
Lecture 4
K-theory of derived schemes I

In this lecture we will introduce the K-theory (K0) of a stable∞-category, and begin studying
the example K0(Perf(X)) where X is a derived scheme. We start by briefly recalling the definition
of a stable ∞-category.

Definition 1. Let C be an ∞-category. A zero object 0 is an object that is both initial and
final, so that the spaces

MapsC(0, x), MapsC(x, 0)

are (weakly) contractible for all objects x ∈ C.

Lemma 2. The space of zero objects in an ∞-category C is either empty or contractible.

If C admits a zero object, it is called a pointed ∞-category. The zero object is then unique
in the ∞-categorical sense, i.e., it is unique up to a contractible space of choices.

Remark 3. If C is pointed, then there is always a zero map 0 : x→ y between any two objects,
which is by definition the composite of the two unique morphisms x→ 0 and 0→ y.

Definition 4. Let C be a pointed ∞-category. A triangle in C is a diagram x′
f−→ x

g−→ x′′

together with a null-homotopy of g ◦ f , i.e., an isomorphism g ◦ f ' 0 in the ∞-groupoid
MapsC(x′, x′′). Equivalently, it is the datum of a square

x′ x

0 x′′

f

g

and a 2-simplex witnessing its commutativity.

Definition 5. A triangle is called a fibre sequence if the above square is (homotopy) cartesian.
Dually, a cofibre sequence is a triangle such that the above square is (homotopy) cocartesian.

Suppose that C is pointed and admits finite limits. Then given any morphism f : x→ y, we
can consider the pullback of the diagram

x

0 y

f

and call this the (homotopy) fibre of f , denoted Fib(f). By construction we have a fibre sequence

Fib(f) → x
f−→ y for any morphism f . Dually, we have a notion of cofibre, denoted Cofib(f),

fitting in a cofibre sequence x
f−→ y → Cofib(f).

Example 6. For any object x ∈ C, we write x[1] = Cofib(x → 0) (when this cofibre exists).
Dually we write x[−1] = Fib(0→ x) (again when it exists).

Definition 7. Let C be a pointed ∞-category that admits finite limits and colimits. We say
that it is stable if it satisfies one of the following equivalent conditions:

(a) The functors x 7→ x[1] and x 7→ x[−1] define mutually inverse auto-equivalences of C.

(b) Any given triangle in C is a fibre sequence iff it is a cofibre sequence.

(c) Any given commutative square in C is cartesian iff it is cocartesian.

In a stable ∞-category, we will simply use the term exact triangle to refer to triangles that
are fibre sequences, or equivalently cofibre sequences.
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Exercise 8. Let C be a stable ∞-category. Then C is additive, i.e., the canonical morphisms
xt y → x× y are invertible for all objects x, y ∈ C. Equivalently, the homotopy category Ho(C)
is additive.

We will use the notation x⊕ y for the object x t y ' x× y and call this the direct sum.

Remark 9. Let C be a stable ∞-category. Then the homotopy category Ho(C) admits a
structure of triangulated category :

• It is additive, by Exercise 8.
• The shift functor on Ho(C) is induced by the auto-equivalence x 7→ x[1] on C.
• The distinguished triangles are those isomorphic to triangles in the image of the local-

ization functor C→ Ho(C).

Example 10. For any commutative ring R, consider the ∞-category ModR, by definition the
dg-nerve of the dg-category D(R). The ∞-category ModR is stable.

Example 11. More generally, let R be a simplicial commutative ring. Then we defined ModR

as the dg-nerve of the dg-category of cofibrant dg-modules (over the normalized chain complex
of R). The ∞-category ModR is stable.

Definition 12. A functor C→ D between stable ∞-categories is called exact if it commutes
with finite limits, or equivalently with finite colimits.

Let D be a stable ∞-category. A stable subcategory C ⊂ D is a full subcategory whose
objects are closed under finite (co)limits (formed in D).

Example 13. For any simplicial commutative ring R, the full subcategory Modperf
R ⊂ ModR of

perfect R-modules is a stable subcategory.

Construction 14. Let C be an essentially small stable ∞-category. The abelian group K0(C)
is freely generated by the objects of C, modulo the relations [x] = [x′] + [x′′] for all exact
triangles x′ → x→ x′′ in C.

Remark 15. The group K0(C) can be defined only using the homotopy category Ho(C)
(equipped with its triangulated structure).

Example 16.

• Let x ' y be an isomorphism in C. Then the exact triangle x
∼−→ y → 0 gives the

relation [x] = [y] in K0(C).
• Let x be an object in C. Then the exact triangle x→ 0→ x[1] gives [x[1]] = −[x] in

K0(C).
• Let x, y be objects in C. Then the exact triangle x→ x⊕ y → y gives [x] + [y] = [x⊕ y]

in K0(C).

Remark 17. Note that any element of the group K0(C) can be represented as the class [x] of
some object x ∈ C. This is not true for the K-theory of abelian or exact categories, for example.

Example 18. Let R be a simplicial commutative ring. Then K0(R) is by definition the abelian

group K0(Modperf
R ).

Example 19. More generally, let X be a derived scheme. Then we defined an∞-category Perf(X)
of perfect complexes on X, a full subcategory of the ∞-category Qcoh(X) of quasi-coherent
sheaves. This is stable, and we set K0(X) = K0(Perf(X)). By construction, K0(Spec(R)) '
K0(R).

Example 20 (Eilenberg swindle). For any derived scheme X, the group K0(Qcoh(X)) is zero.
More generally, let C be a stable ∞-category admitting infinite coproducts. Then for any object
x ∈ C, the isomorphism

x⊕
⊕
n>1

x '
⊕
n>0

x
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gives the relation [x] = 0 in K0(C).

Construction 21. Let f : Y → X be a morphism of derived schemes. Then the exact functor
f∗ : Qcoh(X)→ Qcoh(Y) preserves perfect complexes, so we get an induced homomorphism

f∗ : K0(X)→ K0(Y).

Remark 22. If f : Y → X is proper, of finite presentation, and of finite tor-amplitude, then it
is a theorem of Lurie that the functor f∗ : Qcoh(Y)→ Qcoh(X) also preserves perfect complexes.
Therefore there is also covariant functoriality (Gysin maps)

f∗ : K0(Y)→ K0(X).

Our next goal will be to give a simpler description of the K-theory of X when X is affine,
using vector bundles instead of perfect complexes. For this we will need to make a bit of a
digression.

The t-structure on ModR is a useful organizational tool:

Proposition 23. Let R be a simplicial commutative ring.

(i) Let (ModR)>0 denote the full subcategory of ModR spanned by connective R-modules, sat-
isfying the condition that πi(M) := H−i(M) = 0 for i < 0. The inclusion (ModR)>0 ↪→ ModR

admits a right adjoint M 7→ τ>0(M).

(ii) Dually let (ModR)60 denote the full subcategory of R-modules such that πi(M) = 0 for i > 0.
The inclusion (ModR)60 ↪→ ModR admits a left adjoint M 7→ τ60(M).

(iii) These two subcategories define a canonical t-structure ((ModR)>0, (ModR)60) on ModR.

For any integer n, we will also write (ModR)>n := (ModR)>0[n] and (ModR)6n := (ModR)60[n].
We have functors τ>n : ModR → (ModR)>n and τ6n : ModR → (ModR)6n, right and left ad-
joints to the respective inclusions.

Exercise 24. Let (ModR)♥ denote the heart of the t-structure, defined as the intersection of
the two categories (ModR)>0 and (ModR)60. The assignment M 7→ π0(M) defines a functor
ModR → (Modπ0(R))

♥, and induces an equivalence

(ModR)♥ ' (Modπ0R)♥.

Proposition 25. The t-structure on ModR is left- and right-complete. In particular, for any
R-module M we have functorial isomorphisms

M
∼−→ lim←−

n

τ6n(M),

lim−→
n

τ>n(M)
∼−→ M.

Recall the following definitions:

Definition 26. An R-module M is finitely generated projective if it is a direct summand of a
free module R⊕n.

We let Modproj
R ⊂ ModR denote the full subcategory of finitely generated projective R-

modules.

Exercise 27. An R-module M is finitely generated projective iff it is locally free of finite rank ;
that is, if there exists a Zariski covering (R→ Rα)α such that each M⊗R Rα is isomorphic to
R⊕nα for some nα.

We have seen that any finitely generated projective R-module M gives rise to a vector bundle
Spec(SymR(M)) over Spec(R). In order to relate the K-theory of perfect modules with that
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of locally free modules, we would like to define a filtration on Modperf
R whose first piece is the

subcategory of locally frees. We begin by discussing finiteness conditions on R-modules in more
detail.

Proposition 28. Let M ∈ Modperf
R . Then we have:

(i) M is n-connective, i.e. M ∈ (ModR)>n, for some n. In other words, M is bounded below.

(ii) Let πn(M) be the lowest nonvanishing homotopy group. Then πn(M) is of finite presentation
as a π0(R)-module.

Proof.

(i) Recall that the perfect R-modules coincide with the compact objects of ModR. Therefore,
writing M as a filtered colimit of its n-connective covers τ>n(M), we have:

MapsModR
(M,M) ' lim−→

n

MapsModR
(M, τ>n(M)).

It follows that the identity morphism M→ M factors through τ>n(M) for some M, which means
that M is a direct summand of τ>n(M). This clearly implies that πi(M) = 0 for i < n.

(ii) By (i), we can replace M by some M[n] to make it connective. The assertion that π0(M) is
of finite presentation as a π0(R)-module is equivalent to the assertion that π0(M) is compact
in (Modπ0(R))

♥, i.e., that the assignment N 7→ Maps(Modπ0(R))♥
(π0(M),N) preserves filtered

colimits when viewed as a functor (Modπ0(R))
♥ → Set. But we have functorial equivalences

Maps(Modπ0(R))♥
(π0(M),N) ' MapsModR

(M,N),

where N is viewed as an R-module via restriction of scalars along R→ π0(R). Thus the claim
follows by compactness of M in ModR. �

We next give another equivalent characterization of locally free modules in Modperf
R .

Definition 29. A connective R-module M ∈ (ModR)>0 is flat if it satisfies one of the following
equivalent conditions:

(i) The π0(R)-module π0(M) is flat, and πi(M) ' πi(R)⊗π0(R) π0(M) for all i.

(ii) The functor N 7→ M⊗R N preserves discrete R-modules.

(iii) The functor N 7→ M⊗R N is left t-exact; that is, it sends (ModR)60 into (ModR)60.

Proposition 30. Let M be a connective perfect R-module. Then M is flat iff M is finitely
generated projective.

Proof. Suppose that M is finitely generated free. Then it is clearly flat, since if N is discrete, then
so is R⊕n⊗RN ' N⊕n. In general, if M is finitely generated projective, we can write M⊕P ' R⊕n

for some P ∈ Modproj
R and integer n. Then for any discrete N we have (M⊗RN)⊕(P⊗RN) ' N⊕n,

which shows that πi(M⊗R N) is a direct summand of zero for i > 0.

In the other direction, suppose that M is perfect and flat. By perfectness, we know that π0(M)
is of finite presentation as a π0(R)-module. Therefore we can find a morphism φ : R⊕n → M
that is surjective on π0. By flatness of M, π0(M) is also flat, and hence projective, so that φ
admits a splitting on π0. Hence the claim follows from the following exercise. �

Exercise 31. Let M be a flat R-module. Then the following conditions are equivalent:

(i) M is projective in the sense that for any map of connective R-modules N1 → N2 that is
surjective on π0, any map M→ N2 lifts to N1 (up to homotopy).

(ii) π0(M) is projective as a π0(R)-module.

We now filter the category Modperf
R by tor-amplitude:
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Definition 32. An R-module M ∈ ModR has tor-amplitude 6 n if for all discrete R-modules
(ModR)♥, we have πi(M⊗R N) = 0 for i > n. We say that M is of finite tor-amplitude if it is of
tor-amplitude 6 n for some n > 0.

Example 33. If M is connective, then it is flat iff it is of tor-amplitude 6 0.

Exercise 34.

(a) Show that the condition “of finite tor-amplitude” is stable under finite colimits and direct
summands in ModR.

(b) Deduce that any perfect R-module is of finite tor-amplitude.

Next time we will see that every perfect R-module can be built out of finite colimits and
direct summands from objects of Modproj

R .


