Lecture 4 K-theory of derived schemes I

In this lecture we will introduce the K-theory (K_0) of a stable ∞ -category, and begin studying the example $K_0(\operatorname{Perf}(X))$ where X is a derived scheme. We start by briefly recalling the definition of a stable ∞ -category.

Definition 1. Let **C** be an ∞ -category. A zero object 0 is an object that is both *initial* and *final*, so that the spaces

$$\operatorname{Maps}_{\mathbf{C}}(0, x), \quad \operatorname{Maps}_{\mathbf{C}}(x, 0)$$

are (weakly) contractible for all objects $x \in \mathbf{C}$.

Lemma 2. The space of zero objects in an ∞ -category C is either empty or contractible.

If **C** admits a zero object, it is called a *pointed* ∞ -category. The zero object is then unique in the ∞ -categorical sense, i.e., it is unique up to a contractible space of choices.

Remark 3. If **C** is pointed, then there is always a zero map $0: x \to y$ between any two objects, which is by definition the composite of the two unique morphisms $x \to 0$ and $0 \to y$.

Definition 4. Let **C** be a pointed ∞ -category. A *triangle* in **C** is a diagram $x' \xrightarrow{f} x \xrightarrow{g} x''$ together with a null-homotopy of $g \circ f$, i.e., an isomorphism $g \circ f \simeq 0$ in the ∞ -groupoid Maps_C(x', x''). Equivalently, it is the datum of a square

and a 2-simplex witnessing its commutativity.

Definition 5. A triangle is called a *fibre sequence* if the above square is (homotopy) cartesian. Dually, a *cofibre sequence* is a triangle such that the above square is (homotopy) cocartesian.

Suppose that C is pointed and admits finite limits. Then given any morphism $f: x \to y$, we can consider the pullback of the diagram

$$0 \longrightarrow \overset{x}{\underset{f}{\overset{f}{\longrightarrow}}} y$$

and call this the (homotopy) fibre of f, denoted Fib(f). By construction we have a fibre sequence Fib $(f) \to x \xrightarrow{f} y$ for any morphism f. Dually, we have a notion of *cofibre*, denoted Cofib(f), fitting in a cofibre sequence $x \xrightarrow{f} y \to \text{Cofib}(f)$.

Example 6. For any object $x \in \mathbf{C}$, we write $x[1] = \text{Cofib}(x \to 0)$ (when this cofibre exists). Dually we write $x[-1] = \text{Fib}(0 \to x)$ (again when it exists).

Definition 7. Let **C** be a pointed ∞ -category that admits finite limits and colimits. We say that it is *stable* if it satisfies one of the following equivalent conditions:

- (a) The functors $x \mapsto x[1]$ and $x \mapsto x[-1]$ define mutually inverse auto-equivalences of **C**.
- (b) Any given triangle in C is a fibre sequence iff it is a cofibre sequence.
- (c) Any given commutative square in \mathbf{C} is cartesian iff it is cocartesian.

In a stable ∞ -category, we will simply use the term *exact triangle* to refer to triangles that are fibre sequences, or equivalently cofibre sequences.

Exercise 8. Let C be a stable ∞ -category. Then C is additive, i.e., the canonical morphisms $x \sqcup y \to x \times y$ are invertible for all objects $x, y \in \mathbf{C}$. Equivalently, the homotopy category Ho(C) is additive.

We will use the notation $x \oplus y$ for the object $x \sqcup y \simeq x \times y$ and call this the *direct sum*.

Remark 9. Let C be a stable ∞ -category. Then the homotopy category Ho(C) admits a structure of *triangulated category*:

- It is additive, by Exercise 8.
- The shift functor on Ho(C) is induced by the auto-equivalence $x \mapsto x[1]$ on C.
- The distinguished triangles are those isomorphic to triangles in the image of the localization functor $\mathbf{C} \to \text{Ho}(\mathbf{C})$.

Example 10. For any commutative ring R, consider the ∞ -category Mod_R, by definition the dg-nerve of the dg-category $\underline{D}(R)$. The ∞ -category Mod_R is stable.

Example 11. More generally, let R be a simplicial commutative ring. Then we defined Mod_R as the dg-nerve of the dg-category of cofibrant dg-modules (over the normalized chain complex of R). The ∞ -category Mod_R is stable.

Definition 12. A functor $\mathbf{C} \to \mathbf{D}$ between stable ∞ -categories is called *exact* if it commutes with finite limits, or equivalently with finite colimits.

Let **D** be a stable ∞ -category. A *stable subcategory* $\mathbf{C} \subset \mathbf{D}$ is a full subcategory whose objects are closed under finite (co)limits (formed in **D**).

Example 13. For any simplicial commutative ring R, the full subcategory $Mod_R^{perf} \subset Mod_R$ of perfect R-modules is a *stable* subcategory.

Construction 14. Let **C** be an essentially small stable ∞ -category. The abelian group $K_0(\mathbf{C})$ is freely generated by the objects of **C**, modulo the relations [x] = [x'] + [x''] for all exact triangles $x' \to x \to x''$ in **C**.

Remark 15. The group $K_0(\mathbf{C})$ can be defined only using the homotopy category $H_0(\mathbf{C})$ (equipped with its triangulated structure).

Example 16.

- Let $x \simeq y$ be an isomorphism in **C**. Then the exact triangle $x \xrightarrow{\sim} y \to 0$ gives the relation [x] = [y] in $K_0(\mathbf{C})$.
- Let x be an object in **C**. Then the exact triangle $x \to 0 \to x[1]$ gives [x[1]] = -[x] in $K_0(\mathbf{C})$.
- Let x, y be objects in **C**. Then the exact triangle $x \to x \oplus y \to y$ gives $[x] + [y] = [x \oplus y]$ in $K_0(\mathbf{C})$.

Remark 17. Note that any element of the group $K_0(\mathbf{C})$ can be represented as the class [x] of some object $x \in \mathbf{C}$. This is not true for the K-theory of abelian or exact categories, for example.

Example 18. Let R be a simplicial commutative ring. Then $K_0(R)$ is by definition the abelian group $K_0(Mod_R^{perf})$.

Example 19. More generally, let X be a derived scheme. Then we defined an ∞ -category Perf(X) of perfect complexes on X, a full subcategory of the ∞ -category Qcoh(X) of quasi-coherent sheaves. This is stable, and we set $K_0(X) = K_0(Perf(X))$. By construction, $K_0(Spec(R)) \simeq K_0(R)$.

Example 20 (Eilenberg swindle). For any derived scheme X, the group $K_0(Qcoh(X))$ is zero. More generally, let **C** be a stable ∞ -category admitting *infinite* coproducts. Then for any object $x \in \mathbf{C}$, the isomorphism

$$x \oplus \bigoplus_{n \geqslant 1} x \simeq \bigoplus_{n \geqslant 0} x$$

gives the relation [x] = 0 in $K_0(\mathbf{C})$.

Construction 21. Let $f : Y \to X$ be a morphism of derived schemes. Then the exact functor $f^* : \operatorname{Qcoh}(X) \to \operatorname{Qcoh}(Y)$ preserves perfect complexes, so we get an induced homomorphism

$$f^* : \mathrm{K}_0(\mathrm{X}) \to \mathrm{K}_0(\mathrm{Y}).$$

Remark 22. If $f : Y \to X$ is proper, of finite presentation, and of finite tor-amplitude, then it is a theorem of Lurie that the functor $f_* : \operatorname{Qcoh}(Y) \to \operatorname{Qcoh}(X)$ also preserves perfect complexes. Therefore there is also covariant functoriality (Gysin maps)

$$f_* : \mathrm{K}_0(\mathrm{Y}) \to \mathrm{K}_0(\mathrm{X}).$$

Our next goal will be to give a simpler description of the K-theory of X when X is affine, using vector bundles instead of perfect complexes. For this we will need to make a bit of a digression.

The *t*-structure on Mod_R is a useful organizational tool:

Proposition 23. Let R be a simplicial commutative ring.

(i) Let $(Mod_R)_{\geq 0}$ denote the full subcategory of Mod_R spanned by connective R-modules, satisfying the condition that $\pi_i(M) := H^{-i}(M) = 0$ for i < 0. The inclusion $(Mod_R)_{\geq 0} \hookrightarrow Mod_R$ admits a right adjoint $M \mapsto \tau_{\geq 0}(M)$.

(ii) Dually let $(Mod_R)_{\leq 0}$ denote the full subcategory of R-modules such that $\pi_i(M) = 0$ for i > 0. The inclusion $(Mod_R)_{\leq 0} \hookrightarrow Mod_R$ admits a left adjoint $M \mapsto \tau_{\leq 0}(M)$.

(iii) These two subcategories define a canonical t-structure $((Mod_R)_{\geq 0}, (Mod_R)_{\leq 0})$ on Mod_R .

For any integer n, we will also write $(Mod_R)_{\geq n} := (Mod_R)_{\geq 0}[n]$ and $(Mod_R)_{\leq n} := (Mod_R)_{\leq 0}[n]$. We have functors $\tau_{\geq n} : Mod_R \to (Mod_R)_{\geq n}$ and $\tau_{\leq n} : Mod_R \to (Mod_R)_{\leq n}$, right and left adjoints to the respective inclusions.

Exercise 24. Let $(Mod_R)^{\heartsuit}$ denote the heart of the t-structure, defined as the intersection of the two categories $(Mod_R)_{\ge 0}$ and $(Mod_R)_{\le 0}$. The assignment $M \mapsto \pi_0(M)$ defines a functor $Mod_R \to (Mod_{\pi_0(R)})^{\heartsuit}$, and induces an equivalence

$$(\mathrm{Mod}_{\mathrm{R}})^{\heartsuit} \simeq (\mathrm{Mod}_{\pi_0 \mathrm{R}})^{\heartsuit}.$$

Proposition 25. The t-structure on Mod_R is left- and right-complete. In particular, for any R-module M we have functorial isomorphisms

$$\begin{split} \mathbf{M} &\xrightarrow{\sim} \lim_{n} \tau_{\leq n}(\mathbf{M}), \\ & \lim_{n} \tau_{\geq n}(\mathbf{M}) \xrightarrow{\sim} \mathbf{M}. \end{split}$$

Recall the following definitions:

Definition 26. An R-module M is *finitely generated projective* if it is a direct summand of a free module $\mathbb{R}^{\oplus n}$.

We let $Mod_R^{proj} \subset Mod_R$ denote the full subcategory of finitely generated projective R-modules.

Exercise 27. An R-module M is finitely generated projective iff it is *locally free of finite rank*; that is, if there exists a Zariski covering $(R \to R_{\alpha})_{\alpha}$ such that each $M \otimes_{R} R_{\alpha}$ is isomorphic to $R^{\oplus n_{\alpha}}$ for some n_{α} .

We have seen that any finitely generated projective R-module M gives rise to a vector bundle $Spec(Sym_R(M))$ over Spec(R). In order to relate the K-theory of perfect modules with that

of locally free modules, we would like to define a filtration on $\operatorname{Mod}_{R}^{\operatorname{perf}}$ whose first piece is the subcategory of locally frees. We begin by discussing finiteness conditions on R-modules in more detail.

Proposition 28. Let $M \in Mod_R^{perf}$. Then we have:

(i) M is n-connective, i.e. M ∈ (Mod_R)≥n, for some n. In other words, M is bounded below.
(ii) Let π_n(M) be the lowest nonvanishing homotopy group. Then π_n(M) is of finite presentation as a π₀(R)-module.

Proof.

(i) Recall that the perfect R-modules coincide with the compact objects of Mod_R. Therefore, writing M as a filtered colimit of its *n*-connective covers $\tau_{\geq n}(M)$, we have:

$$\operatorname{Maps}_{\operatorname{Mod}_{R}}(M, M) \simeq \varinjlim_{n} \operatorname{Maps}_{\operatorname{Mod}_{R}}(M, \tau_{\geqslant n}(M)).$$

It follows that the identity morphism $M \to M$ factors through $\tau_{\geq n}(M)$ for some M, which means that M is a direct summand of $\tau_{\geq n}(M)$. This clearly implies that $\pi_i(M) = 0$ for i < n.

(ii) By (i), we can replace M by some M[n] to make it connective. The assertion that $\pi_0(M)$ is of finite presentation as a $\pi_0(R)$ -module is equivalent to the assertion that $\pi_0(M)$ is compact in $(Mod_{\pi_0(R)})^{\heartsuit}$, i.e., that the assignment $N \mapsto Maps_{(Mod_{\pi_0(R)})^{\heartsuit}}(\pi_0(M), N)$ preserves filtered colimits when viewed as a functor $(Mod_{\pi_0(R)})^{\heartsuit} \rightarrow$ Set. But we have functorial equivalences

$$\operatorname{Maps}_{(\operatorname{Mod}_{\pi_0(R)})^{\heartsuit}}(\pi_0(M), N) \simeq \operatorname{Maps}_{\operatorname{Mod}_R}(M, N),$$

where N is viewed as an R-module via restriction of scalars along $R \to \pi_0(R)$. Thus the claim follows by compactness of M in Mod_R.

We next give another equivalent characterization of locally free modules in Mod_{R}^{perf} .

Definition 29. A connective R-module $M \in (Mod_R)_{\geq 0}$ is *flat* if it satisfies one of the following equivalent conditions:

- (i) The $\pi_0(\mathbf{R})$ -module $\pi_0(\mathbf{M})$ is flat, and $\pi_i(\mathbf{M}) \simeq \pi_i(\mathbf{R}) \otimes_{\pi_0(\mathbf{R})} \pi_0(\mathbf{M})$ for all *i*.
- (ii) The functor $N \mapsto M \otimes_R N$ preserves discrete R-modules.
- (iii) The functor $N \mapsto M \otimes_R N$ is left t-exact; that is, it sends $(Mod_R)_{\leq 0}$ into $(Mod_R)_{\leq 0}$.

Proposition 30. Let M be a connective perfect R-module. Then M is flat iff M is finitely generated projective.

Proof. Suppose that M is finitely generated free. Then it is clearly flat, since if N is discrete, then so is $\mathbb{R}^{\oplus n} \otimes_{\mathbb{R}} \mathbb{N} \simeq \mathbb{N}^{\oplus n}$. In general, if M is finitely generated projective, we can write $\mathbb{M} \oplus \mathbb{P} \simeq \mathbb{R}^{\oplus n}$ for some $\mathbb{P} \in \mathrm{Mod}_{\mathbb{R}}^{\mathrm{proj}}$ and integer n. Then for any discrete N we have $(\mathbb{M} \otimes_{\mathbb{R}} \mathbb{N}) \oplus (\mathbb{P} \otimes_{\mathbb{R}} \mathbb{N}) \simeq \mathbb{N}^{\oplus n}$, which shows that $\pi_i(\mathbb{M} \otimes_{\mathbb{R}} \mathbb{N})$ is a direct summand of zero for i > 0.

In the other direction, suppose that M is perfect and flat. By perfectness, we know that $\pi_0(M)$ is of finite presentation as a $\pi_0(R)$ -module. Therefore we can find a morphism $\phi : R^{\oplus n} \to M$ that is surjective on π_0 . By flatness of M, $\pi_0(M)$ is also flat, and hence projective, so that ϕ admits a splitting on π_0 . Hence the claim follows from the following exercise.

Exercise 31. Let M be a flat R-module. Then the following conditions are equivalent:

(i) M is *projective* in the sense that for any map of connective R-modules $N_1 \rightarrow N_2$ that is surjective on π_0 , any map $M \rightarrow N_2$ lifts to N_1 (up to homotopy).

(ii) $\pi_0(M)$ is projective as a $\pi_0(R)$ -module.

We now filter the category $\operatorname{Mod}_{\mathsf{R}}^{\mathsf{perf}}$ by tor-amplitude:

4

Definition 32. An R-module $M \in Mod_R$ has *tor-amplitude* $\leq n$ if for all discrete R-modules $(Mod_R)^{\heartsuit}$, we have $\pi_i(M \otimes_R N) = 0$ for i > n. We say that M is of *finite tor-amplitude* if it is of tor-amplitude $\leq n$ for some $n \geq 0$.

Example 33. If M is connective, then it is flat iff it is of tor-amplitude ≤ 0 .

Exercise 34.

(a) Show that the condition "of finite tor-amplitude" is stable under finite colimits and direct summands in $\rm Mod_R.$

(b) Deduce that any perfect R-module is of finite tor-amplitude.

Next time we will see that every perfect R-module can be built out of finite colimits and direct summands from objects of Mod_R^{proj} .