Lecture 10
The Grothendieck—Riemann—Roch theorem

In this lecture we will state and prove the Grothendieck—-Riemann—Roch theorem. Recall that
this theorem involves the ~-filtration on the K-theory of a derived scheme:

Construction 1. Let X be a derived scheme (admitting the resolution property!). Recall
that Ko(X) has a A-ring structure, with augmentation provided by the rank homomorphism
tk @ Ko(X) — H°(Xzar,Z). As we have seen before, one has in this situation a decreasing
filtration Fil, Ko(X) called the y-filtration. To describe it, set v*(x) = A*(z + k — 1) for any
x € Ko(X) and integer k. Then Fil}/ is defined as the kernel of the augmentation, and for k > 2,
Fil]fY is generated by terms of the form

'yko(azo)~~~fyk"(:£n), (x4 GFil,ly, ko+ -+ k, = k).
Let ¢ : Z — X be a quasi-smooth closed immersion. The GRR theorem concerns more
precisely two Gysin homomorphisms
i7 1 Grl Ko(Z)q — Gri T Ko(X)q.

The first comes from the fact that the functor i, : Qcoh(Z) — Qcoh(X) preserves perfect
complexes. The second comes from the following theorem, which will be our first goal for this
lecture:

Theorem 2. Let i : Z — X be a quasi-smooth closed immersion of qcqs derived schemes.
Suppose that i has virtual codimension d. Then the homomorphism i, : Ko(Z)q — Ko(X)q

sends Filﬁ Ko(Z)q to Fil,’f‘d Ko(X)q, for any k.

The final ingredient in the statement of GRR is a certain map ch : Ko(X) = Gr,(Ko(X)q).
After constructing it, we will proceed to prove:

Theorem 3 (Grothendieck-Riemann-Roch). Let X be a gegs derived scheme. Leti:Z — X be
a quasi-smooth closed immersion of virtual codimension d. Then there is a commutative square

Ko(2) Ko(X)
lch lch
(= Td(=Ny %))
Gry(Ko(Z)q) ——— Gry(Ko(X)q)
That is, for any x € Ko(Z), we have the identity
ch(i.(x)) = ] (ch(z) - Td(~Ny/x))-

Remark 4. Note that —Nz /x is the class in K-theory of the cotangent complex £z,x = Ny /x[1].
One can also prove a GRR theorem for the projection of a projective bundle 7 : Px(€) — X.
Combining these two variants, one gets a GRR theorem for any quasi-smooth projective morphism
of qcgs derived schemes (where —Ny x is replaced by the relative cotangent complex).

Our proof of GRR will use the following derived version of the excess intersection formula
(which we will not have time to prove today):

IThere exists a sheaf of spectra K such that Ko(X) ~ moI'(X, K). If one admits the existence of this K, then
the A-ring structure can be defined without the extra hypothesis on X. In this lecture, we will either assume that
this has been done, or that X admits the resolution property.
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Theorem 5 (Excess intersection formula). Suppose given an excessive square of derived schemes,
i.e. a commutative square

-/
K3

7 —— X

b

Z =X
satisfying the following conditions:

(a) The morphisms i and i’ are quasi-smooth closed immersions, of virtual codimensions d and
d', respectively.

(b) The square is cartesian on underlying classical schemes. That is, the morphism 7., —
(Z xx X")a1 is invertible.

(c) The map g* Ny x — Ny /x/ is surjective on m.

Let € denote the excess sheaf, i.e., the fibre of the map g"Nz x — Nz:/x:. By the assumptions,
& is locally free of rank d —d' > 0. Then we have

Fric(x) = (9" (2) - A_1(€))
Fril(a) = (@)g" (@) - <= (©)),

for all x € Ko(Z) and for all x € Ko(Z)q, respectively. Here A_1(E) = Zz(—l)l[/\z(E)] and
=4 (&) is the top Chern class (to be defined).

Example 6. Let i : Z — X be a quasi-smooth closed immersion. Then we have an excessive
square

Z

7 i

P N

In this case there is “maximal excess”, i.e., & = Nz,x. Thus Theorem 5 gives the formulas

=z A_1(Nz/x)
=X- Cd(Nz/X).

il ()
Example 7. Let i : Z < X be a quasi-smooth closed immersion of virtual codimension d. Let
X — X be the blow-up and let ig : E < X be the virtual exceptional divisor. Then the blow-up
square

J{g J{f
Z —— X
is excessive. Thus Theorem 5 gives the formulas
[riv(x) = (ip)«(g" (x) - A-1(€))
Fril(z) = (im)1(g"(x) - <P7H(E)).

We now proceed towards the proof of Theorem 2. We begin with the following observation:

Lemma 8. Leti:7Z — X be a quasi-smooth closed immersion of qcqs derived schemes. Then
the homomorphism i, : Ko(Z)q = Ko(X)q has image contained in the subgroup Fil,ly Ko(X)q.

Proof. Given F € Perf(Z), the claim is that the virtual rank of i.(¥) is zero (as a locally
constant function on Xz,,). The claim being local on X, we may assume that X is affine, say
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X = Spec(R), and that Z is the derived zero-locus of functions fi, ..., f, € mo(R). Let M denote
the R/ (f1,- .., fn)-module T'(Z,F). Tt will suffice to show that the R-module

(X, i.(F)) = () Cofib(M L5 M)
i=1
has virtual rank 0, which is clear. g

We will need the following construction from the theory of A-rings (see [1, Exp. V, 5.3]):

Construction 9. Let A be a A-ring. Suppose that N € A is an element such that A\*(N) =0
for all k > d (for some d). Then there exist unique elements A\?(N,z) € A for all x € A, p > 1,
satisfying

AP(Nyz) - A_1(N) = XP(x - A_1(N)).
Similarly we have

YN, z) - A1 (N) =77 (2 - A_1(N)).
Lemma 10. For any x € A and any p > 1, we have

AP(N,z) € FilP~4(A).
For any x € Fil,lj(A), we have
YN, 2) — (1) e+ d - 1)@ e FilET(A).

The key ingredient in the proof of Theorem 2 is the following:

Proposition 11. Leti:Z — X be a quasi-smooth closed immersion of qcqs derived schemes.
Then for any x € Ko(Z) and any p = 1, we have an equality

ix (V" (Nz/x, 2)) = 7° (i (2))
m Ko(X)Q.

To prove it we will need the following lemma.

Lemma 12. Let i : Z — X be a quasi-smooth closed immersion of virtual codimension d.
Consider the blow-up square

b
Z—=X
Denote by L the conormal sheaf of the immersion ig, and by € the excess sheaf. Suppose there
exists a locally free Oz-module N’ such that [Nz x] = [N'] + 2 in Ko(Z). Then one has the
identity
A-1(&) =0 (mod 1- L)

Proof. In Ko(Z) we have the identities:

() = S (1R (E)

k>0
= (=D Ee -1

= (DI e+ L —-1- L)

= (=D)TAT (g Ngyx =241 - £).
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We claim that A\*(1 — £) is divisible by 1 — £ for all k > 1. Indeed, it is the coefficient of ¢*
in the power series A;(1 — £) = A\(1)/A:(£) = (1 +¢)/(1 + £t). Therefore, reducing modulo
(1-2L), we get:

A-1(€) 1)d71>\d71(9*NZ/X —2)

(_
(_l)dflAdfl(g*N/)
0

since N’ is of rank d — 2. O

Proof of Proposition 11. The statement will follow from the analogous formula for the AP:
i (AP (Nzx, @) = AP (i (2)).

We can guarantee that the assumption of Lemma 12 holds by replacing ¢ with the composite
i" : Z — X < Pg < Pg, (note that the statement for i’ will imply it for i). Recall that
X

f*: Qeoh(X) = Qeoh(X) is fully faithful, i.e. fif* ~id, and both functors f* and f,. preserve

perfect complexes. In particular f* : Ko(X) — Ko(X) admits a retraction, so it will suffice to
show

fri(AP(Nzx, o)) = [N (i (2)).
Using the excess intersection formula (Example 7), one reduces to showing the identity
(16)« (A" (£, 2)) = N ((ip)«(2))-
By Lemma 12 the element A_1(&) € Ko(Z) is divisible by 1 — [£], so there exists 2’ € K(Z)

such that © = 2’ - (1 — [£]). Then by the self-intersection formula (Example 6), we have
z = (ig)*(ig)«(2'). In other words, the relation in question can be rewritten as

(ie)«(ie)" (A (0 (=E),y")) = N((ie)(ie)" (¥)),
where 3" = (ig)«(2") (since (ig)*(Og(—E)) ~ £). The exact triangle
Ox(=E) = O = (ir)-0s,
gives the equality (ig).(1) =1 — [0 (—E)] and hence
(ig)" (i)« (1) = 1 = [£].

Using the projection formula we reduce to showing the relation

N ([0 (=E)y) =A@y - (1 - [0g(-E)]))
which holds by construction of the left-hand side, since A_;[0¢(—E)] = 1 — [0x(—E)]. O

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let z € Ko(Z)q and suppose that x € Filﬁ Ko(Z)q for some k, so that =
is a sum of elements of the form

@y (@) ()
with a € Q, ¢ +--- + 14, > k, and such that each x; € Fil# Ko(Z) for each j. Let R denote the

sub-Q-A-algebra of Ko(Z)q generated by the class [Nz,x] and the classes x;. Then z € Fil’f/(R)
and it will suffice to show that i*(Filﬁ(R)) C Fil§+d Ko(X)q. Since Ko(—) commutes with finite
direct sums, we may replace X by a connected component to assume that x; are represented
by perfect complexes of constant virtual rank r;. Choosing m such that Fil”(R) = 0, we now
argue by induction on k (the case k = m being trivial). Let b, = (—1)*~1(s — 1)! for each s. By
Lemma 10 we have
YNy jx, @) = byra - @ € FilFT (R).
Therefore, by the induction hypothesis we have

i (Y Nz x, ) = biga - ) € FIFF (Ko (X)q).
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From Proposition 11 we deduce that
VHUiu () = bhga - i () € FIFFHH K (X)q).

By Lemma 8, i,(z) € Fil' (Ko(X)q), so v (i, (z)) € Fil"™(K(X)q). It follows that i.(z) €
Fil**(K(X)q), as claimed. O

Our next goal is to define the Chern character map Ko(X) — Gr,Ko(X)q. This is a
construction that makes sense for rather general A-rings.

Notation 13. Let A be an N-graded commutative ring. Assume A° = Z or more generally
that A° = K is a binomial ring (which essentially means that \"(z) = (2) defines a A-structure
on K). Denote by A the product H@o A’ viewed as a unital commutative ring. There is a
canonical augmentation homomorphism A A0 = K, whose kernel we denote by At We
denote by 1+ AT the subgroup of the multiplicative group of units in A, consisting of elements
of augmentation 1.

Construction 14. Let A be an N-graded commutative ring as in Notation 13. The Chern
ring Chernk (A) associated to A has underlying abelian group K x (1 + A*) Its elements will
be denoted by [n, 2] withn € K and z =1+ Y ,., 2 € 1 + AT, with 2% € A’. The addition is
defined by -
[n,z] + [0, 2] = [n+n, z2].

We refer to [1, Exp. 0, Appendix, § 3] for a description of the multiplicative structure. Briefly
speaking, Cherngk (A) can be viewed as the result of adjoining a unit to the nonunital commutative
ring 1+ A*. Moreover, the A-structure on K induces a A-structure on Cherng(A) (see loc. cit.).
Note that there is an augmentation Cherng(A) — K given by [n, z] — n.

Construction 15. Let K be a binomial ring, and A an augmented K-A-algebra. Let Gr, A be
the associated graded K-algebra. For each x € A and i > 0, the ith Chern class ¢'(z) € Gri{ Ais
the class of the element v*(z — &()) € Filfy(A). We set ¢(z) = [e(x), 1+ X,.( ¢ ()] for each z.
This defines a homomorphism of K-A-algebras

—

+
¢: A= Kx(1+Gry(A)) = Cherng(Gr, A)
called the completed Chern character.

Construction 16. Let A an N-graded commutative ring as in Notation 13. Write Aq := A® Q.
The Chern homomorphism is a morphism of augmented K-algebras

ch : Chernk(A) — Kg

which is determined by the following properties: it is additive, sends 1 + 1, the positive-degree
components of ch(z) are given by homogeneous universal polynomials in the components of z,
and finally

ch[1,1+ z'] = exp(z!) = Z(xl)"/n'

n=0

Construction 17. For any formal power series f € Q[t], there is an associated additive
homomorphism
- —
Tr:14+AT 51+ Aqg
defined using Hirzebruch polynomials. For example, for f(¢) = t/(1 —exp(—t)), the construction
T} is called the Todd operator and denoted Td.

Now let X be a derived scheme and consider the A-ring Ko(X) (augmented over the binomial
ring H%(Xzar, Z)). We simplify the notation by writing

ch : Ko(X) 5 Chern(Gr, Ko(X)) 2 Gr, Ko(X)q.
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We can now make sense of the statement of GRR (Theorem 3).

The following is essentially formal:
Lemma 18. Let X be a gcgs derived scheme. If F is a locally free sheaf of rank n on X, then
we have

ch(A_1[F]) = (FY) Td(-F")

in Gr} Ko(X)q, where Td(—FY) = Td(F¥)~".
Exercise 19. Let i; : Z < Y and i3 : Y < X be quasi-smooth closed immersions of quasi-
compact derived schemes, of virtual codimensions d; and ds, respectively. Suppose that

Theorem 3 holds for i; with respect to an element x € Ko(Z), and for iy with respect to the
element (i1)4(x). Then it holds for i5 o i; with respect to the element x.

Proof of Theorem 3. Consider the composite ¢’ : X < P} < PL,,. Using Exercise 19, we
X

may replace i by ¢’ and assume that the condition of Lemma 12 is satisfied. Consider the
blow-up square:

b

Z =X
and adopt the notation of Lemma 12. As in the proof of Proposition 11, it will suffice to apply
f* and demonstrate the relation

f*ch(is(z)) = fril(ch(z) - Td(=Nz/x))

for any = € Ko(Z). Using the excess intersection formula (Theorem 5) and the fact that f*
commutes with ch, this is equivalent to the relation

ch((ig)«(g" () - A-1(€))) = (i) (ch(g"z) - Td(=g"Nz/x) - ¢ (€)).
Using the equality [g"Nz/x] = —([€] + [£]) we get Td(9"Nz/x) = Td(—Ng,x) - Td(=€). By
Lemma 18 we reduce to showing

(i) (9" (x) - A_1(£))) = (in)(ch(g™x - A1 () - TA(-NY ).

Now replacing = with g*(z) - A_1(&), and ¢ with ig, we may reduce to the case where i is of
virtual codimension 1. Moreover, since A_1(&) is divisible by 1 — [£] (Lemma 12), we may
reduce to the case where x = (ig)*(y) for some y € Ko(X). Thus, we need to show

ch(ivi*(y)) = il (ch(i" (y)) - Td(Ngx) ).
Using the projection formula on both sides, we reduce to showing
(0.1) ch(i. (1)) = 17 (TA(NY ) ~1)-
The exact triangle Ox(—Z) — Ox — .0z gives i, (1) = 1 — [£], where £ := Ox(—Z). Since £ is
of rank 1, we have &(£) = [1,1 + c'(£)], hence ch(£) = exp(c'(£)). Thus the left-hand side of
(0.1) is given by

ch(i.(1)) = 1 — exp(c!(L)).
For the right-hand side, note that since —[Ny,x] = —i*[£], we have
DTN ) ~1) = 124 (Td(—£Y)) = i2(1) - Td(~L)

by the projection formula. We have i](1) = —c'(£), by definition of ¢!(£), since i](1) is the
image of i,(1) =1 — [£] in Gr,ly Ko(X). Thus we have

TG ) ) = et (e) R 1~ explel (0),

as desired. ]
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