Lecture 5

K-theory of derived schemes II

In this lecture we will introduce the *additive K-theory* of a derived scheme X, and compare it with the perfect complex K-theory in the affine case. In the second part we will discuss projective spaces over derived schemes in some more detail.

Definition 1. An ∞ -category **C** is *additive* if for any objects x, y, the canonical map $x \sqcup y \to x \times y$ is invertible.

In this case we write $x \oplus y$ for the object $x \sqcup y \simeq x \times y$. Recall that any stable ∞ -category is additive.

Example 2. For a simplicial commutative ring R, consider the full subcategory $\operatorname{Mod}_{R}^{\operatorname{proj}} \subset \operatorname{Mod}_{R}^{\operatorname{perf}}$ spanned by finitely generated projective R-modules. Then the ∞ -category $\operatorname{Mod}_{R}^{\operatorname{proj}}$ is additive but not stable.

Construction 3 (Additive K-theory). Let **C** be an additive ∞ -category. The abelian group $\mathrm{K}_0^{\oplus}(\mathbf{C})$ is the free abelian group generated by objects of **C**, modulo the relation identifying $[x \oplus y] = [x] + [y]$ for any two objects x and y.

Remark 4. Note that the construction $K_0^{\oplus}(\mathbb{C})$ only depends on the homotopy category $Ho(\mathbb{C})$ (which is also additive).

Example 5. Let R be a simplicial commutative ring. Then the additive K-theory of R is defined as $K_0^{\oplus}(R) := K_0^{\oplus}(Mod_R^{proj})$.

Example 6. Let X be a derived scheme. A quasi-coherent sheaf $\mathcal{F} \in \operatorname{Qcoh}(X)$ is *locally free* of finite rank if there exists a Zariski covering $(X_{\alpha} \hookrightarrow X)_{\alpha}$ such that there are isomorphisms $\mathcal{F}|_{X_{\alpha}} \simeq \mathcal{O}_{X_{\alpha}}^{\oplus n_{\alpha}}$ for some $n_{\alpha} \ge 0$. Let $\operatorname{Qcoh}(X)^{\operatorname{locfr}} \subset \operatorname{Qcoh}(X)$ denote the full subcategory of locally free sheaves of finite rank. The additive K-theory of X is defined as $K_{0}^{\oplus}(X) := K_{0}(\operatorname{Qcoh}(X)^{\operatorname{locfr}})$. We have $K_{0}^{\oplus}(\operatorname{Spec}(R)) \simeq K_{0}^{\oplus}(R)$.

Theorem 7. Let R be a simplicial commutative ring. Then there is a canonical isomorphism $\iota: K_0^{\oplus}(R) \xrightarrow{\sim} K_0(R)$

of abelian groups. Moreover, this isomorphism is (covariantly) functorial in R.

Proof. It is clear that the inclusion $\operatorname{Mod}_{\mathbb{R}}^{\operatorname{proj}} \hookrightarrow \operatorname{Mod}_{\mathbb{R}}^{\operatorname{perf}}$ induces a homomorphism $\iota : \mathrm{K}_{0}^{\oplus}(\mathbb{R}) \to \mathrm{K}_{0}(\mathbb{R})$. Since the conditions "perfect" and "projective finitely generated" are stable under extensions of scalars $\mathrm{M} \mapsto \mathrm{M} \otimes_{\mathbb{R}} \mathbb{R}'$, the map ι is functorial. We will construct an inverse map χ . Let $[\mathrm{M}] \in \mathrm{K}_{0}(\mathbb{R})$ be the class of a perfect \mathbb{R} -module M . Replacing M with some shift $\mathrm{M}[k]$, we can assume that M is connective (since $[\mathrm{M}[k]] = (-1)^{k}[\mathrm{M}]$ in $\mathrm{K}_{0}(\mathbb{R})$). Recall that M is of tor-amplitude $\leq n$ for some n. If n = 0, then we saw last time that M belongs to $\operatorname{Mod}_{\mathbb{R}}^{\operatorname{proj}}$, so we set $\chi[\mathrm{M}] := [\mathrm{M}]$. In general, we know that $\pi_{0}(\mathrm{M})$ is of finite presentation as a $\pi_{0}(\mathbb{R})$ -module, so we can find a map $\phi : \mathbb{R}^{\oplus m} \to \mathrm{M}$ that is surjective on π_{0} . Then we have an exact triangle

$$\mathbf{F} \to \mathbf{R}^{\oplus m} \xrightarrow{\phi} \mathbf{M}$$

where F is the fibre of ϕ . We claim that F is of tor-amplitude $\leq n-1$. Indeed this follows immediately from the long exact sequence

 $\cdots \to \pi_{n+1}(\mathbf{M} \otimes_{\mathbf{A}} \mathbf{N}) \to \pi_n(\mathbf{F} \otimes_{\mathbf{A}} \mathbf{N}) \to \pi_n(\mathbf{R}^{\oplus m} \otimes_{\mathbf{R}} \mathbf{N}) \to \pi_n(\mathbf{M} \otimes_{\mathbf{R}} \mathbf{N}) \to \cdots$

associated to the exact triangle $F \otimes_R N \to R^{\oplus m} \otimes_R N \to M \otimes_R N$, where we note that, if N is discrete, then so is $R^{\oplus m} \otimes_R N \simeq N^{\oplus m}$. Now we have $[M] = [R^{\oplus m}] - [F]$ in $K_0(R)$, so we set

$$\chi[\mathbf{M}] = \chi[\mathbf{R}^{\oplus m}] - \chi[\mathbf{F}] = [\mathbf{R}^{\oplus m}] - \chi[\mathbf{F}],$$

where $\chi[F]$ is defined by recursion. It is easy to check that this is independent of the chosen ϕ and m, that it indeed induces a well-defined map $\chi : K_0(R) \to K_0^{\oplus}(R)$, and that the latter is inverse to ι .

As an application of this comparison result, we can deduce the following "derived nil-invariance" property for K_0 :

Theorem 8. Let R be a simplicial commutative ring. Then the canonical homomorphism

$$K_0(R) \rightarrow K_0(\pi_0(R))$$

is bijective.

Proof. By Theorem 7 we reduce to showing that

 $K_0^{\oplus}(\mathbf{R}) \to K_0^{\oplus}(\pi_0(\mathbf{R}))$

is bijective, where the map is induced by the assignment $M \mapsto M \otimes_R \pi_0(R)$. Since every $M \in Mod_R^{proj}$ is flat, this is identified with $M \mapsto \pi_0(M)$. Therefore the claim follows from the following fact, which we leave as an exercise.

Exercise 9. The functor $\operatorname{Mod}_{R}^{\operatorname{proj}} \to \operatorname{Mod}_{\pi_{0}(R)}^{\operatorname{proj}}$ induces an equivalence on homotopy categories.

Remark 10. We will not discuss them in this course, but the *higher* K-groups $K_i(\mathbb{R})$ do see the difference between R and $\pi_0(\mathbb{R})$ (starting from $i \ge 2$). In fact, one can show that if $K_i(\mathbb{R}) \to K_i(\pi_0(\mathbb{R}))$ are bijective for all $i \ge 2$, then $\mathbb{R} \simeq \pi_0(\mathbb{R})$.

We will now switch topics. An important ingredient in the Grothendieck–Riemann–Roch theorem is the projective bundle formula, which describes the K-theory of a projective bundle. In order to prove it we will need a more detailed discussion of projective bundles over derived schemes.

Let X be a derived scheme and $\mathcal{E} \in \operatorname{Qcoh}(X)^{\operatorname{locfr}}$. Recall that the projective bundle $p : \mathbf{P}_X(\mathcal{E}) \to X$ classifies pairs (\mathcal{L}, u) , where \mathcal{L} is a locally free sheaf of rank one, and $u : p^*(\mathcal{E}) \to \mathcal{L}$ is surjective on π_0 . The universal such pair is denoted $(\mathcal{O}(1), u_{\operatorname{univ}})$. We let $\mathcal{O}(m) := \mathcal{O}(1)^{\otimes m}$ for each integer $m \in \mathbf{Z}$.

Let X = Spec(R) and $\mathcal{E} = \mathcal{O}_X^{\oplus n+1}$. In this case we can give an explicit combinatorial description of $\mathbf{P}_X(\mathcal{E}) = \mathbf{P}_R^n$.

Construction 11. Let [n] denote the set $\{0, 1, \ldots, n\}$. For each subset $I \subset [n]$, consider the additive commutative monoid $M_I \subset \mathbb{Z}^{n+1}$ of tuples (k_0, \ldots, k_n) with $k_0 + \cdots + k_n = 0$ and $k_i \ge 0$ for $i \notin I$. The associated monoid algebra $R[M_I]$ is the subalgebra of $R[\mathbb{Z}^{n+1}] = R[x_0^{\pm 1}, \ldots, x_n^{\pm 1}]$ generated by x_j/x_i for $i \in I$, $j \in [n]$.

As I varies, we get a diagram $I \mapsto R[M_I]$. For any inclusion $I \subset J$ with I nonempty, the transition map $R[M_I] \to R[M_J]$ is a localization at x_j/x_i for $j \in J$ and $i \in I$. In particular, the morphisms $\text{Spec}(R[M_J]) \to \text{Spec}(R[M_I])$ are open immersions.

Theorem 12. There is an isomorphism

 $\varinjlim_{\varnothing \neq I \subset [n]} \operatorname{Spec}(R[M_I]) \to \mathbf{P}_R^n$

in the ∞ -category of derived stacks.

This gives the following combinatorial description of the category of quasi-coherent sheaves:

Corollary 13. There is an equivalence of ∞ -categories

$$\operatorname{Qcoh}(\mathbf{P}^n_{\mathrm{R}}) \xrightarrow{\sim} \varprojlim_{\varnothing \neq \mathrm{I} \subset [n]} \operatorname{Mod}_{\mathrm{R}[\mathrm{M}_{\mathrm{I}}]}.$$

 $\mathbf{2}$

In terms of this equivalence, the line bundles $\mathcal{O}(m)$ can be described as follows.

Construction 14. Fix an integer $m \in \mathbb{Z}$. For each subset $I \subset [n]$, let $M_I(m) \subset \mathbb{Z}^{n+1}$ denote the submonoid of tuples (k_0, \ldots, k_n) such that $k_0 + \cdots + k_n = m$ and $k_i \ge 0$ for $i \notin I$. Then the monoid algebra $R[M_I(m)]$ is a free $R[M_I]$ -module of rank one, and we have:

$$\Gamma(\operatorname{Spec}(\operatorname{R}[M_{\mathrm{I}}]), \mathcal{O}(m)) \simeq \operatorname{R}[\operatorname{M}_{\mathrm{I}}(m)]$$

for each nonempty subset $I \subset [n]$.

We'll end today's lecture by calculating the space of global sections $\Gamma(\mathbf{P}_{\mathbf{R}}^{n}, \mathcal{O}(m))$ explicitly.

Construction 15. Given a tuple $k = (k_0, \ldots, k_n) \in \mathbb{Z}^{n+1}$ with $k_i \ge 0$ for each *i*, set m = $k_0 + \cdots + k_n$. Then we can view k as an element of $M_I(m)$ for any subset $I \subset [n]$. This gives rise to R-linear maps $R \to R[M_I(m)]$, compatible as I varies, and hence an R-linear map

$$x^k : \mathbf{R} \to \varprojlim_{\varnothing \neq \mathbf{I} \subset [n]} \mathbf{R}[\mathbf{M}_{\mathbf{I}}(m)] \simeq \Gamma(\mathbf{P}^n_{\mathbf{R}}, \mathcal{O}(m)).$$

We can view x^k as a global section of the line bundle $\mathcal{O}(m)$.

Theorem 16 (Serre). Let $R \in SCRing$. For each $n \ge 0$ and each $m \in \mathbb{Z}$, the R-module $\Gamma(\mathbf{P}^n_{\mathrm{B}}, \mathcal{O}(m))$ can be described as follows.

- If m≥ 0, then Γ(Pⁿ_R, O(m)) is free of rank (^{m+n}_n), generated by the global sections x^k.
 If m < 0, then Γ(Pⁿ_R, O(m)) is a direct sum of (^{-m-1}_n) copies of R[-n]. In particular, it is zero if -1≥ m≥ -n.

Proof (Lurie). We have equivalences

$$\Gamma(\mathbf{P}_{\mathrm{R}}^{n}, \mathcal{O}(m)) \simeq \varprojlim_{\substack{\varnothing \neq \mathrm{I} \subset [n]}} \mathrm{R}[\mathrm{M}_{\mathrm{I}}(m)]$$
$$\simeq \varprojlim_{\substack{\varnothing \neq \mathrm{I} \subset [n]}} \bigoplus_{k \in \mathrm{M}_{[n]}(m)} \mathrm{R}[\mathrm{M}_{\mathrm{I}}(k)]$$
$$\simeq \bigoplus_{k \in \mathrm{M}_{[n]}(m)} \varprojlim_{\substack{\varnothing \neq \mathrm{I} \subset [n]}} \mathrm{R}[\mathrm{M}_{\mathrm{I}}(k)]$$

where we have written $M_I(k) := M_I \cap \{k\}$; in other words, $M_I(k)$ is either empty (if $k_i < 0$ for some $i \notin I$, or the singleton $\{k\}$. For each $k \in M_{[n]}(m)$, let λ_k denote the functor $I \mapsto R[M_I(k)]$ (on the poset P of nonempty subsets of [n]), so that it suffices to compute $\lim(\lambda_k)$ for any fixed k. Consider the canonical exact triangle

$$\lambda_k \xrightarrow{u} \mathbf{R} \to \operatorname{Cofib}(u)$$

of functors on P (where R is viewed as the constant diagram valued in R). When we restrict to the subset $Q \subset P$ of subsets $I \subset [n]$ such that $M_I(k) = \emptyset$, this takes the form

$$0 \xrightarrow{u_{|\mathbf{Q}}} \mathbf{R} \xrightarrow{\sim} \mathrm{Cofib}(u)|_{\mathbf{Q}}.$$

But Cofib(u) is clearly a right Kan extension of its restriction to Q, so that

$$\lim_{\mathbf{I}\in\mathbf{P}}\operatorname{Cofib}(u)(\mathbf{I})\simeq \lim_{\mathbf{I}\in\mathbf{Q}}\mathbf{R}.$$

Thus we get:

$$\varprojlim \lambda_k \simeq \operatorname{Fib}(\varprojlim(\mathbf{R}) \to \varprojlim \operatorname{Cofib}(u)) \simeq \operatorname{Fib}(\mathbf{R} \to \varprojlim_{\mathbf{I} \in \mathbf{Q}} \mathbf{R}).$$

We therefore need to understand how the shape of (the nerve of) Q varies depending on the value of k.

• Suppose that $k_i \ge 0$ for all *i*. Then Q is empty, so $\lim(\lambda_k) = \mathbb{R}$.

- Suppose that $k_i < 0$ for some but not all *i*. Then one can show that the simplicial set N(Q) is (weakly) contractible, so that $\lim_{k \to \infty} (\lambda_k) \simeq 0$.
- Suppose that $k_i < 0$ for all *i*. In this case one can show that N(Q) is weakly equivalent to $\partial \Delta^n$ so that $\varprojlim(\lambda_k) \simeq \mathbb{R}[-n]$.

It remains to count the possible contributions depending on the value of m. For example, if $m \ge 0$ then no k satisfies the third case, there is no contribution from the second case, and from the first case we get copies of R indexed by the set $M_{\emptyset}(m)$.

4