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Abstract. The goal of these lecture notes is to explain a cohomological
approach to intersection theory on schemes and stacks. By working with
Voevodsky’s theory of motivic cohomology, we see how this recovers
and extends the cycle-theoretic approach of Fulton (and its extension to
stacks by Kresch). Moreover, we use the language of derived algebraic
geometry to systematically incorporate non-transverse phenomena, most
notably Kontsevich’s virtual fundamental classes. We discuss examples
related to curve counting, cohomological Hall algebras, and even Shimura
varieties. No prior knowledge of stacks or derived geometry is assumed.
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Introduction

Let X be an oriented smooth manifold of dimension d. When X is not
compact, we may use Borel–Moore homology [BM] to formulate Poincaré
duality as follows:

Theorem 0.1. There exists a fundamental class

[X] ∈ HBM
d (X,Z)

such that the induced homomorphism

[X] ∩ (−) ∶ Hd−∗(X,Z)→ HBM
∗ (X,Z)
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is invertible. Here ∩ denotes the cap product, the natural action of cohomology
on Borel–Moore homology.

Given an oriented smooth submanifold Y ⊆X of dimension m, we also have
a fundamental class

[Y ] ∈ HBM
m (X,Z)

by direct image along the inclusion Y ↪X.

Recall that cohomology is also equipped with a cup product

∪ ∶ Hp(X,Z)⊗Hq(X,Z)→ Hp+q(X,Z).
This is Poincaré dual to an intersection product

⋅ ∶ HBM
m (X,Z)⊗HBM

n (X,Z)→ HBM
m+n−d(X,Z).

This name comes from the following “cohomological Bézout theorem”:

Theorem 0.2. Let Y and Z be oriented submanifolds of X of dimension
m and n, respectively. If Y and Z intersect transversally, then Y ∩Z is an
oriented submanifold of dimension m + n − d, and we have

[Y ] ⋅ [Z] = [Y ∩Z] (0.3)

in HBM
m+n−d(X,Z).

Moreover, Thom’s transversality theorem [Tho] guarantees that in the non-
transverse case, we may perturb Y ↝ Y ′ such that [Y ] = [Y ′] and Y ′ does
intersect Z transversally. However, this approach will not be robust enough
for our purposes, because there is no analogue of Thom transversality in
many other contexts, such as equivariant geometry (where there is a finite
group acting on X, say) or in algebraic geometry (where X is an algebraic
variety).

In algebraic geometry, there are many Borel–Moore type theories.

Namely, for a quasi-projective algebraic variety X over a field k:

(a) Topological Borel–Moore. If k is a field with a complex embedding
k ↪C, then we may consider the Borel–Moore homology of the space
of complex points X(C) (with the analytic topology).
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(b) `-adic Borel–Moore. If k is a field and ` is a prime different from
the characteristic of k, then we may consider the `-adic Borel–Moore
homology. This is defined following Grothendieck as cohomology with
coefficients in the `-adic dualizing complex [SGA5, Lau].

(c) Chow or motivic Borel–Moore. We may consider the Chow homology
CH∗(X), whose elements are algebraic cycles (linear combinations
of integral subvarieties) up to rational equivalence. This is equipped
with cycle class maps to topological and étale Borel–Moore homology.
Moreover, it can also be identified with Voevodsky’s theory of motivic
Borel–Moore homology (see [MWV, Prop. 19.18]1):

CH∗(X) ≃ HBM
2∗ (Xmot,Z(∗)).

(d) G-theory. We may consider the G-theory G0(X), i.e., the algebraic
K-theory of coherent sheaves on X [SGA6]. (This is sometimes
also called K-theory, but is typically different from K0(X), the K-
theory of vector bundles, when X is not smooth; the latter behaves
like cohomology rather than Borel–Moore homology.) Using motivic
homotopy theory, this can also be realized as a generalized motivic
Borel–Moore homology theory (see [Jin]). With rational coefficients,
there is a Grothendieck–Riemann–Roch transformation inducing an
isomorphism from G-theory to Chow homology ([BFM, Chap. III,
§1]).

(e) Bordism. We may consider the algebraic bordism Ω∗(X). This is
defined using motivic homotopy theory as the generalized motivic
Borel–Moore homology theory defined by Voevodsky’s cobordism
spectrum (see [Voe, Lev2]). When k is of characteristic zero, it can
be alternatively defined via generators and relations as in [LM]. This
interpolates between Chow homology and G-theory in some sense
(see [Hoy] and [SØ, Thm. 1.2]).

In algebraic geometry, the analogue of Theorem 0.2 also holds in each of the
above theories. However, since there is no analogue of Thom transversality,
(0.3) does not uniquely characterize the intersection product in this setting.
For example, in Chow homology, Chow’s moving lemma implies that the
intersection product is uniquely characterized by the more general formula

[Y ] ⋅ [Z] =∑
α

mα[Wα]

for all integral subvarieties Y and Z intersecting properly (without excess),
where Wα are the irreducible components of the intersection Y ∩Z, and mα

are the intersection multiplicities (see e.g. [Ful]). The latter are equal to 1
in the transverse case, but are very subtle to define in general; the correct
definition was eventually obtained after work of Severi, Weil, Chevalley,
Samuel, and Serre (see e.g. [FM]).

1If k is of characteristic p > 0, then this is only known after tensoring both sides with
Z[1/p]; see [CD, Cor. 8.12].
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An alternative approach to non-transverse intersections comes from derived
algebraic geometry, via the following result (see [Kha1]):

Theorem 0.4. Let X be a smooth algebraic variety over a field k. Let Y
and Z be smooth subvarieties of X. Then we have

[Y ] ⋅ [Z] = [Y
R
×
X
Z] (0.5)

in any of the above Borel–Moore–type homology theories, where Y ×RX Z is
the derived intersection, and [Y ×RX Z] is a virtual fundamental class in the
sense of [Kon].

In the case of complex algebraic varieties and topological Borel–Moore homol-
ogy, this result was announced without proof by J. Lurie in [Lur, Chap. 0].

The formula (0.5) remains valid when Y and Z are smooth varieties that are
just projective over X. In Chow theory, this generalized formula uniquely
determines the intersection product (at least up to inverting p in the case
where k is of characteristic p > 0). This follows by a simple resolution of
singularities argument, or by using alterations in the characteristic p case.

In these notes, we will see a construction of the virtual fundamental class
appearing on the right-hand side, as well as a proof of this formula. For
simplicity, we will restrict our attention to the topological, `-adic, and Chow
homology theories. Motivated by moduli theory, we will also work in the
generality of algebraic stacks.

1. Cohomology of stacks

1.1. Sheaves. We will work with any of the following sheaf theories:

Let k be a field. Consider one of the following sheaf theories on schemes of
finite type over k:

(a) Topological. Suppose k is of characteristic zero with a complex em-
bedding k ⊆ C and Λ is a commutative ring. Define D(X) to be
the derived ∞-category Dtop(X,Λ) of sheaves of Λ-modules on the
topological space X(C).

(b) Étale. Let Λ be a ring of positive characteristic n, e.g. Z/nZ, where
n is prime to the characteristic of k. Define D(X) to be the derived
∞-category Dét(X,Λ) of sheaves of Λ-modules on the small étale site
of X. (Alternatively, we could take the `-adic derived ∞-category.)

(c) Motivic. Let Λ be a commutative ring, and assume either that k
is of characteristic zero or that its characteristic is invertible in Λ.
Define D(X) to be the ∞-category DM(X,Λ) of Λ-linear Voevodsky
motives over X, defined as in [CD]. We denote the unit object by
ΛX ∈D(X) (it represents Voevodsky’s motivic cohomology).
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Each of these sheaf theories is equipped with the six operations. Thus, for
any morphism f ∶X → Y there is an adjoint pair

f∗ ∶D(Y )→D(X), f∗ ∶D(X)→D(Y ).

If f is of finite type, we also have the compactly supported variants

f! ∶D(X)→D(Y ), f ! ∶D(Y )→D(X).

Finally, we have the bifunctors ⊗ (tensor product) and Hom (internal Hom)
on D(X) for every X. These operations are subject to several compatibilities.
For example, the base change formula gives for any cartesian square

X ′ Y ′

X Y

f ′

p q

f

a canonical isomorphism
q∗f! ≃ f ′! p

∗

of functors D(X)→D(Y ′). Similarly, we have the projection formula

f!(F)⊗ G ≃ f!(F ⊗ f∗(G))

for any finite type morphism f and any F ∈ D(X), G ∈ D(Y ). There is a
“forget supports” map

f! → f∗

which is invertible when f is proper.

It will be convenient to introduce the following notation: for an integer n ∈ Z,
we will write

F⟨n⟩ ∶= F(n)[2n]
for any object F ∈ D(X). Here (n) denotes the Tate twist (which can be
ignored in the topological case) and [2n] the usual shift.

1.2. Cohomology and Borel–Moore homology.

Notation 1.1. For any object F ∈D(X), we write

RΓ(X,F) ∈D(Λ)

for the derived global sections of F . Here D(Λ) denotes the ∞-category of
complexes of Λ-modules. We have

HiRΓ(X,F) = Hi(X,F) = HomD(X)(ΛX ,F[i]).

Definition 1.2. Let X be a scheme of finite type over k. We write a ∶X →
Spec(k) for the structural morphism.

(i) The cohomology of X is the complex

C●(X) ∶= RΓ(X,Λ).
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(ii) The Borel–Moore homology of X is

CBM
● (X) ∶= RΓ(X,a!(Λ)).

(Recall that a!(Λ) is a dualizing complex for X.) Its cohomology
groups are denoted

HBM
n (X,Λ) ∶= H−n (CBM

● (X)) = H−n(X,a!(Λ))

for n ∈ Z.

We also have relative variants. Given a finite type morphism f ∶X → Y , we
define the relative Borel–Moore homology of X over Y by

CBM
● (X/Y ) ∶= RΓ(X,f !(ΛY )),

so that CBM
● (X) = CBM

● (X/k).

Example 1.3. In the motivic case, there is a canonical isomorphism

CBM
● (X)⟨−i⟩ ≃ zd−i(X)Λ

in D(Λ), for any d-dimensional scheme X of finite type over k, where the
right-hand side is the Λ-linearized Bloch cycle complex. In particular,

HBM
s (X)⟨−i⟩ ≃ CHd−i(X,s)Λ

on homology groups, where the right-hand side is the Λ-linearized Bloch
higher Chow group. Indeed, by Zariski descent (by Theorem 1.5 below for
the left-hand side, and by localization for the Bloch cycle complex [Lev1]
for the right-hand side), both sides are right Kan extended from affines. In
particular, we may assume that X is quasi-projective, in which case the result
is equivalent to [CD, Cor. 8.12].

1.3. Functoriality. Borel–Moore homology has proper push-forwards: given
a proper morphism f ∶ X → Y , the counit f∗f ! ≃ f!f

! → id induces a direct
image map

f∗ ∶ CBM
● (X)→ CBM

● (Y ).

If f is smooth of relative dimension d then there is an isomorphism f∗⟨d⟩ ≃ f !,
whose right transpose id→ f∗f

!⟨−d⟩ induces a Gysin map

f ! ∶ CBM
● (Y )→ CBM

● (X)⟨−d⟩

in Borel–Moore homology.

Let 1 ∈ C●(Spec(k)) ≃ CBM
● (Spec(k)) be the unit. If X is smooth of relative

dimension d, then its fundamental class is defined as2

[X] ∶= f !(1) ∈ CBM
● (X)⟨−d⟩.

This induces the Poincaré duality isomorphism

(−) ∩ [X] ∶ C●(X)→ CBM
● (X)⟨−d⟩.

2Note the abuse of notation: if K ∈ D(Λ) is a complex, x ∈ X means that x is a
morphism Λ→K in D(Λ). Of course, x gives rise to an actual element of H0

(K).
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Similarly, if f ∶X → Y is a smooth morphism of relative dimension d over a
base S, then there is a Gysin map

f ! ∶ CBM
● (Y/S)→ CBM

● (X/S)⟨−d⟩,

a relative fundamental class (take Y = S)

[X/Y ] ∶= f !(1) ∈ CBM
● (X/Y )⟨−d⟩,

and a relative Poincaré duality isomorphism

(−) ∩ [X/Y ] ∶ C●(X)→ CBM
● (X/Y )⟨−d⟩.

1.4. Properties. Here are some properties of these theories.

Theorem 1.4 (Localization). If i ∶ Z ↪ X is a closed immersion with
complementary open immersion j ∶ U = X ∖ Z → X, then there is an exact
(distinguished) triangle

CBM
● (Z) i∗Ð→ CBM

● (X)
j!

Ð→ CBM
● (U).

This gives rise to the usual long exact localization sequence. In the motivic
case, the latter extends the right-exact sequence in Chow homology

CH∗(Z) i∗Ð→ CH∗(X)
j!

Ð→ CH∗(U)→ 0

to the left.

Theorem 1.5 (Descent).

(i) Let p ∶ Y ↠ X be a smooth surjection of relative dimension d. In
the motivic case, assume either that Λ ⊇Q or that p is a Zariski or
Nisnevich cover. Then there is a homotopy limit diagram

CBM
● (X)

p!

Ð→ CBM
● (Y )⟨−d⟩⇉ CBM

● (Y ×
X
Y )⟨−2d⟩→→→ ⋯

in D(Λ).
(ii) For any scheme X, there is a canonical isomorphism

CBM
● (X) ≃ lim←Ð

(S,s)
CBM
● (S)

where the homotopy limit is taken over the category Lisaff
X of pairs

(S, s) where S is an affine scheme and s ∶ S → X is a smooth
morphism.

Theorem 1.6 (Codescent). Let p ∶ Y ↠ X be a proper surjection. In the
motivic case, assume either that Λ ⊇Q or that p is a cdh cover. Then there
is a homotopy colimit diagram

⋯→→→ CBM
● (Y ×

X
Y )⇉ CBM

● (Y )
p∗Ð→ CBM

● (X)

in D(Λ).
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In the motivic case, this extends the Kimura sequence in Chow homology
[Kim, Thm. 1.8, Rmk. 1.9]

CH∗(Y ×
X
Y )⇉ CH∗(Y )

p∗Ð→ CH∗(X)→ 0

to the left.

1.5. Stacks. A stack is a sheaf of groupoids on the category of affine schemes,
i.e., a functor

X ∶ (Aff)op → Grpd.

Note that we only want to regard groupoids up to equivalence (rather than iso-
morphism), so Grpd here denotes the ∞-categorical localization of groupoids
with respect to equivalences. (This ∞-category is 2-truncated, i.e., can safely
be thought of as a 2-category.) The sheaf condition here means that for any
family of smooth morphisms (Tα↠ S)α with T =∐α Tα → S surjective, the
diagram

X (S)→ X (T )⇉ X (T ×
S
T )→→→ X (T ×

S
T ×
S
T )

is a homotopy limit diagram. If we regard X as a moduli functor, the moral
meaning of this is that the objects X classifies satisfy descent.

We say that X is an Artin stack if its diagonal X → X ×X is representable
(by algebraic spaces) and there exists a smooth surjection p ∶ ∐αXα → X
where Xα are affine schemes. It is Deligne–Mumford if the same condition
holds with p étale.

Given a point x ∶ Spec(k)→ X , where k is a field, the stabilizer of X at x is
the sheaf of groups

Stx(X ) = AutX (Spec(k))(x)
of automorphisms of x in the groupoid X (Spec(k)). When X has repre-
sentable diagonal, its stabilizers Stx(X ) are representable by algebraic spaces,
i.e., they are group algebraic spaces. When X is Artin, they are smooth.
Moreover, an Artin stack X is Deligne–Mumford (resp. an algebraic space)
if and only if its stabilizers Stx(X ) are all finite étale (resp. trivial) groups.
Recall that algebraic spaces are mild generalizations of schemes.

Other examples of Artin stacks include various moduli problems: moduli of
curves, vector bundles, principal G-bundles for an algebraic group G, coherent
sheaves, Higgs bundles, quiver representations, etc.

Typically, an Artin (resp. Deligne–Mumford) stack X can be written locally
(in the Zariski or Nisnevich topology) as a quotient stack [X/G], where G
is a smooth (resp. finite étale) group scheme acting on a scheme X. Here
[X/G] is the moduli stack of principal G-bundles over X.

1.6. Cohomology of stacks. Let X be an Artin stack of finite type over k.
We define the ∞-category D(X ) by the homotopy limit

D(X ) = lim←Ð
(S,s)

D(S) (1.7)
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over the category LisX of pairs (S, s) where S is a scheme and s ∶ S → X

is a smooth morphism. Equivalently, we can use the full subcategory Lisaff
X

of such pairs where S is affine. Roughly speaking, an object F ∈ D(X )
is thus an object FS ∈ D(S) for every (S, s) ∈ LisX , an isomorphism FS ≃
u∗FT for every morphism u ∶ (S, s) → (T, t) in LisX (so that u ○ t = s),
and finally a homotopy coherent system of compatibilities between these
isomorphisms. This construction is called the lisse extension (see [KR, §12]).
It is straightforward to extend the six operations to Artin stacks with this
definition (see [Kha1, App. A]). In the topological and étale cases, this
construction agrees with previous constructions of Kapranov–Vasserot [KV]
and Liu–Zheng [LZ], respectively.

We can now define cohomology and Borel–Moore homology of Artin stacks
as in Subsect. 1.2. Equivalently, we have

C●(X ) ≃ lim←Ð
(S,s)

C●(S)

and
CBM
● (X ) ≃ lim←Ð

(S,s)
CBM
● (S)⟨−ds⟩

where ds is the relative dimension of s ∶ S → X . The functorialities and
properties we stated for schemes now extend to Artin stacks.

For quotient stacks, this construction recovers equivariant cohomology:

Theorem 1.8. Let X be a scheme of finite type over k with an action of
an algebraic group G, and write X = [X/G] for the quotient stack. Then the
cohomology and Borel–Moore homology of X can be computed by the Totaro–
Morel–Voevodsky approximations to the Borel construction. In particular, in
the motivic case we have

HBM
2i ([X/G],Λ)(−i) = H0 CBM

● ([X/G])⟨−i⟩ ≃ CHG
i (X)Λ.

Here on the right-hand side are the G-equivariant Chow groups of Edidin–
Graham [EG] (tensored with Λ).

Kresch [Kre] has extended Chow homology to Artin stacks. Under a mild
technical hypothesis, this also agrees with our construction:

Theorem 1.9. Let X be an Artin stack of finite type over k with affine
stabilizers. In the motivic case, there are isomorphisms

HBM
2i (X ,Λ)(−i) = H0 CBM

● (X )⟨−i⟩ ≃ CHi(X ).

A proof of this comparison will appear in [BP]. For quotient stacks, both
sides are isomorphic to the Edidin–Graham Chow groups. In general, X
admits a stratification by quotient stacks and the claim follows by using the
localization sequence. (In fact, the last step is much more involved because
one needs to compare the boundary map in Borel–Moore homology with the
explicit one defined by Kresch, which is highly nontrivial.)
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2. Derived geometry and intersection theory

2.1. Nonabelian derived categories. In the usual machinery of homolog-
ical algebra, which works well in (nice enough) abelian categories, one uses
chain complexes to resolve objects. Dold and Puppe [DP] observed that,
even in some nonabelian situations, one can still use simplicial objects to
resolve, and that this still gives a well-behaved theory of derived functors.
This led Quillen [Qui] to the theory of homotopical algebra (or “nonabelian
homological algebra”), where the nonabelian derived category is defined
by regarding simplicial objects up to weak homotopy equivalence. By the
Dold–Kan equivalence, simplicial objects are equivalent to connective3 chain
complexes in the abelian case, so in that case the nonabelian derived category
coincides with the usual one.

The machinery of nonabelian derived categories takes so-called algebraic
categories (in the sense of [ARV]) as input. Roughly speaking, A is algebraic
if there are enough “(finite) projective” objects. The technical meaning of
this is that there is a full subcategory A0 ⊆ A of finite projective objects,
such that A is freely generated by A0 under filtered colimits and reflexive
coequalizers (a mild generalization of quotients by equivalence relations).

The nonabelian derived category of A can be described using the language of
∞-categories (see [HTT, §5.5.8]) as the ∞-category freely generated by A0

under filtered colimits and geometric realizations (i.e., homotopy colimits of
simplicial diagrams).

For example, the derived category of sets is the ∞-category of homotopy
types (= “anima”, following [ÇS]) or, equivalently, ∞-groupoids. If X is a
set with an action of a group G, then the quotient X/G in sets can now
be “animated” to an animum or ∞-groupoid X//G which is defined as the
homotopy colimit of the diagram

⋯→→→→ G ×G ×X →→→ G ×X ⇉X →X//G.

As an ∞-groupoid, this can be described as follows: the objects of X//G are
elements x ∈ X; isomorphisms x → y are elements g ∈ G such that g ⋅ x = y;
and there are no nontrivial higher isomorphisms (in other words, this is a
1-groupoid). Note that we have π0(X//G) =X/G.

2.2. Derived stacks. As the name suggests, the category of derived stacks
should be regarded, at least morally speaking, as the derived category of
stacks. The “good” or “finite projective” objects are the smooth schemes. The
picture is as follows.

3Meaning: homology concentrated in degrees ⩾ 0, or cohomology concentrated in degrees
⩽ 0.
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derived smooth smooth

schemes schemes stacks

ÉÉs Dlstk)

cotangent( / totalcomplex space

←É•É Dlvect )
0

vector
bundles

We can form the “total space” of a complex of vector bundles as a derived stack;
it will be underived (but stacky) if and only if the complex is coconnective4,
and it will be a scheme (but derived) if and only if the complex is connective.
Conversely, we can “linearize” a derived stack by taking its cotangent complex
(which is the nonabelian left-derived functor of the cotangent sheaf).

In fact, the nonabelian derived category construction cannot be applied to
the category of stacks directly. However, the category of commutative rings is
algebraic, with finite projectives given by the polynomial rings Z[t1, . . . , tn]
(n ⩾ 0). Objects of its nonabelian derived ∞-category are called derived
commutative rings. Its opposite is by definition the ∞-category of affine
derived schemes. A derived stack is then an étale sheaf of ∞-groupoids
on affine derived schemes, and we define Artin derived stacks by requiring
existence of suitable atlases; see [Toë, §5.2] for details.

2.3. The normal deformation. Given a derived Artin stack X, the conor-
mal complex is defined as the (−1)-shifted cotangent complex:

NX ∶= LX[−1].
In the world of derived stacks, we can form its “derived total space”, which
we call the normal bundle of X; this is denoted

NX ∶=VX(NX)
and parametrizes cosections NX → OX (following Grothendieck’s convention).
Similarly, if f ∶X → Y is a morphism, then we write

NX/Y ∶= LX/Y [−1], NX/Y ∶=VX(NX/Y ).
If f is a closed immersion between smooth schemes, then this is the usual
normal bundle.

Recall that deformation to the normal cone associates, to any closed immersion
i ∶ Z →X, a family of closed immersions over A1 which deforms i to the zero

4Meaning: homology concentrated in degrees ⩽ 0, or cohomology concentrated in degrees
⩾ 0.
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section of the normal cone. Here is the derived version (constructed jointly
with D. Rydh):

Theorem 2.1. Let f ∶X → Y be a morphism of derived Artin stacks. Then
there exists a commutative diagram of derived Artin stacks

X X ×A1 X ×Gm

NX/Y DX/Y Y ×Gm

Y Y ×A1 Y ×Gm

0

0 f̂ f×id

i j

0

(2.2)

where each square is homotopy cartesian.

The idea is to define DX/Y as the derived Weil restriction of X → Y along
the inclusion 0 ∶ Y ↪ Y ×A1. This is a derived stack over Y ×A1 with the
universal property that morphisms S → DX/Y over Y ×A1 are in bijection
with morphisms S ×RA1{0} → X over Y . It is easy to see that this derived
stack satisfies the desired properties, and the nontrivial part is the algebraicity
(i.e., that it is Artin). See [Kha1, Thm. 1.3] in the quasi-smooth case, and
[HP, Thm. 5.1.1, Prop. 5.1.14] and [HKR] for algebraicity results that apply
to the general case.

Note that a variant of this construction in formal algebraic geometry appears
in Simpson’s work on nonabelian Hodge theory and in [GR, Vol. II, Chap. 9,
§2]. It can be recovered by taking the formal completion, in the sense of [GR,
Vol. II, Chap. 2, 3.1.3(iii)], of DX/Y along the morphism f̂ .

2.4. Specialization to the normal bundle. Let f ∶X → Y be a morphism
of derived Artin stacks, over a base derived Artin stack S. Consider the
complementary pair of closed-open immersions

NX/Y
iÐ→DX/Y

j
←Ð Y ×Gm.

In the localization triangle

CBM
● (NX/Y /S)

i∗Ð→ CBM
● (DX/Y /S)

j!

Ð→ CBM
● (Y ×Gm/S),

the boundary map

∂ ∶ CBM
● (Y ×Gm/S)[−1]→ CBM

● (NX/Y /S)

gives rise to the specialization map

spX/Y ∶ CBM
● (Y/S)

inclÐÐ→ CBM
● (Y/S)⊕CBM

● (Y/S)(1)[1]

≃ CBM
● (Y ×Gm/S)[−1] ∂Ð→ CBM

● (NX/Y /S), (2.3)

where the splitting comes from the unit section 1 ∶ Y → Y ×Gm.
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Variant 2.4. Let X be a classical Artin stack. The normal complex NX is
almost never perfect, unless X is smooth or at least lci. Instead, there is a
specialization to the normal cone

CBM
● (X)→ CBM

● (CX)
defined using an underived version of the deformation DX/Y (see [Ma,
Thm. 2.31] and [AP, Thm. 7.2]). Here CX is the underived version of
NX , the so-called intrinsic normal cone of [BF, AP].

Suppose we are given a closed immersion e ∶ CX ↪ E where E is a derived
vector bundle on X (i.e., the derived total space of a perfect complex). Then
there is a specialization map

CBM
● (X)→ CBM

● (CX) e∗Ð→ CBM
● (E). (2.5)

For example, if there is a derived structure on X, i.e., a derived Artin stack
X̃ whose classical truncation X̃cl is identified with X, then we have such
an immersion e ∶ CX → NX̃ ∣X into the normal bundle of X̃ (restricted to
X). The specialization map (2.5) in this case coincides with the derived one
constructed above.

2.5. Virtual fundamental classes.

Definition 2.6. Let f ∶ X → Y be a morphism of derived Artin stacks.
We say that f is quasi-smooth if Xcl → Ycl is locally of finite presentation,
and the relative cotangent complex LX/Y is perfect of Tor-amplitude ⩽ 1
(homologically).

In the quasi-smooth case, the normal complex NX/Y is of Tor-amplitude
⩽ 0, and hence the normal bundle NX/Y is smooth (a so-called vector bundle
stack). We have the following generalized Thom isomorphism:

Proposition 2.7. Let E be a vector bundle stack on X, i.e., E = VX(E)
for a perfect complex E of Tor-amplitude ⩽ 0. Then the Gysin map for the
projection π ∶ E →X

π! ∶ CBM
● (X/S)⟨r⟩→ CBM

● (E/S)
is an isomorphism, where r is the virtual rank of E.

Thus for a quasi-smooth morphism f , say of relative virtual dimension d, we
have a canonical isomorphism

CBM
● (NX/Y /S) ≃ CBM

● (X/S)⟨−d⟩.

Combining this with specialization produces now the Gysin map

f ! ∶ CBM
● (Y/S)

spX/YÐÐÐ→ CBM
● (NX/Y /S) ≃ CBM

● (X/S)⟨−d⟩.

If f is smooth, then this is the same as the Gysin map from the first lecture.

Taking Y = S, the image of the unit 1 ∈ C●(Y ) ≃ CBM
● (Y/Y ) gives rise to the

relative virtual fundamental class

[X/Y ] ∈ CBM
● (X/Y )⟨−d⟩. (2.8)
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Again, in the smooth case, this is the same as the relative fundamental class
from the first lecture.

Remark 2.9. Unlike the smooth case, the virtual fundamental class does not
satisfy Poincaré duality in general. However, for regular schemes, regarded
as quasi-smooth derived schemes, this does hold: see [Kha2].

Let us try to understand the constructions NX and DX a little better in the
quasi-smooth case. First of all, suppose that X is smooth. Let TX =VX(LX)
be the tangent bundle. (When X is a scheme or Deligne–Mumford stack,
LX is the sheaf Ω1

X of algebraic Kähler differentials; but beware that if X is
1-Artin, then TX is 2-Artin.) Then we have

NX = TX[1] = [X/TX].

Here the quotient stack [X/TX] is formed with respect to the additive group
structure on TX , which we regard as acting trivially onX. The notation TX[1]
just means VX(LX[−1]) (recall that under the Grothendieck convention,
VX(−) is contravariant).

Now consider the quasi-smooth case. We assume that X is a scheme for
simplicity. The quasi-smooth condition implies that, Zariski-locally on X,
there exists a smooth schemeM , a vector bundle E →M , a section s ∶M → E,
and a homotopy cartesian square

X M

M E.

s

0

That is, X is the derived intersection of s with the zero section. When this
intersection is not transverse, this is different from the usual scheme-theoretic
intersection, and there is a nontrivial derived structure on X. In this local
model, LX is the two-term complex

LX = [E dÐ→ ΩM ]

where E =VM(E). Thus the normal bundle NX is the quotient

NX = [E/TM ].

Here are the basic properties of the virtual fundamental class.

Theorem 2.10. (i) Functoriality. Let f ∶ X → Y and g ∶ Y → Z be
quasi-smooth morphisms of derived Artin stacks, of relative virtual
dimensions d and e, respectively. Then we have

[X/Y ] ○ [Y/Z] ≃ [X/Z]

in CBM
● (X/Z)⟨−d − e⟩, where ○ denotes the composition product

○ ∶ CBM
● (X/Y )⟨−d⟩⊗CBM

● (Y/Z)⟨−e⟩→ CBM
● (X/Z)⟨−d − e⟩.
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(ii) Base change. Suppose given a homotopy cartesian square of derived
Artin stacks

X ′ Y ′

X Y

g

p q

f

where f is quasi-smooth of relative virtual dimension d. Then there
is a canonical homotopy

q∗∆[X/Y ] ≃ [X ′
/Y ′] ∈ CBM

● (X ′
/Y ′)⟨−d⟩

where q∗∆ denotes the change of base map

q∗∆ ∶ CBM
● (X/Y )⟨−d⟩→ CBM

● (X ′
/Y ′)⟨−d⟩.

(iii) Excess intersection. Suppose given a commutative square of derived
Artin stacks

X ′ Y ′

X Y

g

p ∆ q

f

(2.11)

where f and g are quasi-smooth of relative virtual dimension d and e.
Assume that ∆ is cartesian on classical truncations and that the fibre
E (the excess sheaf) of the canonical map

p∗NX/Y → NX′/Y ′

is of Tor-amplitude [0,0]. Then there is a canonical homotopy

q∗∆[X/Y ] ≃ e(E) ∩ [X ′
/Y ′] ∈ CBM

● (X ′
/Y ′)⟨−d⟩,

where e(E) is the Euler class (= top Chern class) of E.

2.6. The non-transverse Bézout theorem. Let f ∶ Z → X be a quasi-
smooth proper morphism of relative virtual dimension −d. The relative
fundamental class [Z/X] ∈ CBM

● (Z/X)⟨d⟩ defines, by proper push-forward, a
class in cohomology:

f∗[Z/X] ∈ CBM
● (X/X)⟨d⟩ ≃ C●(X)⟨d⟩,

which we denote simply by [Z].

Theorem 2.12. Let f ∶ Y → X and g ∶ Z → X be quasi-smooth proper
morphisms of relative virtual dimension −d and −e. Then there is a canonical
homotopy

[Y ] ∪ [Z] ≃ [Y
R
×
X
Z] ∈ C●(X)⟨d + e⟩.

Theorem 2.12 follows formally from the functoriality and base change prop-
erties of the virtual fundamental class (Theorem 2.10). Indeed, form the
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homotopy cartesian square

Y ×RX Z Z

Y X.

q

p g

f

Let h ∶ Y ×RX Z → X denote the diagonal composite. We can compute
[Y ×RX Z] = h∗[W/X] using the functoriality axiom, in terms of [W/Y ] and
[Y/X]. But by the base change axiom, [W/Y ] is the base change of [Z/X].
Using the properties of the composition product, one gets the formula

h∗[W/X] ≃ f∗[Y/X] ○ g∗[Z/X]

in CBM
● (X/X)⟨d⟩, which is equivalent to the asserted formula in C(X)⟨d⟩.

See [Kha1, Thm. 3.22] for more details.

Example 2.13. Suppose X is a smooth scheme, so that we have a Chow
ring CH∗(X). Let Y and Z be smooth (or lci) subvarieties of X. Then
Theorem 2.12 gives (in the motivic case),

[Y ] ∪ [Z] = [Y
R
×
X
Z] ∈ CH∗(X)Λ

as asserted in the introduction. More generally, this holds for Y and Z
schemes that are proper and smooth (or lci) over X. This generalized form
of the formula uniquely determines the intersection product on CH∗(X)Λ,
since by resolution of singularities (or alterations in the positive characteristic
case), such classes generate the Chow group.
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