGL ⇝ Ω∗(−): algebraic bordism (Levine)

Intersection theory can be done in terms of the six operations:

fundamental classes, Gysin maps, intersection products, Chern

classes, GRR, ... (Déglise, Déglise-Jin-Kh.)

2



Equivariant and stacky intersection theory

For a linear algebraic group G , we have the following theories for

schemes with G -action:

• GG (−) (Thomason)

• CHG
∗ (−, ∗) (Totaro, Edidin–Graham)*

• ΩG
∗ (−, ∗) (Heller–Malagon-Lopez, Krishna)*

*on G -quasi-projective schemes

Let X be an Artin stack.

• G(X) Gillet, Toën

• CH∗(X) Kresch* *on 1-Artin stacks with affine stabilizers
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Program

1. Extend triangulated categories of motivic sheaves from

schemes to (derived) stacks.

2. Prove theorems about motivic sheaves on derived stacks.

3. Read off constructions of equivariant and stacky intersection

theories and results about them.
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Outline

I. Motivic sheaves on (derived) stacks

II. Equivariant intersection theories

III. Intersection theories on stacks

IV. A derived/stacky Fourier duality
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Motivic sheaves on (derived) stacks



Motivic sheaves on derived schemes

Theorem (Kh. 2016)

For any derived scheme X with classical truncation Xcl, there is a

canonical equivalence SH(X ) ≃ SH(Xcl) which commutes with

the six operations.

Theorem (Lurie 2004)

There is a canonical equivalence Dét(X ) ≃ Dét(Xcl) which

commutes with the six operations.
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Lisse extension

Let D be a sheaf theory, such as SH, DM, . . ., Dét, DBet, . . .

Let X be a (derived) stack, and set

LisX := {(S , s) : S is a scheme, s : S → X a smooth morphism}.

Define (Hoyois–Kh. ’20)

D◁(X) := lim←−
(S,s)∈LisX

D(S)

where the limit is taken over ∗-pullbacks.

Informally, a sheaf F on X is a collection of sheaves FS ∈ D(S) for

all (S , s) ∈ LisX, compatible up to coherent homotopy.
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The six operations

Let D be a motivic sheaf theory satisfying étale descent, such as

SHét, DMét, DMQ, or any classical sheaf theory such as Dét,

DBet, . . .

Theorem (Liu–Zheng 2012, Richarz–Scholbach 2019, Kh. 2019)

On Artin stacks, the extension D◁(−) admits the six operations

⊗, Hom, f ∗, f∗, f!, f
!. Moreover, D◁(−) is the unique extension

of D(−) satisfying Čech descent along smooth surjections.
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Nis-Artin stacks

Recall that general motivic sheaf theories like SH only satisfy

Nisnevich descent, i.e., Čech descent along étale morphisms that

are surjective on all field-valued points.

By definition, an Artin stack X has a cover p : X ↠ X where X is a

scheme and p is a smooth morphism admitting étale-local sections.

Say X is Nis-Artin if it p can be chosen to admit Nisnevich-local

sections.

This turns out to be automatic for quasi-separated 1-Artin stacks

with separated diagonal (Laumon–Moret-Bailly).
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The six operations without étale descent

Let D be any motivic sheaf theory, such as SH, DM (:= DHZ), or

DMGL.

Theorem (Kh. ’22)

On Nis-Artin stacks, the extension D◁(−) admits the six

operations ⊗, Hom, f ∗, f∗, f!, f
!. Moreover, D◁(−) is the unique

extension of D(−) satisfying Čech descent along smooth

morphisms admitting Nis-local sections.

For D = SH, Chowdhury ’21 also studied SH◁ and constructed the

!-operations for representable morphisms.
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Genuine motivic homotopy theory for stacks

Let X be a scalloped stack, built Nisnevich-locally out of quotient

stacks [X/G ] where G is linearly reductive and U is

G -quasi-projective. For example, X is qcqs 1-Artin with affine

diagonal over a field and has linearly reductive stabilizers.

There is another construction SH(X) (Kh.–Ravi ’21) which

specializes to the genuine-equivariant stable motivic homotopy

category SHG (X ) (Hoyois ’17).

Theorem (Kh.-Ravi ’21)

On scalloped stacks, the categories SH(X) admit the operations

⊗, Hom, f ∗, f∗ for arbitrary morphisms, and f!, f
! for

representable morphisms.
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Equivariant intersection theory



Equivariant Borel–Moore homology

Let E ∈ SH(k) be a motivic spectrum.

Let X be a locally of finite type k-scheme and G an algebraic

group acting on X .

For f : [X/G ]→ BG := [Spec(k)/G ] the induced morphism, define

HBM,G
s (X ;E )(−r) := HomSH(BG)(1(r)[s], f∗f

!(EBG ))

CBM,G
• (X ;E )⟨−v⟩ := MapsSH(BG)(1⟨v⟩, f∗f !(EBG ))

where EBG = E |∗BG and v ∈ K0(BG ) is a virtual vector bundle.
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Proposition

The Borel–Moore homology theory CBM,G
• (−;E ) admits

equivariant proper push-forwards, equivariant smooth pull-backs,

long-exact localization sequences, Euler classes of equivariant

vector bundles, Chern classes when E is oriented, etc.
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Relation to the Borel construction

Let G be a linear algebraic group acting on X .

Let (Vn)n be a tower of G -representations. Let Wn ⊂ Vn be

G -invariant closed subschemes such that G acts freely on each

Un := Vn ∖Wn, Un ⊂ Un+1, and codimVn(Wn) tends to ∞.

Theorem (Kh.–Ravi ’22)

CBM,G
• (X ;E ) ≃ lim←−

n

CBM
• (X

G
×Un;E )⟨−ΩUn +ΩG ⟩

If E is oriented:

CBM,G
• (X ;E ) ≃ lim←−

n

CBM
• (X

G
×Un;E )⟨−dn + g⟩

where dn = dim(Un/G ) and g = dim(G ).
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Relation to the Borel construction, continued

Suppose E is HZ (or HZ[1/p] in char. p), KGLQ, or MGLQ.

Theorem (Kh.–Ravi ’22)

For sufficiently large n,

HBM,G
s (X ;E ) ≃ HBM

s+2dn−2g (X
G
×Un;E ).

15



Comparison with classical constructions

Let Λ be a commutative ring in which char(k) is invertible.

Corollary (Kh.–Ravi ’22)

HBM,G
s+2n (X ;HΛ)(−n) ≃ CHG

n (X , s)Λ.

Corollary (Kh.–Ravi ’22)

HBM,G
2n (X ;MGL)(−n)↠ ΩG

n (X ),

HBM,G
2n (X ;MGLQ)(−n) ≃ ΩG

n (X )Q,
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Localization in equivariant bordism

It is not known whether ΩG
∗ (−) admits right-exact localization

sequences.

Theorem

For every G-invariant closed subscheme Z ⊆ X with open
complement U, there is an exact triangle

· · · ∂−→ HBM,G
2n+s (Z ;E)(−n)

i∗−→ HBM,G
2n+s (X ;E)(−n)

j∗−→ HBM,G
2n+s (U;E)(−n)

∂−→ · · ·

Corollary (Kh.-Ravi ’22)

There is a right-exact localization sequence

ΩG
n (Z )Q

i∗−→ ΩG
n (X )Q

j∗−→ ΩG
n (U)Q → 0.
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Lisse-extended equivariant G-theory

GG ,◁(X ) := G◁([X/G ]) := lim←−(S ,s)
G(S) over (S , s) ∈ Lis[X/G ]

Corollary (Kh.–Ravi ’22)

CBM,G
• (X ;KGL) ≃ GG ,◁(X )

The map G([X/G ])→ G◁([X/G ]) = GG ,◁(X ) is a completion at

the augmentation ideal in K0(BG ) = R(G ) (Krishna, Carlsson–Joshua).
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Equivariant GRR

Theorem (Edidin–Graham ’98, Krishna ’14, Kh.–Ravi ’22)

GG ,◁(X )Q ≃
∏
n∈Z

CBM,G
• (X ;HQ)⟨n⟩.

GG ,◁
s (X )Q ≃

∏
n∈Z

CHG
n (X , s)Q.
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Intersection theories on stacks



Borel–Moore homology on stacks

Let E ∈ SH(k).

Let X be an Artin stack and f : X→ Spec(k).

CBM
• (X;E )⟨−v⟩ := MapsSH(k)(1⟨v⟩, f∗f !(E )),

HBM
s (X;E )(−r) := HomSH(k)(1(r)[s], f∗f

!(E )).

These have proper* push-forwards, smooth pull-backs, long-exact

localization sequences, Euler classes of vector bundles, Chern

classes when E is oriented, etc.
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Kresch Chow groups

Let X be a 1-Artin stack of finite type over k . There are cycle

class maps

CHn(X)Λ → HBM
2n (X;HΛ)(−n).

Theorem (Kh., Bae–Park)

These are isomorphisms if (a) X is a global quotient, (b) X is

DM and Λ ⊇ Q, (c) X is smooth, or (d) the characteristic

exponent of k is invertible in Λ.
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Deformation to the normal cone in DAG Hekking–Kh.–Rydh

Let f : X → Y be a quasi-smooth morphism of derived stacks.

There is a commutative diagram of cartesian squares

X X × A1 X × Gm

NX/Y DX/Y Y × Gm

{0} A1 Gm.

0

0 f̂ f×id

Thus f̂ degenerates f to the zero section of the derived normal

bundle NX/Y = TX/Y [1].
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Specialization map

For any quasi-smooth morphism of derived Artin stacks

f : X → Y , there is a canonical map

spX/Y : CBM
• (Y ;E )→ CBM

• (NX/Y ;E )

defined using the localization triangle for

NX/Y ↪→ DX/Y ←↩ Y × Gm.
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Virtual pullbacks

The normal bundle NX/Y is a vector bundle stack over X of rank

− vdim(X/Y ), so there is a generalized Thom isomorphism

CBM
• (X ;E ) ≃ CBM

• (NX/Y ;E )⟨d⟩.

For any quasi-smooth morphism of derived Artin stacks

f : X → Y , we define

f ! : CBM
• (Y ;E )

spX/Y−−−−→ CBM
• (NX/Y ;E ) ≃ CBM

• (X ;E )⟨−d⟩

when E is oriented.

This generalizes Gysin pullbacks in intersection theory from the

case of quasi-projective local complete intersection morphisms.
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Note that, even if X and Y are schemes, this construction passes

through the derived stacks NX/Y and DX/Y (which are not

schemes unless f : X → Y is a closed immersion).

Similarly, if X and Y are 1-Artin, we need to make use of the

extension of D(−) and the six operations to higher Artin stacks.
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Virtual classes Kontsevich ’95, Behrend–Fantechi ’97, Kh. ’19

Let X be a quasi-smooth derived Artin stack of virtual dim d .

For the projection f : X → Spec(k) we get the virtual pull-back

f ! : CBM
• (Spec(k))→ CBM

• (X )⟨−d⟩

and hence to the canonical element

[X ]vir ∈ CBM
• (X ;E )⟨−d⟩ ⇝ [X ]vir ∈ HBM

2d (X ;E )(−d)

called the virtual fundamental class of X .
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• This general construction of virtual fundamental classes is

useful in enumerative geometry (Pardon, Porta–Yu, ...) and

“arithmetic” enumerative geometry (Feng–Yun–Zhang, Madapusi).

• The construction of virtual pull-backs is used in geometric

representation theory (Kapranov–Vasserot,

Mellit–Minets–Schiffmann–Vasserot, ...).

• The existence of suitable homology theories for higher Artin

stacks themselves is also useful in enumerative geometry

(Joyce, ...).
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Intersection products

Virtual fundamental classes are actually useful in classical

intersection theory, too.

If X is a smooth k-scheme, the cap product in cohomology gives

rise by Poincaré duality to an intersection product

CBM
• (X )⟨−p⟩ ⊗ CBM

• (X )⟨−q⟩ → CBM
• (X ;E )⟨−p − q + d⟩.

If f : Y → X is proper quasi-smooth of virtual dim d , we have the

VFC f∗[Y ]vir in CBM
• (X ;E )⟨−d⟩.

28



Theorem (Non-transverse Bézout formula)

Let Y and Z be smooth or lci closed subvarieties of X , of

dimension p and q respectively. We have

[Y ] · [Z ] ≃ [Y
R
×
X
Z ]vir

in CBM
• (X ;E )⟨−p − q + d⟩.

Even though the left-hand side consists of usual cycle classes, the

right-hand side is genuinely virtual unless the intersection is

transverse (that is to say, unless the derived intersection Y ×R
X Z

reduces to the classical scheme-theoretic intersection).
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Derived/stacky Fourier duality



Derived stacks

{derived stacks} ≈ derived category of {smooth schemes}

derived smooth smooth

schemes schemes stacks

ÉÉs Dlstk)

cotangent( / totalcomplex space

←É•É Dlvect )
0

vector
bundles
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Sheaf-theoretic Fourier transform (Deligne, Laumon)

Let E → X be a vector bundle with dual E∨ → X .

[E∨/Gm]× [E/Gm]

[E∨/Gm] [E/Gm]

pr1

pr2

The Fourier transform for E is an equivalence

FTE : DGm(E )→ DGm(E∨)

FTE (−) := pr2,!(pr
∗
1(−)⊗ PE )

The kernel PE is defined using the evaluation morphism

[E∨/Gm]× [E/Gm]→ [A1/Gm] and the sheaf j∗(1) ∈ DGm(A1).
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Theorem (Laumon ’03, Kh. ’23)

The Fourier transform FTE is involutive (up to a twist), and

exchanges the ∗ and ! operations for any linear morphism of

vector bundles.

Theorem (Kh. ’23)

Let E → X be a derived vector bundle (perfect complex) and

E∨ → X the derived dual. Then FTE , defined as before, satisfies

the same properties as above.
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Higher arithmetic theta series (Feng–Yun–Zhang ’21)

Let X be a smooth projective curve over Fq and X ′ ↠ X a finite

étale double cover with automorphism σ : X ′ ≃ X ′ over X .

Special cycles: [Z r
E(a)]

vir ∈ CH∗(Sht
r
U(n))Q

Higher theta series: assemble these into a Fourier series

Θr (G, h,E) ∈ CH∗(Sht
r
U(n))Q

for G a family of rank 2m vector bundles on X ′, h : G→ σ∗(G∗) is

a skew-Hermitian structure, and E ⊆ G a Lagrangian subbundle.
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Modularity

Conjecture

The higher theta series Θr (G, h,E) are modular in the sense of

automorphic forms. In other words, they are independent of the

Lagrangian subbundle E.

The case r = 0 amounts modularity of classical theta series.

Theorem (FYZ ’22, Feng–Kh. ’23)

Modularity holds on the generic fibre of ShtrU(n) → (X ′)r .

Modularity of classical theta series is proven using Poisson

summation, i.e., classical Fourier duality (Jacobi, Poisson). Our proof

uses derived Fourier analysis, and a “sheaf-cycle correspondence”

generalizing the classical sheaf-function correspondence.
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