Lecture 8
The blow-up formula

Let ¢ : Z — X be a quasi-smooth closed immersion. Then we may form the blow-up square
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where i is a virtual Cartier divisor, i.e., a quasi-smooth closed immersion of virtual codimension

1. In this lecture our goal is to compute the group Ko(X).

Theorem 1. Let X be a gcqs derived scheme. Let i : 70— X be a quasi-smooth closed immersion
of virtual codimension n. Then there is a canonical isomorphism of abelian groups

induced by the assignments [Fx]| — [p*Fx] and [Fz] — [(ir)«(¢*(Fz)@O(=k))] for 1 < k < n—1.

This arises from a semi-orthogonal decomposition at the level of quasi-coherent sheaves:

Theorem 2. The stable oco-category Qcoh(f() admits a semi-orthogonal decomposition
Qcoh(X) = (C(0),C(-1),...,C(=n + 1)),

where C(0) denotes the essential image of p* : Qcoh(X) — Qcoh(X), and C(—k) denotes the

essential image of (ig)«(q*(—) ® O(—k)) : Qcoh(Z) — Qeoh(X), for 1 <k <n —1. Moreover,
this restricts to a semi-orthogonal decomposition of Perf(X).

Recall that a closed immersion 7 : Z < X is called quasi-smooth if it is locally the derived
zero-locus of some functions f1, ..., f, € (X, Ox). In other words, there exists Zariski-locally
on X a morphism f: X — A" and a cartesian square of derived schemes

7 —t X
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{0} —— A™.

Equivalently, i is quasi-smooth if and only if the quasi-coherent sheaf Nz, x := Lz,x[—1] is
locally free of finite rank. The integer n = rk(Nz,x) is called the virtual codimension of i.

More generally, a morphism Y — X is called quasi-smooth if it factors, Zariski-locally on Y,
through a quasi-smooth closed immersion followed by a smooth morphism.

Lemma 3. Leti:Z < X be a quasi-smooth closed immersion of virtual codimension n > 1.
Let p: X — X be the blow-up. Then p factors, Zariski-locally on X, as a composite
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where i’ is a quasi-smooth closed immersion, and  is the canonical projection. In particular, p
s quasi-smooth and proper.



Proof. The claim being local, it suffices to assume that X is affine and there exists a cartesian
square (0.1). Then we also have a cartesian square

X e BI{O}/A"

[
X —L 5 aAn

since blow-ups are stable under derived base change. It is well-known that pg is projective, and
it is quasi-smooth since Blgy a» and A" are both smooth over Spec(Z). It follows that p is
projective and quasi-smooth. For the more precise statement, see [2, Prop. 1.8]. g

Recall that a virtual (effective) Cartier divisor is a quasi-smooth closed immersion of virtual
codimension 1. We can think of a virtual divisor as a “generalized (effective) Cartier divisor”,
cut out as the zero-locus of a section of a line bundle, where no regularity condition is imposed
on the section. More precisely:

Proposition 4. Let X be a derived scheme. There is a bijection between the set of isomorphism
classes of virtual Cartier divisors on X, and the set of equivalence classes of pairs (£,s), where
L is a locally free Ox-module of rank 1, and s : Ox — LV is a section of LY.

Proof. Given a pair (£, s), let D be the derived zero-locus of s, fitting into the cartesian square

D—% +X

X —— Vx(L),
where Vx (£) = Specx (Sym, (£)) is the vector bundle associated to £, and z is the zero section.
Then i is a virtual divisor with conormal sheaf Np x ~ £|D. In the other direction, let i : D < X

be a virtual Cartier divisor, and write £ for the fibre of the canonical map Ox — i.(Op), so
that there is an exact triangle £ — Ox — .(Op). Locally, we have X = Spec(R) and

D = Spec(R//(f)) for some f € mo(R), and this triangle takes the form R LR R/(f). In
particular, £ is locally free of rank one, and we assign to i : D < X the pair (£, s), where s is
the dual of £L — Ox. One verifies that these two assignments are mutually inverse. O

Definition 5. Given a virtual Cartier divisor ¢ : D < X, we denote the fibre of Ox — i.(Op)
by Ox(—D), and call this the line bundle associated to D. By construction there is a tautological
exact sequence

(02) Ox(fD) — OX — Z*(OD)

Moreover, there is a canonical isomorphism i*(Ox(—D)) ~ Np /x.

We will need the following computation:

Lemma 6. Leti: D — X be a virtual divisor. Then there is a canonical isomorphism

Z*Z*(OD) ~ Op & ND/X[l]-

Proof. Applying i* to the exact triangle (0.2), we get the triangle
ND/X — O0p — i*i*(OD).

The map Op — i*1,.(Op) is induced by the natural transformation i*(n) : i* — i*i.i* (where 7 is
the unit), so by the triangle identities it has a retraction given by the co-unit map i*i,(Op) — Op.
In other words, the triangle splits. O
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Finally, we need Grothendieck duality for virtual divisors. Let ¢ : Z — X be a quasi-smooth
closed immersion of qcqs derived schemes. The functor i, admits a right adjoint i*, which for
formal reasons can be computed by the formula

i'(=) =i (=) ®wp)x,
where wp/x = i'(Ox) is called the relative dualizing sheaf. When 4 : D < X is a virtual divisor,

wp,/x can be computed as follows:

Proposition 7 (Grothendieck duality). Let X be a qcgs derived scheme. Then for any virtual
Cartier divisor i : D < X, there is a canonical isomorphism

N]\S/X[_l] — Wp/x
in Qcoh(D).

Proof. Write £ := Ox(—D) and recall the exact triangle L — Ox — i.(Op). For any F €
Qcoh(X), this gives rise after tensoring with F to an exact triangle F @ L — F — i,.i*(F)
(by the projection formula). That is, we have an exact triangle of natural transformations
id ® £ — id — i,4*, and passing to right adjoints, an exact triangle 4,i' — id — id® £V. In
particular we get the exact triangle

(0.3) ivi'(0x) = Ox — LY.
By adjunction, we obtain a canonical morphism
Np x[=1] =~ i*(LY)[-1] = i'(0x).

Choose an affine Zariski covering (X, < X)q,, and let (j, : D4 < D), denote the induced
covering of D. The family of functors j* is conservative by Zariski descent. Since the functor '
commutes with f* for any morphism f (for essentially formal reasons, and independently of
Grothendieck duality), we may replace X by any X,, to assume that X is affine. In this case the
functor i, is conservative, so it will suffice to show that the canonical map

(N ) [—1] = 6.d! (0x)

is invertible. Consider again the triangle F @ £L — F — i,i*(F) above. Taking F = LY we get
the exact triangle
Ox = LY = 0.d"(LY) = 0. (ND x),

since £ is invertible. Comparing with (0.3) yields the claim. O

We are now ready to prove Theorem 2.

Claim 8. The functor p* : Qcoh(X) — Qcoh(X) is fully faithful.

Proof. The claim is that for any F € Qcoh(X), the unit map F — p,p*(F) is invertible. By
Zariski descent we may reduce to the case where X is affine and ¢ fits in a cartesian square of
the form (0.1). Since Qcoh(X) is then generated under colimits and finite limits by Ox, we may
assume that 5 = Ox. In other words, the claim is that the canonical map Ox — p.(0g) is
invertible. The square

[P
Z—5 X

is a derived base change of the square

Pl — Bl{o}/An

| [

{0} — 5 A",
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and the map Ox — p.(Og) is the pullback along f : X — A" of the canonical map Oan —
(P0)+(OB1yy,an )- Thus we reduce to the case where i is the immersion {0} < A", which is a
classical computation (use the standard affine cover of Bljgy/an, or see [2, Exp. 7]). O

Claim 9. The functor (ig)«q* : Qcoh(Z) — Qcoh(X) is fully faithful.

Proof. Again it suffices to show the unit map F — ¢.(ig)'(ig).¢*(F) is invertible for all
F € Qcoh(Z). As in the previous claim we may assume X is affine and that F = Oz. Using
Proposition 7 and the canonical identification Ny, g ~ Og(1), the unit map is identified with

0z = ¢:((ig)" (ie)+(Op) ® Op(—1))[-1].
By Lemma 6 it is further identified with
0z = ¢.+(0r(-1)) @ ¢.(Og).
Recall that ¢ is identified with the projection E ~ P(Ny/x) — Z. Thus we have identifications
¢+ (0Og(—1)) =0, ¢.(Og) =~ Oz (Lecture 7), under which the map in question is the identity. [

Claim 10. For each 1 < k < n — 1, the full stable subcategory C(—k) C Qcoh(X) is right
orthogonal to C(0),...,C(—k + 1).

Proof. For Fx € Qcoh(X) and Fy, € Qcoh(Z), we have for each 1 <k <n—1,
Maps(p* (Fx), (ie)(¢" (Fz) ® O(=k))) ~ Maps(q¢*i" (Fx), ¢"(Fz) ® O(—k)) ~ pt
by Lecture 7 (since E ~ P(Ny,x) and Nz /x is of rank n). This shows that C(0) is left orthogonal
to each C(—k), 1 <k<n—1.
<

For 1 <k <k <n-—1, we need to show that the mapping space

Maps((ie)«(q" (Fz) ® O(—k)), (ir)«(¢" () ® O(=F)))
is contractible, for all Fz,F,, € Qcoh(Z). Choose an affine Zariski covering of X, and let
(g - Xo X)a denote the induced covering of X. Using Zariski descent for the presheaf of
oo-categories Qcoh(—), and base change for (ig). along j%, we may replace X by any n-fold
intersection Xy, Xx -+ Xx Xq,,, and Z, X, and E by their respective base changes. Thus we may
assume that X is separated. Repeating the same argument again, we may assume furthermore

that X is affine. Since Qcoh(Z) is then generated under colimits and finite limits by Oz, we may
assume that ¥z = ¥, = Oz. Then we have

Maps((ir)(0(=k)), (ir)«(0(=k"))) = Maps((ir)" (ir)«(O(=k)), O(=k"))
~ Maps(O(—k) ® O(—k + 1)[1], O(—k"))
~ Maps(O(—k), O(—=k")) x Maps(O(—k + 1)[1], O(—=k"))
~ T(P(Ng/x),0(k — k') x T(P(Nz/x), 0(k — k" — 1)[-1])

which is contractible by Serre’s computation in Lecture 7. The isomorphism (ig)*(ig).(O(—k))
O(—k) ® O(—k + 1)[1] follows from Lemma 6 and the projection formula.

O R

Claim 11. The stable co-category Qcoh(X) is generated by the full stable subcategories C(0),
C(-1), ..., C(—n+1).

Proof. Denote by C(x) the full stable subcategory of Qcoh(X) by C(0), C(—1), ..., C(—n+1).
The claim is that the inclusion C(x) C Qcoh(X) is an equality. Note that O € C(0) C C(x) and
(15)+(Or(—k)) € C(—k) C C(x) for 1 < k < n—1. Consider the exact triangle O (—E) — 0 —
(18)«(Og) and recall that Og(—E) ~ O (1). Tensoring with O(—k) and using the projection
formula, we get the exact triangle

Ox(=k+1) = Ox(=k) = (ir)«(Op(-FK))
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for each 1 < k < n — 1. Taking k = 1 we deduce Og(—1) € C(x). Continuing recursively we
find that Ox(—k) € C(*) forall 1 <k <n—1.

Now let F € Qcoh(X). Let Gy denote the cofibre of the co-unit p*p.(F) — F — Go. Note
that Gg is right orthogonal to C(0). For 1 < k < n — 1 define G, recursively so that we have
exact triangles

(i5)«(q" g+ ((ir)' (Gk—1) ® O(k)) ® O(—k)) = Sk—1 — Si.
Note that each Gj is right orthogonal to each of the subcategories C(0),...,C(k —1). For
example, G; is right orthogonal to C(—1) by construction. It is right orthogonal to C(0) since
the middle term Gy in the above sequence is, and the left-hand term is because C(—1) C C(0)*
by Claim 10. Proceeding inductively, the claim follows for each k. We now claim that G, _1 is
zero. Working backwards, it will follow that F belongs to C(x).

Since the objects G are stable under base change, we may use Zariski descent and base
change to assume that X is affine. Moreover we may assume that i : Z — X fits in a cartesian
square of the form (0.1). By Lemma 3, p : X — X factors through a quasi-smooth closed
immersion i/ : X < P;ﬁl. Recall from Lecture 7 that there is a canonical isomorphism
lim O(#J) =~ O(n) in Qeoh(P% ™). Applying (i')*, we get i, 0% (#J) ~ 0% (n) in
Qcoh(X). In particular, every O (k) belongs to C(x) for all k € Z. Recall also that we may find
amap @, 0(da)[na] = ,(9n—1) which is surjective on all homotopy groups. By adjunction
this corresponds to a map @, O(da)[na] = Gn—1 (Which is also surjective on homotopy groups).
But the source belongs to C(x), and the target is right orthogonal to C(x), so this map is
null-homotopic. Thus G,,_; is zero. O

Proof of Theorem 2. Combine Claims 8, 9, 10, and 11. For the statement at the level of perfect
complexes, simply note that all functors involved preserve perfect complexes. O

Proof of Theorem 1. Surjectivity follows from Claim 11. For injectivity, suppose given Fx €
Perf(X), F% € Perf(Z) for 1 < k < n — 1, such that

n—1
0= [p*Fx] + ) [(ir)(a"(F5) © O(=k))].
k=1

Applying p. (which preserves perfect complexes), we deduce that [Fx] = 0 (using Claim 8 and
Claim 10). Applying ¢.((ig)'(—=) ® O(k)) (g. preserves perfect complexes, and (ig)' preserves
perfect complexes by Grothendieck duality), we deduce that [F%] = 0 for each k (using Claim 9
and Claim 10). O
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