## Lecture 10 The Grothendieck–Riemann–Roch theorem

In this lecture we will state and prove the Grothendieck–Riemann–Roch theorem. Recall that this theorem involves the  $\gamma$ -filtration on the K-theory of a derived scheme:

**Construction 1.** Let X be a derived scheme (admitting the resolution property<sup>1</sup>). Recall that  $K_0(X)$  has a  $\lambda$ -ring structure, with augmentation provided by the rank homomorphism  $rk : K_0(X) \to H^0(X_{Zar}, \mathbb{Z})$ . As we have seen before, one has in this situation a decreasing filtration  $\operatorname{Fil}^*_{\gamma} K_0(X)$  called the  $\gamma$ -filtration. To describe it, set  $\gamma^k(x) = \lambda^k(x+k-1)$  for any  $x \in K_0(X)$  and integer k. Then  $\operatorname{Fil}^1_{\gamma}$  is defined as the kernel of the augmentation, and for  $k \ge 2$ ,  $\operatorname{Fil}^k_{\gamma}$  is generated by terms of the form

$$\gamma^{k_0}(x_0)\cdots\gamma^{k_n}(x_n), \qquad (x_i\in \mathrm{Fil}^1_{\gamma},\ k_0+\cdots+k_n \ge k).$$

Let  $i:\mathbf{Z} \hookrightarrow \mathbf{X}$  be a quasi-smooth closed immersion. The GRR theorem concerns more precisely two Gysin homomorphisms

$$\begin{split} &i_*: \mathrm{K}_0(\mathbf{Z}) \to \mathrm{K}_0(\mathbf{X}) \\ &i_*^{\gamma}: \mathrm{Gr}_{\gamma}^* \, \mathrm{K}_0(\mathbf{Z})_{\mathbf{Q}} \to \mathrm{Gr}_{\gamma}^{*+d} \, \mathrm{K}_0(\mathbf{X})_{\mathbf{Q}}. \end{split}$$

The first comes from the fact that the functor  $i_* : \operatorname{Qcoh}(Z) \to \operatorname{Qcoh}(X)$  preserves perfect complexes. The second comes from the following theorem, which will be our first goal for this lecture:

**Theorem 2.** Let  $i : \mathbb{Z} \hookrightarrow \mathbb{X}$  be a quasi-smooth closed immersion of qcqs derived schemes. Suppose that *i* has virtual codimension *d*. Then the homomorphism  $i_* : \mathrm{K}_0(\mathbb{Z})_{\mathbf{Q}} \to \mathrm{K}_0(\mathbb{X})_{\mathbf{Q}}$ sends  $\mathrm{Fil}_{\gamma}^k \mathrm{K}_0(\mathbb{Z})_{\mathbf{Q}}$  to  $\mathrm{Fil}_{\gamma}^{k+d} \mathrm{K}_0(\mathbb{X})_{\mathbf{Q}}$ , for any *k*.

The final ingredient in the statement of GRR is a certain map  $ch : K_0(X) \to Gr_{\gamma}(K_0(X)_{\mathbf{Q}})$ . After constructing it, we will proceed to prove:

**Theorem 3** (Grothendieck–Riemann–Roch). Let X be a qcqs derived scheme. Let  $i : Z \hookrightarrow X$  be a quasi-smooth closed immersion of virtual codimension d. Then there is a commutative square

$$\begin{array}{c} \mathrm{K}_{0}(\mathrm{Z}) & \xrightarrow{i_{*}} & \mathrm{K}_{0}(\mathrm{X}) \\ & \downarrow_{\mathrm{ch}} & \downarrow_{\mathrm{ch}} \\ \mathrm{Gr}_{\gamma}(\mathrm{K}_{0}(\mathrm{Z})_{\mathbf{Q}})^{i_{*}^{\gamma}(-\cdot\mathrm{Td}(-\mathcal{N}_{\mathbf{Z}/\mathbf{X}}^{\vee}))} \mathrm{Gr}_{\gamma}(\mathrm{K}_{0}(\mathrm{X})_{\mathbf{Q}}) \end{array}$$

That is, for any  $x \in K_0(\mathbb{Z})$ , we have the identity

$$\operatorname{ch}(i_*(x)) = i_*^{\gamma}(\operatorname{ch}(x) \cdot \operatorname{Td}(-\mathcal{N}_{\mathbf{Z}/\mathbf{X}}^{\vee}))$$

**Remark 4.** Note that  $-\mathcal{N}_{Z/X}$  is the class in K-theory of the cotangent complex  $\mathcal{L}_{Z/X} = \mathcal{N}_{Z/X}[1]$ . One can also prove a GRR theorem for the projection of a projective bundle  $\pi : \mathbf{P}_X(\mathcal{E}) \to X$ . Combining these two variants, one gets a GRR theorem for any quasi-smooth projective morphism of qcqs derived schemes (where  $-\mathcal{N}_{Z/X}$  is replaced by the relative cotangent complex).

Our proof of GRR will use the following derived version of the excess intersection formula (which we will not have time to prove today):

<sup>&</sup>lt;sup>1</sup>There exists a *sheaf of spectra* K such that  $K_0(X) \simeq \pi_0 \Gamma(X, K)$ . If one admits the existence of this K, then the  $\lambda$ -ring structure can be defined without the extra hypothesis on X. In this lecture, we will either assume that this has been done, or that X admits the resolution property.

**Theorem 5** (Excess intersection formula). Suppose given an excessive square of derived schemes, *i.e.* a commutative square



satisfying the following conditions:

(a) The morphisms i and i' are quasi-smooth closed immersions, of virtual codimensions d and d', respectively.

(b) The square is cartesian on underlying classical schemes. That is, the morphism  $Z'_{cl} \rightarrow (Z \times_X X')_{cl}$  is invertible.

(c) The map  $g^* \mathcal{N}_{Z/X} \to \mathcal{N}_{Z'/X'}$  is surjective on  $\pi_0$ .

Let  $\mathcal{E}$  denote the excess sheaf, *i.e.*, the fibre of the map  $g^* \mathcal{N}_{Z/X} \to \mathcal{N}_{Z'/X'}$ . By the assumptions,  $\mathcal{E}$  is locally free of rank  $d - d' \ge 0$ . Then we have

$$\begin{split} f^*i_*(x) &= i'_*(g^*(x) \cdot \lambda_{-1}(\mathcal{E})) \\ f^*i_*^{\gamma}(x) &= (i')_*^{\gamma}(g^*(x) \cdot c^{d-d'}(\mathcal{E})). \end{split}$$

for all  $x \in K_0(\mathbb{Z})$  and for all  $x \in K_0(\mathbb{Z})_{\mathbf{Q}}$ , respectively. Here  $\lambda_{-1}(\mathcal{E}) = \sum_i (-1)^i [\bigwedge^i (\mathcal{E})]$  and  $c^{d-d'}(\mathcal{E})$  is the top Chern class (to be defined).

**Example 6.** Let  $i: \mathbb{Z} \hookrightarrow \mathbb{X}$  be a quasi-smooth closed immersion. Then we have an excessive square

In this case there is "maximal excess", i.e.,  $\mathcal{E} = \mathcal{N}_{Z/X}$ . Thus Theorem 5 gives the formulas

$$\begin{split} &i^*i_*(x) = x \cdot \lambda_{-1}(\mathbb{N}_{\mathbf{Z}/\mathbf{X}}) \\ &i^*i_*^{\gamma}(x) = x \cdot c^d(\mathbb{N}_{\mathbf{Z}/\mathbf{X}}). \end{split}$$

**Example 7.** Let  $i : \mathbb{Z} \hookrightarrow \mathbb{X}$  be a quasi-smooth closed immersion of virtual codimension d. Let  $\tilde{\mathbb{X}} \to \mathbb{X}$  be the blow-up and let  $i_{\mathbb{E}} : \mathbb{E} \hookrightarrow \tilde{\mathbb{X}}$  be the virtual exceptional divisor. Then the blow-up square

$$\begin{array}{cccc}
E & \stackrel{i_{E}}{\longrightarrow} & \tilde{X} \\
\downarrow g & & \downarrow_{j} \\
Z & \stackrel{i}{\longrightarrow} & X
\end{array}$$

is excessive. Thus Theorem 5 gives the formulas

$$f^*i_*(x) = (i_{\mathbf{E}})_*(g^*(x) \cdot \lambda_{-1}(\mathcal{E}))$$
  
$$f^*i_*^{\gamma}(x) = (i_{\mathbf{E}})_*^{\gamma}(g^*(x) \cdot c^{d-1}(\mathcal{E})).$$

We now proceed towards the proof of Theorem 2. We begin with the following observation:

**Lemma 8.** Let  $i : \mathbb{Z} \hookrightarrow \mathbb{X}$  be a quasi-smooth closed immersion of qcqs derived schemes. Then the homomorphism  $i_* : \mathbb{K}_0(\mathbb{Z})_{\mathbb{Q}} \to \mathbb{K}_0(\mathbb{X})_{\mathbb{Q}}$  has image contained in the subgroup  $\operatorname{Fil}_{\gamma}^1 \mathbb{K}_0(\mathbb{X})_{\mathbb{Q}}$ .

*Proof.* Given  $\mathcal{F} \in \operatorname{Perf}(Z)$ , the claim is that the virtual rank of  $i_*(\mathcal{F})$  is zero (as a locally constant function on  $X_{\operatorname{Zar}}$ ). The claim being local on X, we may assume that X is affine, say

3

X = Spec(R), and that Z is the derived zero-locus of functions  $f_1, \ldots, f_n \in \pi_0(R)$ . Let M denote the  $R/\!\!/(f_1, \ldots, f_n)$ -module  $\Gamma(Z, \mathcal{F})$ . It will suffice to show that the R-module

$$\Gamma(\mathbf{X}, i_*(\mathcal{F})) \simeq \bigotimes_{i=1}^n \operatorname{Cofib}(\mathbf{M} \xrightarrow{f_i} \mathbf{M})$$

has virtual rank 0, which is clear.

We will need the following construction from the theory of  $\lambda$ -rings (see [1, Exp. V, 5.3]):

**Construction 9.** Let A be a  $\lambda$ -ring. Suppose that  $N \in A$  is an element such that  $\lambda^k(N) = 0$  for all k > d (for some d). Then there exist unique elements  $\lambda^p(N, x) \in A$  for all  $x \in A$ ,  $p \ge 1$ , satisfying

$$\lambda^{p}(\mathbf{N}, x) \cdot \lambda_{-1}(\mathbf{N}) = \lambda^{p}(x \cdot \lambda_{-1}(\mathbf{N})),$$

Similarly we have

$$\gamma^{p}(\mathbf{N}, x) \cdot \lambda_{-1}(\mathbf{N}) = \gamma^{p}(x \cdot \lambda_{-1}(\mathbf{N})).$$

**Lemma 10.** For any  $x \in A$  and any  $p \ge 1$ , we have

$$\gamma^p(\mathbf{N}, x) \in \mathrm{Fil}^{p-d}(\mathbf{A}).$$

For any  $x \in \operatorname{Fil}_{\gamma}^{k}(A)$ , we have

$$\gamma^{k+d}(\mathbf{N}, x) - (-1)^{k+d-1}(k+d-1)! \cdot x \in \mathrm{Fil}_{\gamma}^{k+1}(\mathbf{A}).$$

The key ingredient in the proof of Theorem 2 is the following:

**Proposition 11.** Let  $i : \mathbb{Z} \hookrightarrow \mathbb{X}$  be a quasi-smooth closed immersion of qcqs derived schemes. Then for any  $x \in K_0(\mathbb{Z})$  and any  $p \ge 1$ , we have an equality

$$i_*(\gamma^p(\mathcal{N}_{Z/X}, x)) = \gamma^p(i_*(x))$$

in  $K_0(X)_Q$ .

To prove it we will need the following lemma.

**Lemma 12.** Let  $i : Z \hookrightarrow X$  be a quasi-smooth closed immersion of virtual codimension d. Consider the blow-up square

$$\begin{array}{ccc} \mathbf{E} & \stackrel{i_{\mathbf{E}}}{\longrightarrow} & \tilde{\mathbf{X}} \\ & \downarrow^{g} & & \downarrow^{f} \\ \mathbf{Z} & \stackrel{i}{\longrightarrow} & \mathbf{X} \end{array}$$

Denote by  $\mathcal{L}$  the conormal sheaf of the immersion  $i_E$ , and by  $\mathcal{E}$  the excess sheaf. Suppose there exists a locally free  $\mathcal{O}_Z$ -module  $\mathcal{N}'$  such that  $[\mathcal{N}_{Z/X}] = [\mathcal{N}'] + 2$  in  $K_0(Z)$ . Then one has the identity

$$\lambda_{-1}(\mathcal{E}) \equiv 0 \pmod{1-\mathcal{L}}$$

in  $K_0(Z)$ .

*Proof.* In  $K_0(Z)$  we have the identities:

$$\begin{split} \lambda_{-1}(\mathcal{E}) &= \sum_{k \ge 0} (-1)^k \lambda^k(\mathcal{E}) \\ &= (-1)^{d-1} \lambda^{d-1} (\mathcal{E} - 1) \\ &= (-1)^{d-1} \lambda^{d-1} (\mathcal{E} + \mathcal{L} - 1 - \mathcal{L}) \\ &= (-1)^{d-1} \lambda^{d-1} (g^* \mathcal{N}_{Z/X} - 2 + 1 - \mathcal{L}). \end{split}$$

We claim that  $\lambda^k(1-\mathcal{L})$  is divisible by  $1-\mathcal{L}$  for all  $k \ge 1$ . Indeed, it is the coefficient of  $t^k$ in the power series  $\lambda_t(1-\mathcal{L}) = \lambda_t(1)/\lambda_t(\mathcal{L}) = (1+t)/(1+\mathcal{L}t)$ . Therefore, reducing modulo  $(1 - \mathcal{L})$ , we get:

$$\lambda_{-1}(\mathcal{E}) \equiv (-1)^{d-1} \lambda^{d-1} (g^* \mathcal{N}_{Z/X} - 2)$$
$$\equiv (-1)^{d-1} \lambda^{d-1} (g^* \mathcal{N}')$$
$$\equiv 0$$

since  $\mathcal{N}'$  is of rank d-2.

Proof of Proposition 11. The statement will follow from the analogous formula for the  $\lambda^p$ :

$$i_*(\lambda^p(\mathcal{N}_{\mathbb{Z}/\mathcal{X}}, x)) = \lambda^p(i_*(x)).$$

We can guarantee that the assumption of Lemma 12 holds by replacing i with the composite  $i': \mathbb{Z} \hookrightarrow \mathbb{X} \hookrightarrow \mathbf{P}^1_{\mathbb{X}} \hookrightarrow \mathbf{P}^1_{\mathbf{P}^1_{\mathbf{i}}}$  (note that the statement for i' will imply it for i). Recall that  $f^*: \operatorname{Qcoh}(X) \to \operatorname{Qcoh}(\tilde{X})$  is fully faithful, i.e.  $f_*f^* \simeq \operatorname{id}$ , and both functors  $f^*$  and  $f_*$  preserve perfect complexes. In particular  $f^*: K_0(X) \to K_0(X)$  admits a retraction, so it will suffice to show

$$f^*i_*(\lambda^p(\mathcal{N}_{\mathbf{Z}/\mathbf{X}}, x)) = f^*\lambda^p(i_*(x)).$$

Using the excess intersection formula (Example 7), one reduces to showing the identity

$$(i_{\mathrm{E}})_*(\lambda^p(\mathcal{L}, x)) = \lambda^p((i_{\mathrm{E}})_*(x))$$

By Lemma 12 the element  $\lambda_{-1}(\mathcal{E}) \in K_0(\mathbb{Z})$  is divisible by  $1 - [\mathcal{L}]$ , so there exists  $x' \in K_0(\mathbb{Z})$ such that  $x = x' \cdot (1 - [\mathcal{L}])$ . Then by the self-intersection formula (Example 6), we have  $x = (i_{\rm E})^* (i_{\rm E})_* (x')$ . In other words, the relation in question can be rewritten as

$$(i_{\rm E})_*(i_{\rm E})^*(\lambda^p(\mathcal{O}_{\tilde{X}}(-{\rm E}), y')) = \lambda^p((i_{\rm E})_*(i_{\rm E})^*(y')),$$

where  $y' = (i_{\rm E})_*(x')$  (since  $(i_{\rm E})^*(\mathcal{O}_{\tilde{X}}(-{\rm E})) \simeq \mathcal{L})$ . The exact triangle

$$\mathcal{O}_{\tilde{\mathbf{X}}}(-\mathbf{E}) \to \mathcal{O}_{\tilde{\mathbf{X}}} \to (i_{\mathbf{E}})_* \mathcal{O}_{\mathbf{F}}$$

gives the equality  $(i_{\rm E})_*(1) = 1 - [\mathcal{O}_{\tilde{X}}(-{\rm E})]$  and hence  $(i_{\rm E})^*(i_{\rm E})_*(1) = 1 - [\mathcal{L}].$ 

$$(i_{\rm E})^*(i_{\rm E})_*(1) = 1 - [\mathcal{L}]$$

Using the projection formula we reduce to showing the relation

$$\lambda^p([\mathcal{O}_{\tilde{\mathbf{X}}}(-\mathbf{E})], y') = \lambda^p(y' \cdot (1 - [\mathcal{O}_{\tilde{\mathbf{X}}}(-\mathbf{E})]))$$

which holds by construction of the left-hand side, since  $\lambda_{-1}[\mathcal{O}_{\tilde{\mathbf{x}}}(-\mathbf{E})] = 1 - [\mathcal{O}_{\tilde{\mathbf{x}}}(-\mathbf{E})]$ . 

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let  $x \in K_0(\mathbb{Z})_{\mathbf{Q}}$  and suppose that  $x \in \operatorname{Fil}^k_{\gamma} K_0(\mathbb{Z})_{\mathbf{Q}}$  for some k, so that x is a sum of elements of the form

$$a \cdot \gamma^{i_1}(x_1) \cdots \gamma^{i_n}(x_n)$$

with  $a \in \mathbf{Q}$ ,  $i_1 + \cdots + i_n \ge k$ , and such that each  $x_j \in \operatorname{Fil}_{\gamma}^1 \mathrm{K}_0(\mathbb{Z})$  for each j. Let R denote the sub-**Q**- $\lambda$ -algebra of K<sub>0</sub>(Z)<sub>**Q**</sub> generated by the class  $[\mathcal{N}_{Z/X}]$  and the classes  $x_j$ . Then  $x \in \operatorname{Fil}_{\gamma}^k(\mathbb{R})$ and it will suffice to show that  $i_*(\operatorname{Fil}^k_{\gamma}(\mathbf{R})) \subset \operatorname{Fil}^{k+d}_{\gamma} \mathrm{K}_0(\mathbf{X})_{\mathbf{Q}}$ . Since  $\mathrm{K}_0(-)$  commutes with finite direct sums, we may replace X by a connected component to assume that  $x_i$  are represented by perfect complexes of constant virtual rank  $r_i$ . Choosing m such that  $\operatorname{Fil}^m(\mathbf{R}) = 0$ , we now argue by induction on k (the case k = m being trivial). Let  $b_s = (-1)^{s-1}(s-1)!$  for each s. By Lemma 10 we have

$$\gamma^{k+d}(\mathcal{N}_{\mathbf{Z}/\mathbf{X}}, x) - b_{k+d} \cdot x \in \mathrm{Fil}^{k+1}(\mathbf{R}).$$

Therefore, by the induction hypothesis we have

$$i_*(\gamma^{k+d}(\mathbb{N}_{\mathbb{Z}/\mathcal{X}}, x) - b_{k+d} \cdot x) \in \mathrm{Fil}^{k+d+1}(\mathcal{K}_0(\mathcal{X})_{\mathbf{Q}}).$$

From Proposition 11 we deduce that

$$\gamma^{k+d}(i_*(x)) - b_{k+d} \cdot i_*(x) \in \operatorname{Fil}^{k+d+1}(\operatorname{K}_0(X)_{\mathbf{Q}}).$$

By Lemma 8,  $i_*(x) \in \operatorname{Fil}^1(\mathrm{K}_0(\mathrm{X})_{\mathbf{Q}})$ , so  $\gamma^{k+d}(i_*(x)) \in \operatorname{Fil}^{k+d}(\mathrm{K}_0(\mathrm{X})_{\mathbf{Q}})$ . It follows that  $i_*(x) \in \operatorname{Fil}^{k+d}(\mathrm{K}_0(\mathrm{X})_{\mathbf{Q}})$ , as claimed.

Our next goal is to define the Chern character map  $K_0(X) \to Gr_{\gamma} K_0(X)_Q$ . This is a construction that makes sense for rather general  $\lambda$ -rings.

**Notation 13.** Let A be an N-graded commutative ring. Assume  $A^0 = \mathbb{Z}$  or more generally that  $A^0 = K$  is a *binomial ring* (which essentially means that  $\lambda^n(x) = \binom{x}{n}$  defines a  $\lambda$ -structure on K). Denote by  $\hat{A}$  the product  $\prod_{i \ge 0} A^i$ , viewed as a unital commutative ring. There is a canonical augmentation homomorphism  $\hat{A} \to A^0 = K$ , whose kernel we denote by  $\hat{A}^+$ . We denote by  $1 + \hat{A}^+$  the subgroup of the multiplicative group of units in  $\hat{A}$ , consisting of elements of augmentation 1.

**Construction 14.** Let A be an N-graded commutative ring as in Notation 13. The *Chern* ring Chern<sub>K</sub>(A) associated to A has underlying abelian group  $K \times (1 + \hat{A}^+)$ . Its elements will be denoted by [n, x] with  $n \in K$  and  $x = 1 + \sum_{i \ge 1} x^i \in 1 + \hat{A}^+$ , with  $x^i \in A^i$ . The addition is defined by

$$[n, x] + [n', x'] = [n + n', xx'].$$

We refer to [1, Exp. 0, Appendix, § 3] for a description of the multiplicative structure. Briefly speaking,  $\operatorname{Chern}_{K}(A)$  can be viewed as the result of adjoining a unit to the nonunital commutative ring  $1 + \hat{A}^{+}$ . Moreover, the  $\lambda$ -structure on K induces a  $\lambda$ -structure on  $\operatorname{Chern}_{K}(A)$  (see *loc. cit.*). Note that there is an augmentation  $\operatorname{Chern}_{K}(A) \to K$  given by  $[n, x] \mapsto n$ .

**Construction 15.** Let K be a binomial ring, and  $\Lambda$  an augmented K- $\lambda$ -algebra. Let  $\operatorname{Gr}_{\gamma} \Lambda$  be the associated graded K-algebra. For each  $x \in \Lambda$  and i > 0, the *i*th Chern class  $c^{i}(x) \in \operatorname{Gr}_{\gamma}^{i} \Lambda$  is the class of the element  $\gamma^{i}(x - \varepsilon(x)) \in \operatorname{Fil}_{\gamma}^{i}(\Lambda)$ . We set  $\tilde{c}(x) = [\varepsilon(x), 1 + \sum_{i>0} c^{i}(x)]$  for each x. This defines a homomorphism of K- $\lambda$ -algebras

$$\tilde{c}: \Lambda \to \mathcal{K} \times (\widehat{1 + \operatorname{Gr}_{\gamma}}(\Lambda))^{+} = \operatorname{Chern}_{\mathcal{K}}(\operatorname{Gr}_{\gamma} \Lambda)$$

called the *completed Chern character*.

**Construction 16.** Let A an N-graded commutative ring as in Notation 13. Write  $A_{\mathbf{Q}} := A \otimes \mathbf{Q}$ . The *Chern homomorphism* is a morphism of augmented K-algebras

$$\operatorname{ch}:\operatorname{Chern}_{\mathrm{K}}(\mathrm{A})\to \widetilde{\mathrm{A}}_{\mathbf{Q}}$$

which is determined by the following properties: it is additive, sends  $1 \mapsto 1$ , the positive-degree components of ch(x) are given by homogeneous universal polynomials in the components of x, and finally

$$\operatorname{ch}[1, 1 + x^{1}] = \exp(x^{1}) = \sum_{n \ge 0} (x^{1})^{n} / n!.$$

**Construction 17.** For any formal power series  $f \in \mathbf{Q}[t]$ , there is an associated additive homomorphism

$$\mathcal{T}_f: 1 + \hat{A}^+ \to 1 + \widehat{A_Q}^+$$

defined using Hirzebruch polynomials. For example, for  $f(t) = t/(1 - \exp(-t))$ , the construction  $\mathcal{T}_f$  is called the *Todd operator* and denoted Td.

Now let X be a derived scheme and consider the  $\lambda$ -ring  $K_0(X)$  (augmented over the binomial ring  $H^0(X_{Zar}, \mathbb{Z})$ ). We simplify the notation by writing

$$\operatorname{ch}: \operatorname{K}_0(\operatorname{X}) \xrightarrow{c} \operatorname{Chern}(\operatorname{Gr}_{\gamma} \operatorname{K}_0(\operatorname{X})) \xrightarrow{\operatorname{cn}} \operatorname{Gr}_{\gamma} \operatorname{K}_0(\operatorname{X})_{\mathbf{Q}}.$$

We can now make sense of the statement of GRR (Theorem 3).

The following is essentially formal:

**Lemma 18.** Let X be a qcqs derived scheme. If  $\mathcal{F}$  is a locally free sheaf of rank n on X, then we have

$$\operatorname{ch}(\lambda_{-1}[\mathcal{F}]) = c^n(\mathcal{F}^{\vee}) \operatorname{Td}(-\mathcal{F}^{\vee})$$

in  $\operatorname{Gr}^*_{\gamma} \mathcal{K}_0(\mathcal{X})_{\mathbf{Q}}$ , where  $\operatorname{Td}(-\mathcal{F}^{\vee}) = \operatorname{Td}(\mathcal{F}^{\vee})^{-1}$ .

**Exercise 19.** Let  $i_1 : \mathbb{Z} \hookrightarrow \mathbb{Y}$  and  $i_2 : \mathbb{Y} \hookrightarrow \mathbb{X}$  be quasi-smooth closed immersions of quasicompact derived schemes, of virtual codimensions  $d_1$  and  $d_2$ , respectively. Suppose that Theorem 3 holds for  $i_1$  with respect to an element  $x \in K_0(\mathbb{Z})$ , and for  $i_2$  with respect to the element  $(i_1)_*(x)$ . Then it holds for  $i_2 \circ i_1$  with respect to the element x.

Proof of Theorem 3. Consider the composite  $i' : X \hookrightarrow \mathbf{P}^1_X \hookrightarrow \mathbf{P}^1_{\mathbf{P}^1_X}$ . Using Exercise 19, we may replace i by i' and assume that the condition of Lemma 12 is satisfied. Consider the blow-up square:

$$\begin{array}{c} \mathbf{E} \xrightarrow{i_{\mathbf{E}}} \tilde{\mathbf{X}} \\ \downarrow^{g} & \downarrow^{f} \\ \mathbf{Z} \xrightarrow{i} \mathbf{X} \end{array}$$

and adopt the notation of Lemma 12. As in the proof of Proposition 11, it will suffice to apply  $f^*$  and demonstrate the relation

$$f^* \operatorname{ch}(i_*(x)) = f^* i_*^{\gamma}(\operatorname{ch}(x) \cdot \operatorname{Td}(-\mathcal{N}_{Z/X}))$$

for any  $x \in K_0(\mathbb{Z})$ . Using the excess intersection formula (Theorem 5) and the fact that  $f^*$  commutes with ch, this is equivalent to the relation

$$\operatorname{ch}((i_{\mathrm{E}})_*(g^*(x) \cdot \lambda_{-1}(\mathcal{E}))) = (i_{\mathrm{E}})_*^{\gamma}(\operatorname{ch}(g^*x) \cdot \operatorname{Td}(-g^*\mathcal{N}_{\mathrm{Z/X}}) \cdot c^{d-1}(\hat{\mathcal{E}})).$$

Using the equality  $[g^* \mathcal{N}_{Z/X}] = -([\mathcal{E}] + [\mathcal{L}])$  we get  $\mathrm{Td}(g^* \mathcal{N}_{Z/X}) = \mathrm{Td}(-\mathcal{N}_{E/\tilde{X}}) \cdot \mathrm{Td}(-\mathcal{E})$ . By Lemma 18 we reduce to showing

$$\operatorname{ch}((i_{\mathrm{E}})_{*}(g^{*}(x) \cdot \lambda_{-1}(\mathcal{E}))) = (i_{\mathrm{E}})_{*}^{\gamma}(\operatorname{ch}(g^{*}x \cdot \lambda_{-1}(\mathcal{E})) \cdot \operatorname{Td}(-\mathcal{N}_{\mathrm{E}/\tilde{X}}^{\vee}).$$

Now replacing x with  $g^*(x) \cdot \lambda_{-1}(\mathcal{E})$ , and i with  $i_{\rm E}$ , we may reduce to the case where i is of virtual codimension 1. Moreover, since  $\lambda_{-1}(\mathcal{E})$  is divisible by  $1 - [\mathcal{L}]$  (Lemma 12), we may reduce to the case where  $x = (i_{\rm E})^*(y)$  for some  $y \in K_0(X)$ . Thus, we need to show

$$\operatorname{ch}(i_*i^*(y)) = i_*^{\gamma}(\operatorname{ch}(i^*(y)) \cdot \operatorname{Td}(\mathcal{N}_{Z/X}^{\vee})^{-1}).$$

Using the projection formula on both sides, we reduce to showing

(0.1) 
$$\operatorname{ch}(i_*(1)) = i_*^{\gamma}(\operatorname{Td}(\mathcal{N}_{Z/X}^{\vee})^{-1})$$

The exact triangle  $\mathcal{O}_{\mathcal{X}}(-\mathbb{Z}) \to \mathcal{O}_{\mathcal{X}} \to i_*\mathcal{O}_{\mathbb{Z}}$  gives  $i_*(1) = 1 - [\mathcal{L}]$ , where  $\mathcal{L} := \mathcal{O}_{\mathcal{X}}(-\mathbb{Z})$ . Since  $\mathcal{L}$  is of rank 1, we have  $\tilde{c}(\mathcal{L}) = [1, 1 + c^1(\mathcal{L})]$ , hence  $\operatorname{ch}(\mathcal{L}) = \exp(c^1(\mathcal{L}))$ . Thus the left-hand side of (0.1) is given by

$$\operatorname{ch}(i_*(1)) = 1 - \exp(c^1(\mathcal{L})).$$

For the right-hand side, note that since  $-[\mathcal{N}_{Z/X}] = -i^*[\mathcal{L}]$ , we have

$$i_*^{\gamma}(\mathrm{Td}(\mathcal{N}_{\mathbb{Z}/\mathcal{X}}^{\vee})^{-1}) = i_*^{\gamma}i^*(\mathrm{Td}(-\mathcal{L}^{\vee})) = i_*^{\gamma}(1) \cdot \mathrm{Td}(-\mathcal{L}^{\vee})$$

by the projection formula. We have  $i_*^{\gamma}(1) = -c^1(\mathcal{L})$ , by definition of  $c^1(\mathcal{L})$ , since  $i_*^{\gamma}(1)$  is the image of  $i_*(1) = 1 - [\mathcal{L}]$  in  $\operatorname{Gr}_{\gamma}^1 \operatorname{K}_0(X)$ . Thus we have

$$i_*^{\gamma}(\mathrm{Td}(\mathcal{N}_{\mathrm{Z/X}}^{\vee})^{-1}) = -c^1(\mathcal{L}) \cdot \frac{1 - \exp(c^1(\mathcal{L}))}{-c^1(\mathcal{L})} = 1 - \exp(c^1(\mathcal{L}))$$

as desired.

References

[1] SGA 6.