
Lecture 10
The Grothendieck–Riemann–Roch theorem

In this lecture we will state and prove the Grothendieck–Riemann–Roch theorem. Recall that
this theorem involves the γ-filtration on the K-theory of a derived scheme:

Construction 1. Let X be a derived scheme (admitting the resolution property1). Recall
that K0(X) has a λ-ring structure, with augmentation provided by the rank homomorphism
rk : K0(X) → H0(XZar,Z). As we have seen before, one has in this situation a decreasing
filtration Fil∗γ K0(X) called the γ-filtration. To describe it, set γk(x) = λk(x + k − 1) for any

x ∈ K0(X) and integer k. Then Fil1γ is defined as the kernel of the augmentation, and for k > 2,

Filkγ is generated by terms of the form

γk0(x0) · · · γkn(xn), (xi ∈ Fil1γ , k0 + · · ·+ kn > k).

Let i : Z ↪→ X be a quasi-smooth closed immersion. The GRR theorem concerns more
precisely two Gysin homomorphisms

i∗ : K0(Z)→ K0(X)

iγ∗ : Gr∗γ K0(Z)Q → Gr∗+dγ K0(X)Q.

The first comes from the fact that the functor i∗ : Qcoh(Z) → Qcoh(X) preserves perfect
complexes. The second comes from the following theorem, which will be our first goal for this
lecture:

Theorem 2. Let i : Z ↪→ X be a quasi-smooth closed immersion of qcqs derived schemes.
Suppose that i has virtual codimension d. Then the homomorphism i∗ : K0(Z)Q → K0(X)Q
sends Filkγ K0(Z)Q to Filk+dγ K0(X)Q, for any k.

The final ingredient in the statement of GRR is a certain map ch : K0(X)→ Grγ(K0(X)Q).
After constructing it, we will proceed to prove:

Theorem 3 (Grothendieck–Riemann–Roch). Let X be a qcqs derived scheme. Let i : Z ↪→ X be
a quasi-smooth closed immersion of virtual codimension d. Then there is a commutative square

K0(Z) K0(X)

Grγ(K0(Z)Q) Grγ(K0(X)Q)

i∗

ch ch

iγ∗(−·Td(−N∨Z/X))

That is, for any x ∈ K0(Z), we have the identity

ch(i∗(x)) = iγ∗(ch(x) · Td(−N∨Z/X)).

Remark 4. Note that −NZ/X is the class in K-theory of the cotangent complex LZ/X = NZ/X[1].
One can also prove a GRR theorem for the projection of a projective bundle π : PX(E)→ X.
Combining these two variants, one gets a GRR theorem for any quasi-smooth projective morphism
of qcqs derived schemes (where −NZ/X is replaced by the relative cotangent complex).

Our proof of GRR will use the following derived version of the excess intersection formula
(which we will not have time to prove today):

1There exists a sheaf of spectra K such that K0(X) ' π0Γ(X,K). If one admits the existence of this K, then
the λ-ring structure can be defined without the extra hypothesis on X. In this lecture, we will either assume that

this has been done, or that X admits the resolution property.
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Theorem 5 (Excess intersection formula). Suppose given an excessive square of derived schemes,
i.e. a commutative square

Z′ X′

Z X

i′

g f

i

satisfying the following conditions:

(a) The morphisms i and i′ are quasi-smooth closed immersions, of virtual codimensions d and
d′, respectively.

(b) The square is cartesian on underlying classical schemes. That is, the morphism Z′cl →
(Z×X X′)cl is invertible.

(c) The map g∗NZ/X → NZ′/X′ is surjective on π0.

Let E denote the excess sheaf, i.e., the fibre of the map g∗NZ/X → NZ′/X′ . By the assumptions,
E is locally free of rank d− d′ > 0. Then we have

f∗i∗(x) = i′∗(g
∗(x) · λ−1(E))

f∗iγ∗(x) = (i′)γ∗(g
∗(x) · cd−d

′
(E)),

for all x ∈ K0(Z) and for all x ∈ K0(Z)Q, respectively. Here λ−1(E) =
∑
i(−1)i[

∧i
(E)] and

cd−d
′
(E) is the top Chern class (to be defined).

Example 6. Let i : Z ↪→ X be a quasi-smooth closed immersion. Then we have an excessive
square

Z Z

Z X.

i

i

In this case there is “maximal excess”, i.e., E = NZ/X. Thus Theorem 5 gives the formulas

i∗i∗(x) = x · λ−1(NZ/X)

i∗iγ∗(x) = x · cd(NZ/X).

Example 7. Let i : Z ↪→ X be a quasi-smooth closed immersion of virtual codimension d. Let
X̃→ X be the blow-up and let iE : E ↪→ X̃ be the virtual exceptional divisor. Then the blow-up
square

E X̃

Z X

iE

g f

i

is excessive. Thus Theorem 5 gives the formulas

f∗i∗(x) = (iE)∗(g
∗(x) · λ−1(E))

f∗iγ∗(x) = (iE)γ∗(g
∗(x) · cd−1(E)).

We now proceed towards the proof of Theorem 2. We begin with the following observation:

Lemma 8. Let i : Z ↪→ X be a quasi-smooth closed immersion of qcqs derived schemes. Then
the homomorphism i∗ : K0(Z)Q → K0(X)Q has image contained in the subgroup Fil1γ K0(X)Q.

Proof. Given F ∈ Perf(Z), the claim is that the virtual rank of i∗(F) is zero (as a locally
constant function on XZar). The claim being local on X, we may assume that X is affine, say
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X = Spec(R), and that Z is the derived zero-locus of functions f1, . . . , fn ∈ π0(R). Let M denote
the R//(f1, . . . , fn)-module Γ(Z,F). It will suffice to show that the R-module

Γ(X, i∗(F)) '
n⊗
i=1

Cofib(M
fi−→ M)

has virtual rank 0, which is clear. �

We will need the following construction from the theory of λ-rings (see [1, Exp. V, 5.3]):

Construction 9. Let A be a λ-ring. Suppose that N ∈ A is an element such that λk(N) = 0
for all k > d (for some d). Then there exist unique elements λp(N, x) ∈ A for all x ∈ A, p > 1,
satisfying

λp(N, x) · λ−1(N) = λp(x · λ−1(N)).

Similarly we have

γp(N, x) · λ−1(N) = γp(x · λ−1(N)).

Lemma 10. For any x ∈ A and any p > 1, we have

γp(N, x) ∈ Filp−d(A).

For any x ∈ Filkγ(A), we have

γk+d(N, x)− (−1)k+d−1(k + d− 1)! · x ∈ Filk+1
γ (A).

The key ingredient in the proof of Theorem 2 is the following:

Proposition 11. Let i : Z ↪→ X be a quasi-smooth closed immersion of qcqs derived schemes.
Then for any x ∈ K0(Z) and any p > 1, we have an equality

i∗(γ
p(NZ/X, x)) = γp(i∗(x))

in K0(X)Q.

To prove it we will need the following lemma.

Lemma 12. Let i : Z ↪→ X be a quasi-smooth closed immersion of virtual codimension d.
Consider the blow-up square

E X̃

Z X

iE

g f

i

Denote by L the conormal sheaf of the immersion iE, and by E the excess sheaf. Suppose there
exists a locally free OZ-module N′ such that [NZ/X] = [N′] + 2 in K0(Z). Then one has the
identity

λ−1(E) ≡ 0 (mod 1− L)

in K0(Z).

Proof. In K0(Z) we have the identities:

λ−1(E) =
∑
k>0

(−1)kλk(E)

= (−1)d−1λd−1(E− 1)

= (−1)d−1λd−1(E + L− 1− L)

= (−1)d−1λd−1(g∗NZ/X − 2 + 1− L).
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We claim that λk(1 − L) is divisible by 1 − L for all k > 1. Indeed, it is the coefficient of tk

in the power series λt(1 − L) = λt(1)/λt(L) = (1 + t)/(1 + Lt). Therefore, reducing modulo
(1− L), we get:

λ−1(E) ≡ (−1)d−1λd−1(g∗NZ/X − 2)

≡ (−1)d−1λd−1(g∗N′)

≡ 0

since N′ is of rank d− 2. �

Proof of Proposition 11. The statement will follow from the analogous formula for the λp:

i∗(λ
p(NZ/X, x)) = λp(i∗(x)).

We can guarantee that the assumption of Lemma 12 holds by replacing i with the composite
i′ : Z ↪→ X ↪→ P1

X ↪→ P1
P1

X
(note that the statement for i′ will imply it for i). Recall that

f∗ : Qcoh(X)→ Qcoh(X̃) is fully faithful, i.e. f∗f
∗ ' id, and both functors f∗ and f∗ preserve

perfect complexes. In particular f∗ : K0(X)→ K0(X̃) admits a retraction, so it will suffice to
show

f∗i∗(λ
p(NZ/X, x)) = f∗λp(i∗(x)).

Using the excess intersection formula (Example 7), one reduces to showing the identity

(iE)∗(λ
p(L, x)) = λp((iE)∗(x)).

By Lemma 12 the element λ−1(E) ∈ K0(Z) is divisible by 1 − [L], so there exists x′ ∈ K0(Z)
such that x = x′ · (1 − [L]). Then by the self-intersection formula (Example 6), we have
x = (iE)∗(iE)∗(x

′). In other words, the relation in question can be rewritten as

(iE)∗(iE)∗(λp(OX̃(−E), y′)) = λp((iE)∗(iE)∗(y′)),

where y′ = (iE)∗(x
′) (since (iE)∗(OX̃(−E)) ' L). The exact triangle

OX̃(−E)→ OX̃ → (iE)∗OE,

gives the equality (iE)∗(1) = 1− [OX̃(−E)] and hence

(iE)∗(iE)∗(1) = 1− [L].

Using the projection formula we reduce to showing the relation

λp([OX̃(−E)], y′) = λp(y′ · (1− [OX̃(−E)]))

which holds by construction of the left-hand side, since λ−1[OX̃(−E)] = 1− [OX̃(−E)]. �

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let x ∈ K0(Z)Q and suppose that x ∈ Filkγ K0(Z)Q for some k, so that x
is a sum of elements of the form

a · γi1(x1) · · · γin(xn)

with a ∈ Q, i1 + · · ·+ in > k, and such that each xj ∈ Fil1γ K0(Z) for each j. Let R denote the

sub-Q-λ-algebra of K0(Z)Q generated by the class [NZ/X] and the classes xj . Then x ∈ Filkγ(R)

and it will suffice to show that i∗(Filkγ(R)) ⊂ Filk+dγ K0(X)Q. Since K0(−) commutes with finite
direct sums, we may replace X by a connected component to assume that xj are represented
by perfect complexes of constant virtual rank rj . Choosing m such that Film(R) = 0, we now
argue by induction on k (the case k = m being trivial). Let bs = (−1)s−1(s− 1)! for each s. By
Lemma 10 we have

γk+d(NZ/X, x)− bk+d · x ∈ Filk+1(R).

Therefore, by the induction hypothesis we have

i∗(γ
k+d(NZ/X, x)− bk+d · x) ∈ Filk+d+1(K0(X)Q).
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From Proposition 11 we deduce that

γk+d(i∗(x))− bk+d · i∗(x) ∈ Filk+d+1(K0(X)Q).

By Lemma 8, i∗(x) ∈ Fil1(K0(X)Q), so γk+d(i∗(x)) ∈ Filk+d(K0(X)Q). It follows that i∗(x) ∈
Filk+d(K0(X)Q), as claimed. �

Our next goal is to define the Chern character map K0(X) → Grγ K0(X)Q. This is a
construction that makes sense for rather general λ-rings.

Notation 13. Let A be an N-graded commutative ring. Assume A0 = Z or more generally
that A0 = K is a binomial ring (which essentially means that λn(x) =

(
x
n

)
defines a λ-structure

on K). Denote by Â the product
∏
i>0 Ai, viewed as a unital commutative ring. There is a

canonical augmentation homomorphism Â → A0 = K, whose kernel we denote by Â+. We
denote by 1 + Â+ the subgroup of the multiplicative group of units in Â, consisting of elements
of augmentation 1.

Construction 14. Let A be an N-graded commutative ring as in Notation 13. The Chern
ring ChernK(A) associated to A has underlying abelian group K× (1 + Â+). Its elements will

be denoted by [n, x] with n ∈ K and x = 1 +
∑
i>1 x

i ∈ 1 + Â+, with xi ∈ Ai. The addition is
defined by

[n, x] + [n′, x′] = [n+ n′, xx′].

We refer to [1, Exp. 0, Appendix, § 3] for a description of the multiplicative structure. Briefly
speaking, ChernK(A) can be viewed as the result of adjoining a unit to the nonunital commutative

ring 1 + Â+. Moreover, the λ-structure on K induces a λ-structure on ChernK(A) (see loc. cit.).
Note that there is an augmentation ChernK(A)→ K given by [n, x] 7→ n.

Construction 15. Let K be a binomial ring, and Λ an augmented K-λ-algebra. Let Grγ Λ be

the associated graded K-algebra. For each x ∈ Λ and i > 0, the ith Chern class ci(x) ∈ Griγ Λ is

the class of the element γi(x− ε(x)) ∈ Filiγ(Λ). We set c̃(x) = [ε(x), 1 +
∑
i>0 c

i(x)] for each x.
This defines a homomorphism of K-λ-algebras

c̃ : Λ→ K× ̂(1 + Grγ(Λ))
+

= ChernK(Grγ Λ)

called the completed Chern character.

Construction 16. Let A an N-graded commutative ring as in Notation 13. Write AQ := A⊗Q.
The Chern homomorphism is a morphism of augmented K-algebras

ch : ChernK(A)→ ÂQ

which is determined by the following properties: it is additive, sends 1 7→ 1, the positive-degree
components of ch(x) are given by homogeneous universal polynomials in the components of x,
and finally

ch[1, 1 + x1] = exp(x1) =
∑
n>0

(x1)n/n!.

Construction 17. For any formal power series f ∈ QJtK, there is an associated additive
homomorphism

Tf : 1 + Â+ → 1 + ÂQ

+

defined using Hirzebruch polynomials. For example, for f(t) = t/(1− exp(−t)), the construction
Tf is called the Todd operator and denoted Td.

Now let X be a derived scheme and consider the λ-ring K0(X) (augmented over the binomial
ring H0(XZar,Z)). We simplify the notation by writing

ch : K0(X)
c̃−→ Chern(Grγ K0(X))

ch−→ Grγ K0(X)Q.
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We can now make sense of the statement of GRR (Theorem 3).

The following is essentially formal:

Lemma 18. Let X be a qcqs derived scheme. If F is a locally free sheaf of rank n on X, then
we have

ch(λ−1[F]) = cn(F∨) Td(−F∨)

in Gr∗γ K0(X)Q, where Td(−F∨) = Td(F∨)−1.

Exercise 19. Let i1 : Z ↪→ Y and i2 : Y ↪→ X be quasi-smooth closed immersions of quasi-
compact derived schemes, of virtual codimensions d1 and d2, respectively. Suppose that
Theorem 3 holds for i1 with respect to an element x ∈ K0(Z), and for i2 with respect to the
element (i1)∗(x). Then it holds for i2 ◦ i1 with respect to the element x.

Proof of Theorem 3. Consider the composite i′ : X ↪→ P1
X ↪→ P1

P1
X

. Using Exercise 19, we

may replace i by i′ and assume that the condition of Lemma 12 is satisfied. Consider the
blow-up square:

E X̃

Z X

iE

g f

i

and adopt the notation of Lemma 12. As in the proof of Proposition 11, it will suffice to apply
f∗ and demonstrate the relation

f∗ ch(i∗(x)) = f∗iγ∗(ch(x) · Td(−NZ/X))

for any x ∈ K0(Z). Using the excess intersection formula (Theorem 5) and the fact that f∗

commutes with ch, this is equivalent to the relation

ch((iE)∗(g
∗(x) · λ−1(E))) = (iE)γ∗(ch(g∗x) · Td(−g∗NZ/X) · cd−1(Ê)).

Using the equality [g∗NZ/X] = −([E] + [L]) we get Td(g∗NZ/X) = Td(−NE/X̃) · Td(−E). By

Lemma 18 we reduce to showing

ch((iE)∗(g
∗(x) · λ−1(E))) = (iE)γ∗(ch(g∗x · λ−1(E)) · Td(−N∨

E/X̃
).

Now replacing x with g∗(x) · λ−1(E), and i with iE, we may reduce to the case where i is of
virtual codimension 1. Moreover, since λ−1(E) is divisible by 1 − [L] (Lemma 12), we may
reduce to the case where x = (iE)∗(y) for some y ∈ K0(X). Thus, we need to show

ch(i∗i
∗(y)) = iγ∗(ch(i∗(y)) · Td(N∨Z/X)−1).

Using the projection formula on both sides, we reduce to showing

(0.1) ch(i∗(1)) = iγ∗(Td(N∨Z/X)−1).

The exact triangle OX(−Z)→ OX → i∗OZ gives i∗(1) = 1− [L], where L := OX(−Z). Since L is
of rank 1, we have c̃(L) = [1, 1 + c1(L)], hence ch(L) = exp(c1(L)). Thus the left-hand side of
(0.1) is given by

ch(i∗(1)) = 1− exp(c1(L)).

For the right-hand side, note that since −[NZ/X] = −i∗[L], we have

iγ∗(Td(N∨Z/X)−1) = iγ∗ i
∗(Td(−L∨)) = iγ∗(1) · Td(−L∨)

by the projection formula. We have iγ∗(1) = −c1(L), by definition of c1(L), since iγ∗(1) is the
image of i∗(1) = 1− [L] in Gr1γ K0(X). Thus we have

iγ∗(Td(N∨Z/X)−1) = −c1(L) · 1− exp(c1(L))

−c1(L)
= 1− exp(c1(L)),

as desired. �
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