
Lecture 1
Higher categories and simplicial commutative rings

Last lecture we saw that the multiplicity of an intersection of subvarieties V and W in X
can be calculated using the Tor groups TorOX

i (OV,OW). In order to realize these groups as
“coming from a geometric object”, the first step is to consider the whole complex OV ⊗L

OX
OW as

a single unit, before passing to homotopy groups. This is a chain complex which, by nature of
derived functors, is only well-defined up to quasi-isomorphism. In this lecture we will review the
theory of ∞-categories, which is an effective language for working with chain complexes up to
quasi-isomorphism (or any situation of a similar “homotopical” flavour). We will also introduce
the notion of simplicial commutative ring, which will finally allow us to view the construction
OV ⊗L

OX
OW as a simplicial commutative ring (when X is affine).

Construction 1. Let R be a commutative ring, and let C(R) be the category of chain complexes
of R-modules. Recall that an object M• ∈ C(R) is a diagram

· · · dn+1−−−→ Mn
dn−→ Mn−1

dn−1−−−→ · · · d1−→ M0
d0−→ · · ·

where the relation d2 = 0 holds for all n. A morphism of chain complexes φ : M• → N• is a
collection of morphisms φn : Mn → Nn which are compatible with the differentials (d◦ϕ = ϕ◦d).

The homology groups of M• are the abelian groups Hn(M•) = Ker(dn)/ Im(dn+1). A quasi-
isomorphism of chain complexes is a morphism that induces isomorphisms on all homology
groups.

Example 2. Let M and N be R-modules. Let M̃• ∈ C(R) be a projective resolution of M, so

that we have a quasi-isomorphism M̃• →M and each M̃n is projective. Then we can perform
the objectwise tensor product M̃• ⊗R N to obtain a new chain complex, which is a model for
the derived tensor product M⊗L

R N. In particular its homology groups H∗(M⊗L
R N) are the Tor

groups TorR∗ (M,N).

Note though that the chain complex M̃• ⊗R N depends on the choice of resolution M̃•: if we
use another resolution, we get a new chain complex which may not be isomorphic to the first.
However, it will still be quasi-isomorphic to the first. In other words, the derived tensor product
M⊗L

R N is only well-defined up to quasi-isomorphism.

Thus, as far as the constructions of homological algebra go, we only care about chain complexes
up to quasi-isomorphism.

Construction 3. There exists a category D(R), called the derived category of R, which is
obtained by formally inverting quasi-isomorphisms. More precisely, it satisfies the following
universal property:

(*) Let F be a functor C(R)→ D that sends all quasi-isomorphisms to isomorphisms. Then
there exists a unique functor F : D(R)→ D such that the diagram

C(R) D

D(R)

F

γ
F

commutes.

We say that D(R) is the (Gabriel–Zisman) localization of C(R) at the class of quasi-
isomorphisms.

Remark 4. One can describe the category D(R) explicitly using Verdier’s calculus of fractions.
Roughly speaking, D(R) has the same objects as C(R), and the morphisms M• → N• are
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(equivalence classes of) diagrams

M•
φ←− P•

ψ−→ N•,

where φ and ψ are morphisms in C(R) with φ a quasi-isomorphism.

Example 5. Given R-modules M and N, the group HomD(R)(M,N[i]) can be identified with

the Ext group ExtiR(M,N). Here N[i] denotes the chain complex with N concentrated in degree
i.

The category D(R) is a first approximation to what we want. For example, all projective
resolutions of an R-module M are isomorphic in D(R), so the derived tensor product is actually
well-defined as an object of D(R). However, it turns out to be rather poorly behaved: unlike
the category C(R), D(R) is not abelian and does not admit (co)limits. It does however admit
homotopy (co)limits:

Construction 6. Let I be a category of “diagram shapes”. For example, take the category
with three objects and nontrivial morphisms as follows:

(0.1)

• •

•

Let CI(R) denote the category of functors I→ C(R) (these are I-shaped diagrams in C(R)).
Let DI(R) denote the Gabriel–Zisman localization of CI(R) at the class of levelwise quasi-
isomorphisms.

Fact 7. The “constant diagram” functor c : C(R)→ CI(R) preserves quasi-isomorphisms and
induces a functor

c : D(R)→ DI(R).

It admits left and right adjoints

L lim−→ : DI(R)→ D(R),

R lim←− : DI(R)→ D(R).

These are called the “homotopy colimit” and “homotopy limit” functors, respectively.

Example 8. Take I to be the category (0.1). For any diagram X : I→ C(R), we can view X as
an object of DI(R) (via the canonical functor CI(R)→ DI(R)), and form the homotopy colimit
L lim−→(X) ∈ D(R). This is called the homotopy push-out of X.

The theory of homotopy colimits gives us an analogue of cokernels:

Example 9. Let φ : M• → N• be a morphism of chain complexes. Then we can consider the
I-shaped diagram

M• N•

0

φ

and the induced object in DI(R). Its homotopy push-out is called the homotopy cokernel or
homotopy cofibre of f .

The homotopy cofibre can be modelled by a chain complex Cone(φ)•:

Cone(φ)n = Nn ⊕Mn−1,

with differential given by

(dn+1 : Nn+1 ⊕Mn → Nn ⊕Mn−1) =

[
dNi+1 φi

0 −dMi

]
Its image by the functor C(R)→ D(R) is the homotopy cofibre of f .



3

The problem with the category D(R) is that the theory of homotopy (co)limits is not internal
to it. This is because we cannot recover the categories DI(R) from the category D(R) (but only
from the non-localized version C(R)):

Fact 10. The canonical functor

DI(R)→ Funct(I,D(R))

is not an equivalence.

In other words, while there does exist a good theory of homotopy (co)limits, we cannot make
use of it if we only consider the D(R) by itself. We will need a more refined version of D(R).

Definition 11. A dg-category (over a commutative ring R) is a category enriched over C(R).
That is, a dg-category C has a set of objects and for each pair of objects X,Y, a chain complex
of morphisms (“Hom-complex”) Hom(X,Y)• ∈ C(R). It also has a composition law satisfying
similar axioms as for ordinary categories.

Construction 12. The homotopy category of a dg-category C is an ordinary category Ho(C)
with the same objects as C, and with Hom-sets given by:

HomHo(C)(x, y) = H0(HomC(x, y)•),

and with composition law induced from that of C.

Example 13. The category C(R) can be viewed as a dg-category. It is enriched over itself by
the following formula:

Hom(M•,N•)n =
∏
i∈Z

HomModR(Mi,Ni+n).

The chain complex Hom(M•,N•)• has differentials given by:

d(f) = dN ◦ f − (−1)nf ◦ dM,

for any f ∈ Hom(M•,N•)n.

The dg-category C(R) does not take the homotopy theory of chain complexes into account;
in particular, quasi-isomorphic complexes do not become isomorphic in Ho(C(R)). Instead, we
would like to construct a dg-category D(R) whose homotopy category is equivalent to D(R).
According to Example 5, we need the homology of the Hom-complexes in D(R) to compute
the Ext groups ExtnR(M,N) (where M and N are R-modules). In fact, the naively defined
Hom-complexes of C(R) do have the right homology, when we restrict to nice enough objects:

Definition 14. A chain complex M• ∈ C(R) is K-projective if for every quasi-isomorphism
N• → N′• that is degree-wise surjective, any morphism M• → N′• lifts to N•.

Construction 15. Let D(R) denote the full sub-dg-category of C(R) whose objects are K-
projective complexes. Then we have an equivalence Ho(D(R)) ≈ D(R).

There is an alternative way of encoding the data of the dg-category D(R), which will be more
convenient for our purposes (see [2, Constr. 1.3.1.6] for details):

Construction 16 (Dg-nerve). Let C be a dg-category. We define a sequence of sets Sn as
follows:

• Let S0 be the set of objects of C.
• Let S1 be the set of morphisms f : x1 → x2 in C, i.e. triples (x1, x2, f) with x1 and x2

objects and f ∈ HomC(x1, x2)0 with df = 0.
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• Let S2 be the set of diagrams

x2

x1 x3

gf

h

that commute up to a specified chain homotopy h ⇒ g ◦ f , i.e. an element ϕ ∈
HomC(x1, x3)1 with dϕ = (g ◦ f)− h.
• · · ·
• Let Sn be the set of n-tuples of objects (x1, . . . , xn) and, for each 0 6 m 6 0 and all

indices 0 6 i0 < · · · < im+1 6 n, a morphism

fi0,...,im+1 ∈ HomC(xi0 , xim+1)m

satisfying

d(fi0,...,im+1
) =

∑
16j6m

(−1)j(fi0,...,îj ,...,im+1
− fij ,...,im+1

◦ fi0,...,ij ).

Moreover, these sets are connected by canonical maps. For example, there are two maps
S1 → S0, which pick out the source and target, respectively. In the other direction there is a
map S0 → S1 which picks out the identity morphism of an object. Similarly there are three
maps S2 → S1 picking out the morphisms on the boundary of the triangle, and two maps
S1 → S2 picking out, for any morphism f , the two triangles encoding homotopies f ⇒ f ◦ id
and f ⇒ id ◦ f . Generally, for any order-preserving map α : {0, 1, . . . ,m} → {0, 1, . . . , n}, there
is a canonical map α∗ : Sn → Sm. The data of these sets (Sn)n together with these maps forms
an example of a simplicial set:

Definition 17. Let ∆ denote the category of finite sets [n] := {0, 1, . . . , n} and order-preserving
maps between them. A simplicial set X is a contravariant functor from ∆ to the category of
sets. That is, it is a sequence of sets Xn := X([n]), n > 0, together with maps α∗ : Xn → Xm

for all morphisms [m]→ [n] in ∆, such that id∗ = id and (β ◦ α)∗ = α∗β∗ for all composable
morphisms α and β in ∆.

For each n and 0 6 i 6 n we write din : Xn → Xn−1 for the face maps, induced by the
canonical maps δin : [n − 1] → [n] (where δin is the injective map that “skips” i). We write
sin : Xn → Xn+1 for the degeneracy maps, induced by the canonical maps σin : [n + 1] → [n]
(where σin is the surjective map that “doubles” i).

Example 18. Any set X can be viewed as a constant simplicial set c(X), with c(X)n = X (and
α∗ = id for all α : [m]→ [n]). The assignment X 7→ c(X) defines a fully faithful embedding of
the category of sets into that of simplicial sets.

Example 19. There is a simplicial set ∆n, called the standard n-simplex, whose k-simplices
are given by:

∆n
k = Hom∆([k], [n]).

Note that such a map [k]→ [n] corresponds to a sequence of integers (a0, . . . , ak) with 0 6 ai 6
aj 6 n for all i 6 j.

Example 20. There is a simplicial set ∂i∆n, defined as the image of the canonical map
∆n−1 → ∆n induced by δin. This is the i-th face of the standard n-simplex. The union of these
is a simplicial set ∂∆n, called the boundary of the standard n-simplex.

The i-th horn Λni is the union of the faces ∂j∆n with j 6= i.

We can view ∂∆n as the result of removing the “interior” of ∆n. Similarly, Λni is the result
of removing the interior as well as the i-th face.
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Example 21. For any (ordinary) category C, there is a simplicial set N(C), called the nerve
of C, whose n-simplices are composable strings of morphisms of length n

x0
f0−→ x1

f1−→ · · · fn−1−−−→ fn

in C.

Proposition 22. The assignment C 7→ N(C) defines a fully faithful embedding of the category
of (small) categories into the category of simplicial sets. Moreover, a simplicial set X lies in its
essential image if and only if it satisfies the Grothendieck–Segal condition:

(∗) Any map Λni → X, with n > 0 and 0 < i < n, lifts uniquely to a map ∆n → X.

One can actually take “simplicial set satisfying the Grothendieck–Segal condition” as a (very
inefficient) definition of the term “category”, where we view the 0-simplices of X as objects, and
1-simplices as morphisms. To understand the nature of the Grothendieck–Segal condition, take
n = 2 and i = 1. Then a map Λ2

1 → X corresponds to a diagram

x2

x1 x3

gf

in X. The condition that this lifts uniquely to a map ∆2 → X means that there exists a unique
map x1 → x3, which we may suggestively denote g ◦ f , making the diagram commute.

Remark 23. If we add the edge cases i = 0 and i = n to the Grothendieck–Segal condition,
then we get a characterization of the nerves of groupoids.

The dg-nerve (Construction 16) does not satisfy the Grothendieck–Segal condition, since
there is not a unique way to compose morphisms. Instead, it satisfies the following weaker
variant:

Definition 24. A weak Kan complex is a simplicial set X satisfying the following condition
(the inner horn lifting condition):

(∗) Any map Λni → X, with n > 0 and 0 < i < n, lifts to a map ∆n → X.

We will take weak Kan complexes as a definition of the term “∞-category”:

Definition 25. An ∞-category C is a weak Kan complex X.

Objects of C are 0-simplices of X. Morphisms of C are 1-simplices. A homotopy between
two morphisms f and g is a 2-simplex ∆2 → X of the form

y

x y

idf

g

We say that f and g are homotopic if there exists a homotopy as above; this defines an equivalence
relation on the set of morphisms x→ y.

Given two morphisms f : x→ y and g : y → z in C, it follows from the definition of weak
Kan complex that there exists a 2-simplex of X

y

x z

gf

h

We refer to h as the composite of f and g, denoted g ◦ f . While h is not unique, one can
derive from the definition the fact that it is unique up to homotopy, or more precisely, up to
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a contractible space of choices. Similarly, one can see that composition is associative up to
homotopy.

Given an ∞-category C, we can define an ordinary category Ho(C), called the homotopy
category of C, with the same objects, and Hom-sets HomHo(C)(x, y) given by sets of homotopy
classes of morphisms x→ y in C.

We will say that a morphism f : x→ y in C is an isomorphism if it induces an isomorphism
in the homotopy category Ho(C). Equivalently, f is invertible; that is, there exists a morphism
g : y → x and a homotopy f ◦ g ⇒ idy and g ◦ f ⇒ idx.

The theory of ∞-categories was developed by André Joyal and Jacob Lurie; we refer the
reader to [1] for details.

Remark 26. A Kan complex is a simplicial set X satisfying a lifting condition for all horns:

(∗) Any map Λni → X, with n > 0 and 0 6 i 6 n, lifts to a map ∆n → X.

The nerve of any groupoid is then a Kan complex, and we take Kan complexes as a definition
of the term “∞-groupoid”. It is possible to show that an ∞-groupoid is the same thing as an
∞-category where all morphisms are invertible.

Example 27. Let X be a nice topological space (say, a CW-complex). Then one can define
a simplicial set Sing(X)•, whose n-simplices are continuous maps ∆n

> → X (where ∆n
> is the

topological version of the standard n-simplex). This is a Kan complex, and moreover the
assignment X 7→ Sing(X)• gives rise to an equivalence between the homotopy theories of nice
spaces and Kan complexes. For this reason, we will use the terms “space” and “∞-groupoid”
interchangeably.

The ∞-category of spaces plays the role of the category of sets; for example, for any two
objects x and y of an ∞-category C, there is a space MapsC(x, y), called the mapping space. In
order to define the ∞-category of spaces, it will be useful to have a non-linear version of the
notion of dg-category. Namely, define a simplicial category C (or simplicially enriched category)
to be a category enriched in the category of simplicial sets (i.e., there is a simplicial Hom-set
HomC(x, y) of maps between any two objects).

Example 28. The category of simplicial sets is simplicially enriched. For any two simplicial
sets X and Y, there is a simplicial set Hom(X,Y) with n-simplices

Hom(X,Y)n = Hom(∆n ×X,Y).

There is an analogue of Construction 16, called the simplicial nerve N∆(C) (where we use
simplicial homotopies instead of chain homotopies). One can show that this is a weak Kan
complex as long as the simplicial Hom-sets are Kan complexes.

Construction 29. Consider the simplicial category of Kan complexes (with the simplicial
enrichment as above). Its simplicial Hom-sets are Kan complexes, and its simplicial nerve is
called the ∞-category of spaces, denoted Spc.

The notion of simplicial commutative ring, which will form the basic building blocks of derived
schemes, can be thought of as a space (in the above sense), equipped with operations of addition
and multiplication (that are commutative and associative in a much stricter sense than the
notion of E∞-space).

Definition 30. A simplicial commutative ring A is a simplicial object in the category of
commutative rings. In other words, it is a simplicial set such that each term An is equipped
with a structure of (unital associative) commutative ring, and all maps α∗ : An → Am (for any
α : [m]→ [n]) are ring homomorphisms.
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Any ordinary commutative ring A can be viewed as a constant simplicial commutative ring
c(A); we will usually omit c from the notation.

Definition 31. A trivial Kan fibration of simplicial sets is a map p : X→ Y that satisfies the
following lifting property. For any diagram of solid arrows

∂∆n X

∆n Y,

ph

there exists a dashed arrow h making the diagram commute.

Any trivial Kan fibration is a weak homotopy equivalence and is degreewise surjective. The
following notion can therefore be viewed as a simplicial version of “K-projective”:

Definition 32. A simplicial commutative ring A is cofibrant if for any map of simplicial
commutative rings R → R′ which is a trivial Kan fibration, and any morphism of simplicial
commutative rings A→ R′, there exists a unique lift A→ R.

The most important example of cofibrant simplicial commutative rings is as follows:

Example 33. The polynomial algebras Z[T0, . . . ,Tn] are cofibrant (when viewed as constant
simplicial commutative rings).

Example 34. Any commutative ring A admits a standard cofibrant resolution Ã. The 0th
term Ã0 is the polynomial Z-algebra generated by the elements of A. The 1st term Ã1 is the
polynomial Z-algebra generated by the elements of Ã0, and so on.

Construction 35. The category of simplicial commutative rings admits a canonical simplicial
enrichment, since for any simplicial commutative ring B, the simplicial Hom-sets Hom(A,B)
inherit a structure of simplicial commutative ring from B. The ∞-category SCRing is the
simplicial nerve of the simplicially enriched category of cofibrant simplicial commutative rings.

From this point on, we will use the term “simplicial commutative ring” as a synonym for
“object of the∞-category SCRing”; that is, we will implicitly replace any simplicial commutative
ring in sight by a cofibrant resolution.

There is a derived tensor product on the ∞-category SCRing.

Example 36. Given two commutative rings A and B, the derived tensor product A⊗L
Z B can be

computed by taking a cofibrant resolution Ã and forming the levelwise tensor product Ã⊗Z B.
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