Lecture 5
K-theory of derived schemes II

In this lecture we will introduce the additive K-theory of a derived scheme X, and compare
it with the perfect complex K-theory in the affine case. In the second part we will discuss
projective spaces over derived schemes in some more detail.

Definition 1. An oco-category C is additive if for any objects x, i, the canonical map xlLly — xxy
is invertible.

In this case we write x & y for the object x Ly ~ x X y. Recall that any stable co-category is
additive.

Example 2. For a simplicial commutative ring R, consider the full subcategory Mod%roj -

Mod%erf spanned by finitely generated projective R-modules. Then the oo-category Mod%mj is
additive but not stable.

Construction 3 (Additive K-theory). Let C be an additive co-category. The abelian group
K§ (C) is the free abelian group generated by objects of C, modulo the relation identifying
[ @ y] = [z] + [y] for any two objects z and y.

Remark 4. Note that the construction K§ (C) only depends on the homotopy category Ho(C)
(which is also additive).

Example 5. Let R be a simplicial commutative ring. Then the additive K-theory of R is
defined as K§ (R) := K§ (Mod}™®).

Example 6. Let X be a derived scheme. A quasi-coherent sheaf F € Qcoh(X) is locally free
of finite rank if there exists a Zariski covering (X, <— X), such that there are isomorphisms
Flx,, ~ O;‘?:@ for some n,, > 0. Let Qcoh(X)*!" € Qcoh(X) denote the full subcategory of locally
free sheaves of finite rank. The additive K-theory of X is defined as K (X) := Ko(Qcoh(X)cfr).
We have K§ (Spec(R)) ~ KJ'(R).

Theorem 7. Let R be a simplicial commutative ring. Then there is a canonical isomorphism
L K§(R) = Ko(R)

of abelian groups. Moreover, this isomorphism is (covariantly) functorial in R.

Proof. Tt is clear that the inclusion Mod2® < 1\/[odlfflrf induces a homomorphism ¢ : K& (R) —
Ko(R). Since the conditions “perfect” and “projective finitely generated” are stable under
extensions of scalars M — M ®g R/, the map ¢ is functorial. We will construct an inverse map
x. Let [M] € Ko(R) be the class of a perfect R-module M. Replacing M with some shift M[],
we can assume that M is connective (since [M[k]] = (—1)*[M] in Ko(R)). Recall that M is of
tor-amplitude < n for some n. If n = 0, then we saw last time that M belongs to ModpRroj, S0
we set x[M] := [M]. In general, we know that mo(M) is of finite presentation as a 7o(R)-module,
so we can find a map ¢ : R®¥™ — M that is surjective on mg. Then we have an exact triangle

F — R®™ 2 M
where F is the fibre of ¢. We claim that F is of tor-amplitude < n — 1. Indeed this follows
immediately from the long exact sequence
o= Tt (M @A N) = 1, (F @A N) = 71, (RO @g N) = 7, M @R N) — - -
associated to the exact triangle F ®g N — R®™ @g N — M ®g N, where we note that, if N is
discrete, then so is R®™ @g N ~ N®™, Now we have [M] = [R®™] — [F] in Ko(R), so we set
XM = x[R®™] — x[F] = [R®*™] — x[F],
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where x[F] is defined by recursion. It is easy to check that this is independent of the chosen ¢
and m, that it indeed induces a well-defined map y : Ko(R) — K (R), and that the latter is
inverse to ¢. O

As an application of this comparison result, we can deduce the following “derived nil-invariance”
property for Kgy:

Theorem 8. Let R be a simplicial commutative ring. Then the canonical homomorphism
Ko(R) = Ko(mo(R))

is bijective.

Proof. By Theorem 7 we reduce to showing that
Kg (R) — Kg (m0(R))

is bijective, where the map is induced by the assignment M — M ®g mo(R). Since every

M € Mod®™ is flat, this is identified with M — 7o(M). Therefore the claim follows from the
following fact, which we leave as an exercise. O

Exercise 9. The functor ModpRroj — MOdfr;(EjR) induces an equivalence on homotopy categories.

Remark 10. We will not discuss them in this course, but the higher K-groups K;(R) do
see the difference between R and mo(R) (starting from ¢ > 2). In fact, one can show that if
K;(R) — K;(mp(R)) are bijective for all i > 2, then R ~ my(R).

We will now switch topics. An important ingredient in the Grothendieck—Riemann—Roch
theorem is the projective bundle formula, which describes the K-theory of a projective bundle.
In order to prove it we will need a more detailed discussion of projective bundles over derived
schemes.

Let X be a derived scheme and & € Qcoh(X)™°', Recall that the projective bundle p :
Px (&) — X classifies pairs (£, u), where £ is a locally free sheaf of rank one, and u : p*(€) — £
is surjective on my. The universal such pair is denoted (O(1), uyniv). We let O(m) := O(1)®™
for each integer m € Z.

Let X = Spec(R) and & = O™, In this case we can give an explicit combinatorial
description of Px(€) = Pg.

Construction 11. Let [n] denote the set {0,1,...,n}. For each subset I C [n], consider the
additive commutative monoid My C Z"** of tuples (ko, ..., k,) with kg+---+k, = 0 and k; > 0
for i ¢ 1. The associated monoid algebra R[M;] is the subalgebra of R[Z"t1] = R[zZ!, ..., 2]
generated by x;/x; for i €1, j € [n].

As T varies, we get a diagram I — R[M;]. For any inclusion I C J with I nonempty, the
transition map R[Mi] — R[Mj] is a localization at z;/x; for j € J and i € I. In particular, the
morphisms Spec(R[M;]) — Spec(R[Mj]) are open immersions.

Theorem 12. There is an isomorphism
lim  Spec(R[M]) — Pg
@#IC[n]

in the co-category of derived stacks.

This gives the following combinatorial description of the category of quasi-coherent sheaves:

Corollary 13. There is an equivalence of co-categories

Qcoh(PR) = im  Modg,)-
@#IC[n]



In terms of this equivalence, the line bundles O(m) can be described as follows.

Construction 14. Fix an integer m € Z. For each subset I C [n], let Mj(m) C Z"*! denote
the submonoid of tuples (ko, ..., k,) such that kg + -+ +k, =m and k; > 0 for ¢ € I. Then the
monoid algebra R[My(m)] is a free R[Mj]-module of rank one, and we have:

I'(Spec(R[Mi]), O(m)) ~ R[Mi(m)]
for each nonempty subset I C [n].

We'll end today’s lecture by calculating the space of global sections I'(Pf, O(m)) explicitly.

Construction 15. Given a tuple k = (ko,...,k,) € Z""! with k; > 0 for each i, set m =
ko + -+ + k. Then we can view k as an element of Mj(m) for any subset I C [n]. This gives
rise to R-linear maps R — R[M(m)], compatible as I varies, and hence an R-linear map

R — im R[M;(m)] =~ T(P%, O(m)).
D#IC[n]

k

We can view z" as a global section of the line bundle O(m).

Theorem 16 (Serre). Let R € SCRing. For each n > 0 and each m € Z, the R-module
I'(P%,0(m)) can be described as follows.

o Ifm >0, then I'(PL,0(m)) is free of rank (7”:;"), generated by the global sections z*.

o Ifm <0, then T(PR,0(m)) is a direct sum of (T"") copies of R[—n]. In particular,
it is zero if —1 > m > —n.

Proof (Lurie). We have equivalences

(PR, 0(m)) ~ lim  R[Mi(m)]
@#IC[n]
~ lm @ RM(k)]

G#IC[n] keM(,; (m)
@B lim RMK)
kEM,,,| (m) D#IC[n]

where we have written My(k) := My N {k}; in other words, M (k) is either empty (if k; < 0 for
some i ¢ I), or the singleton {k}. For each k € M,j(m), let A;, denote the functor I +— R[Mi (k)]
(on the poset P of nonempty subsets of [n]), so that it suffices to compute @(Ak) for any fixed
k. Consider the canonical exact triangle

M = R — Cofib(u)

of functors on P (where R is viewed as the constant diagram valued in R). When we restrict to
the subset Q C P of subsets I C [n] such that Mj(k) = @, this takes the form

R

0 1% R ™ Cofib(u)|q.

But Cofib(u) is clearly a right Kan extension of its restriction to Q, so that

lim Cofib(u)(I) ~ lim R.
IeP 1eQ
Thus we get:
Hm Ay, =~ Fib(l'&n(R) — @Coﬁb(u)) ~ Fib(R — gR)
We therefore need to understand how the shape of (the nerve of) Q varies depending on the

value of k.

e Suppose that k; > 0 for all . Then Q is empty, so @(Ak) =R.



e Suppose that k; < 0 for some but not all 7. Then one can show that the simplicial set
N(Q) is (weakly) contractible, so that yﬂl(/\k) ~ 0.
e Suppose that k; < 0 for all 4. In this case one can show that N(Q) is weakly equivalent
to OA™ so that lim()\;) ~ R[—n].
It remains to count the possible contributions depending on the value of m. For example, if
m > 0 then no k satisfies the third case, there is no contribution from the second case, and from
the first case we get copies of R indexed by the set Mg (m). O



