
Lecture 5
K-theory of derived schemes II

In this lecture we will introduce the additive K-theory of a derived scheme X, and compare
it with the perfect complex K-theory in the affine case. In the second part we will discuss
projective spaces over derived schemes in some more detail.

Definition 1. An∞-category C is additive if for any objects x, y, the canonical map xty → x×y
is invertible.

In this case we write x⊕ y for the object x t y ' x× y. Recall that any stable ∞-category is
additive.

Example 2. For a simplicial commutative ring R, consider the full subcategory Modproj
R ⊂

Modperf
R spanned by finitely generated projective R-modules. Then the ∞-category Modproj

R is
additive but not stable.

Construction 3 (Additive K-theory). Let C be an additive ∞-category. The abelian group
K⊕0 (C) is the free abelian group generated by objects of C, modulo the relation identifying
[x⊕ y] = [x] + [y] for any two objects x and y.

Remark 4. Note that the construction K⊕0 (C) only depends on the homotopy category Ho(C)
(which is also additive).

Example 5. Let R be a simplicial commutative ring. Then the additive K-theory of R is
defined as K⊕0 (R) := K⊕0 (Modproj

R ).

Example 6. Let X be a derived scheme. A quasi-coherent sheaf F ∈ Qcoh(X) is locally free
of finite rank if there exists a Zariski covering (Xα ↪→ X)α such that there are isomorphisms
F|Xα ' O⊕nαXα

for some nα > 0. Let Qcoh(X)locfr ⊂ Qcoh(X) denote the full subcategory of locally

free sheaves of finite rank. The additive K-theory of X is defined as K⊕0 (X) := K0(Qcoh(X)locfr).
We have K⊕0 (Spec(R)) ' K⊕0 (R).

Theorem 7. Let R be a simplicial commutative ring. Then there is a canonical isomorphism

ι : K⊕0 (R)
∼−→ K0(R)

of abelian groups. Moreover, this isomorphism is (covariantly) functorial in R.

Proof. It is clear that the inclusion Modproj
R ↪→ Modperf

R induces a homomorphism ι : K⊕0 (R)→
K0(R). Since the conditions “perfect” and “projective finitely generated” are stable under
extensions of scalars M 7→ M⊗R R′, the map ι is functorial. We will construct an inverse map
χ. Let [M] ∈ K0(R) be the class of a perfect R-module M. Replacing M with some shift M[k],
we can assume that M is connective (since [M[k]] = (−1)k[M] in K0(R)). Recall that M is of

tor-amplitude 6 n for some n. If n = 0, then we saw last time that M belongs to Modproj
R , so

we set χ[M] := [M]. In general, we know that π0(M) is of finite presentation as a π0(R)-module,
so we can find a map φ : R⊕m → M that is surjective on π0. Then we have an exact triangle

F→ R⊕m
φ−→ M

where F is the fibre of φ. We claim that F is of tor-amplitude 6 n − 1. Indeed this follows
immediately from the long exact sequence

· · · → πn+1(M⊗A N)→ πn(F⊗A N)→ πn(R⊕m ⊗R N)→ πn(M⊗R N)→ · · ·
associated to the exact triangle F⊗R N→ R⊕m ⊗R N→M⊗R N, where we note that, if N is
discrete, then so is R⊕m ⊗R N ' N⊕m. Now we have [M] = [R⊕m]− [F] in K0(R), so we set

χ[M] = χ[R⊕m]− χ[F] = [R⊕m]− χ[F],
1



2

where χ[F] is defined by recursion. It is easy to check that this is independent of the chosen φ
and m, that it indeed induces a well-defined map χ : K0(R)→ K⊕0 (R), and that the latter is
inverse to ι. �

As an application of this comparison result, we can deduce the following “derived nil-invariance”
property for K0:

Theorem 8. Let R be a simplicial commutative ring. Then the canonical homomorphism

K0(R)→ K0(π0(R))

is bijective.

Proof. By Theorem 7 we reduce to showing that

K⊕0 (R)→ K⊕0 (π0(R))

is bijective, where the map is induced by the assignment M 7→ M ⊗R π0(R). Since every

M ∈ Modproj
R is flat, this is identified with M 7→ π0(M). Therefore the claim follows from the

following fact, which we leave as an exercise. �

Exercise 9. The functor Modproj
R → Modproj

π0(R) induces an equivalence on homotopy categories.

Remark 10. We will not discuss them in this course, but the higher K-groups Ki(R) do
see the difference between R and π0(R) (starting from i > 2). In fact, one can show that if
Ki(R)→ Ki(π0(R)) are bijective for all i > 2, then R ' π0(R).

We will now switch topics. An important ingredient in the Grothendieck–Riemann–Roch
theorem is the projective bundle formula, which describes the K-theory of a projective bundle.
In order to prove it we will need a more detailed discussion of projective bundles over derived
schemes.

Let X be a derived scheme and E ∈ Qcoh(X)locfr. Recall that the projective bundle p :
PX(E)→ X classifies pairs (L, u), where L is a locally free sheaf of rank one, and u : p∗(E)→ L

is surjective on π0. The universal such pair is denoted (O(1), uuniv). We let O(m) := O(1)⊗m

for each integer m ∈ Z.

Let X = Spec(R) and E = O⊕n+1
X . In this case we can give an explicit combinatorial

description of PX(E) = Pn
R.

Construction 11. Let [n] denote the set {0, 1, . . . , n}. For each subset I ⊂ [n], consider the
additive commutative monoid MI ⊂ Zn+1 of tuples (k0, . . . , kn) with k0 + · · ·+kn = 0 and ki > 0
for i 6∈ I. The associated monoid algebra R[MI] is the subalgebra of R[Zn+1] = R[x±10 , . . . , x±1n ]
generated by xj/xi for i ∈ I, j ∈ [n].

As I varies, we get a diagram I 7→ R[MI]. For any inclusion I ⊂ J with I nonempty, the
transition map R[MI]→ R[MJ] is a localization at xj/xi for j ∈ J and i ∈ I. In particular, the
morphisms Spec(R[MJ])→ Spec(R[MI]) are open immersions.

Theorem 12. There is an isomorphism

lim−→
∅ 6=I⊂[n]

Spec(R[MI])→ Pn
R

in the ∞-category of derived stacks.

This gives the following combinatorial description of the category of quasi-coherent sheaves:

Corollary 13. There is an equivalence of ∞-categories

Qcoh(Pn
R)
∼−→ lim←−

∅ 6=I⊂[n]
ModR[MI].



3

In terms of this equivalence, the line bundles O(m) can be described as follows.

Construction 14. Fix an integer m ∈ Z. For each subset I ⊂ [n], let MI(m) ⊂ Zn+1 denote
the submonoid of tuples (k0, . . . , kn) such that k0 + · · ·+ kn = m and ki > 0 for i 6∈ I. Then the
monoid algebra R[MI(m)] is a free R[MI]-module of rank one, and we have:

Γ(Spec(R[MI]),O(m)) ' R[MI(m)]

for each nonempty subset I ⊂ [n].

We’ll end today’s lecture by calculating the space of global sections Γ(Pn
R,O(m)) explicitly.

Construction 15. Given a tuple k = (k0, . . . , kn) ∈ Zn+1 with ki > 0 for each i, set m =
k0 + · · ·+ kn. Then we can view k as an element of MI(m) for any subset I ⊂ [n]. This gives
rise to R-linear maps R→ R[MI(m)], compatible as I varies, and hence an R-linear map

xk : R→ lim←−
∅ 6=I⊂[n]

R[MI(m)] ' Γ(Pn
R,O(m)).

We can view xk as a global section of the line bundle O(m).

Theorem 16 (Serre). Let R ∈ SCRing. For each n > 0 and each m ∈ Z, the R-module
Γ(Pn

R,O(m)) can be described as follows.

• If m > 0, then Γ(Pn
R,O(m)) is free of rank

(
m+n
n

)
, generated by the global sections xk.

• If m < 0, then Γ(Pn
R,O(m)) is a direct sum of

(−m−1
n

)
copies of R[−n]. In particular,

it is zero if −1 > m > −n.

Proof (Lurie). We have equivalences

Γ(Pn
R,O(m)) ' lim←−

∅ 6=I⊂[n]
R[MI(m)]

' lim←−
∅ 6=I⊂[n]

⊕
k∈M[n](m)

R[MI(k)]

'
⊕

k∈M[n](m)

lim←−
∅ 6=I⊂[n]

R[MI(k)]

where we have written MI(k) := MI ∩ {k}; in other words, MI(k) is either empty (if ki < 0 for
some i 6∈ I), or the singleton {k}. For each k ∈ M[n](m), let λk denote the functor I 7→ R[MI(k)]
(on the poset P of nonempty subsets of [n]), so that it suffices to compute lim←−(λk) for any fixed
k. Consider the canonical exact triangle

λk
u−→ R→ Cofib(u)

of functors on P (where R is viewed as the constant diagram valued in R). When we restrict to
the subset Q ⊂ P of subsets I ⊂ [n] such that MI(k) = ∅, this takes the form

0
u|Q−−→ R

∼−→ Cofib(u)|Q.
But Cofib(u) is clearly a right Kan extension of its restriction to Q, so that

lim←−
I∈P

Cofib(u)(I) ' lim←−
I∈Q

R.

Thus we get:

lim←−λk ' Fib(lim←−(R)→ lim←−Cofib(u)) ' Fib(R→ lim←−
I∈Q

R).

We therefore need to understand how the shape of (the nerve of) Q varies depending on the
value of k.

• Suppose that ki > 0 for all i. Then Q is empty, so lim←−(λk) = R.
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• Suppose that ki < 0 for some but not all i. Then one can show that the simplicial set
N(Q) is (weakly) contractible, so that lim←−(λk) ' 0.

• Suppose that ki < 0 for all i. In this case one can show that N(Q) is weakly equivalent
to ∂∆n so that lim←−(λk) ' R[−n].

It remains to count the possible contributions depending on the value of m. For example, if
m > 0 then no k satisfies the third case, there is no contribution from the second case, and from
the first case we get copies of R indexed by the set M∅(m). �


