Exercise sheet 1

1. Show that if $\mathbf{R} = k$ is a field, then the derived category $\mathbf{D}(k)$ is equivalent to the category of **Z**-graded k-modules (and in particular is abelian).

2. Show that D(R) does not admit colimits for general R.

3. Let I be the category with a single object, whose set of endomorphisms is the monoid of natural numbers. Show that the categories Funct(I, D(R)) and $D^{I}(R)$ are not equivalent.

4. Let $f : M_{\bullet} \to N_{\bullet}$ be a morphism of chain complexes of R-modules. Show that the mapping cone Cone(f) is a model for the homotopy cofibre.

5. Show that for any R-modules M and N, there are canonical isomorphisms

 $H_n(Hom_{D(R)}(M, N)_{\bullet}) \approx Ext_R^n(M_{\bullet}, N_{\bullet}) \approx Hom_{D(R)}(M, N),$

where we view M and N as chain complexes concentrated in degree zero.

6. Let F and G be functors $\mathbf{C} \rightrightarrows \mathbf{D}$ between two ordinary categories. Show that natural transformations $\mathbf{F} \Rightarrow \mathbf{G}$ are in bijection with morphisms of simplicial sets $\varphi : \Delta^1 \times \mathcal{N}(\mathbf{C}) \rightarrow \mathcal{N}(\mathbf{D})$ such that $d^0(\varphi) = \mathbf{F}$ and $d^1(\varphi) = \mathbf{G}$.

7. Let **C** be a simplicially enriched category. Suppose that for all objects $x, y \in \mathbf{C}$, the simplicial Hom-set $\operatorname{Hom}_{\mathbf{C}}(x, y)$ is a Kan complex. Then show that the simplicial nerve $N_{\mathbf{\Delta}}(\mathbf{C})$ is a weak Kan complex.

8. Show that a simplicial set X is the nerve of a category (resp. nerve of a groupoid) if and only if it has the lifting property for inclusions $\Lambda_i^n \hookrightarrow \Delta^n$, for 0 < i < n (resp. for $0 \leq i \leq n$).

9. Show that the polynomial rings $\mathbf{Z}[T_0, \ldots, T_n]$ are cofibrant as (constant) simplicial commutative rings.

10. Show that the assignment $X \mapsto c(X)$, sending a set to the associated constant simplicial set, is fully faithful. Show that c admits a left adjoint, given by $X \mapsto \pi_0(X) := \text{Coeq}(X_1 \rightrightarrows X_0)$, where the arrows are the face maps d^0 , d^1 .

Given a simplicial abelian group M, there is an associated chain complex whose *n*th term is M_n , and whose differentials are given by $d_n = \sum_{i=0}^n (-1)^i d_n^i$. There is a variant of this called the *normalized chain complex* N(M)_• associated to M, whose *n*th term is the intersection of the abelian groups $\operatorname{Ker}(d_n^i), 0 \leq i < n$, and differentials given by $d_n = (-1)^n d_n^n$. The *Dold-Kan correspondence* asserts that the assignment M \mapsto N(M)_• determines an equivalence between the category of simplicial abelian groups and chain complexes of abelian groups.

11. Let A be a commutative ring. Let $f \in A$ be an element determining a ring homomorphism $\mathbf{Z}[T] \to A$, $T \mapsto f$. Consider the derived tensor product $A/\!/(f) := A \otimes_{\mathbf{Z}[T]}^{\mathbf{L}} \mathbf{Z}[T]/(T)$ (as a simplicial commutative ring). Show that the underlying chain complex of A is the Koszul complex $0 \to A \xrightarrow{f} A \to 0$. In particular, deduce that there is a canonical map $A/\!/(f) \to A/(f)$ which is an isomorphism if and only if f is a non-zero-divisor.

12. With the notation as in A, let $g \in A$ be an element. Compute the space $\operatorname{Maps}_{A/\!\!/(f)}(g,0)$ of paths $g \approx 0$ in the underlying space of the simplicial commutative ring $A/\!\!/(f)$.