Lecture 8

The blow-up formula

Let $i: \mathbb{Z} \hookrightarrow \mathbb{X}$ be a quasi-smooth closed immersion. Then we may form the blow-up square

$$\begin{array}{c} \mathbf{E} \xrightarrow{i_{\mathbf{E}}} \tilde{\mathbf{X}} \\ \downarrow^{q} \qquad \downarrow^{p} \\ \mathbf{Z} \xrightarrow{i} \mathbf{X} \end{array}$$

where $i_{\rm E}$ is a virtual Cartier divisor, i.e., a quasi-smooth closed immersion of virtual codimension 1. In this lecture our goal is to compute the group $K_0(\tilde{X})$.

Theorem 1. Let X be a qcqs derived scheme. Let $i : Z \hookrightarrow X$ be a quasi-smooth closed immersion of virtual codimension n. Then there is a canonical isomorphism of abelian groups

$$\mathrm{K}_0(\mathrm{X}) \oplus \bigoplus_{k=1}^{n-1} \mathrm{K}_0(\mathrm{Z}) \simeq \mathrm{K}_0(\tilde{\mathrm{X}}),$$

induced by the assignments $[\mathfrak{F}_X] \mapsto [p^*\mathfrak{F}_X]$ and $[\mathfrak{F}_Z] \mapsto [(i_E)_*(q^*(\mathfrak{F}_Z) \otimes \mathfrak{O}(-k))]$ for $1 \leq k \leq n-1$.

This arises from a semi-orthogonal decomposition at the level of quasi-coherent sheaves:

Theorem 2. The stable ∞ -category $\operatorname{Qcoh}(\tilde{X})$ admits a semi-orthogonal decomposition

$$\operatorname{Qcoh}(\tilde{\mathbf{X}}) = \langle \mathbf{C}(0), \mathbf{C}(-1), \dots, \mathbf{C}(-n+1) \rangle$$

where $\mathbf{C}(0)$ denotes the essential image of $p^* : \operatorname{Qcoh}(X) \to \operatorname{Qcoh}(\tilde{X})$, and $\mathbf{C}(-k)$ denotes the essential image of $(i_{\mathrm{E}})_*(q^*(-) \otimes \mathcal{O}(-k)) : \operatorname{Qcoh}(Z) \to \operatorname{Qcoh}(\tilde{X})$, for $1 \leq k \leq n-1$. Moreover, this restricts to a semi-orthogonal decomposition of $\operatorname{Perf}(\tilde{X})$.

Recall that a closed immersion $i : \mathbb{Z} \hookrightarrow \mathbb{X}$ is called quasi-smooth if it is locally the derived zero-locus of some functions $f_1, \ldots, f_n \in \Gamma(\mathbb{X}, \mathcal{O}_{\mathbb{X}})$. In other words, there exists Zariski-locally on X a morphism $f : \mathbb{X} \to \mathbb{A}^n$ and a cartesian square of derived schemes

$$\begin{array}{cccc} & & Z & \stackrel{i}{\longrightarrow} X \\ & & & \downarrow & & \downarrow f \\ & & \{0\} & \longrightarrow & \mathbf{A}^n. \end{array}$$

Equivalently, *i* is quasi-smooth if and only if the quasi-coherent sheaf $\mathcal{N}_{Z/X} := \mathcal{L}_{Z/X}[-1]$ is locally free of finite rank. The integer $n = \operatorname{rk}(\mathcal{N}_{Z/X})$ is called the *virtual codimension* of *i*.

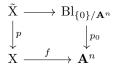
More generally, a morphism $Y \to X$ is called *quasi-smooth* if it factors, Zariski-locally on Y, through a quasi-smooth closed immersion followed by a smooth morphism.

Lemma 3. Let $i : \mathbb{Z} \hookrightarrow \mathbb{X}$ be a quasi-smooth closed immersion of virtual codimension $n \ge 1$. Let $p : \tilde{\mathbb{X}} \to \mathbb{X}$ be the blow-up. Then p factors, Zariski-locally on X, as a composite

$$i: \tilde{\mathbf{X}} \xrightarrow{i'} \mathbf{P}_{\mathbf{X}}^{n-1} \xrightarrow{\pi} \mathbf{X},$$

where i' is a quasi-smooth closed immersion, and π is the canonical projection. In particular, p is quasi-smooth and proper.

Proof. The claim being local, it suffices to assume that X is affine and there exists a cartesian square (0.1). Then we also have a cartesian square

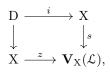


since blow-ups are stable under derived base change. It is well-known that p_0 is projective, and it is quasi-smooth since $\operatorname{Bl}_{\{0\}/\mathbf{A}^n}$ and \mathbf{A}^n are both smooth over $\operatorname{Spec}(\mathbf{Z})$. It follows that p is projective and quasi-smooth. For the more precise statement, see [2, Prop. 1.8].

Recall that a *virtual (effective) Cartier divisor* is a quasi-smooth closed immersion of virtual codimension 1. We can think of a virtual divisor as a "generalized (effective) Cartier divisor", cut out as the zero-locus of a section of a line bundle, where no regularity condition is imposed on the section. More precisely:

Proposition 4. Let X be a derived scheme. There is a bijection between the set of isomorphism classes of virtual Cartier divisors on X, and the set of equivalence classes of pairs (\mathcal{L}, s) , where \mathcal{L} is a locally free \mathcal{O}_X -module of rank 1, and $s : \mathcal{O}_X \to \mathcal{L}^{\vee}$ is a section of \mathcal{L}^{\vee} .

Proof. Given a pair (\mathcal{L}, s) , let D be the derived zero-locus of s, fitting into the cartesian square



where $\mathbf{V}_{\mathbf{X}}(\mathcal{L}) = \operatorname{Spec}_{\mathbf{X}}(\operatorname{Sym}_{\mathcal{O}_{\mathbf{X}}}(\mathcal{L}))$ is the vector bundle associated to \mathcal{L} , and z is the zero section. Then i is a virtual divisor with conormal sheaf $\mathcal{N}_{\mathrm{D/X}} \simeq \mathcal{L}|\mathbf{D}$. In the other direction, let $i : \mathbf{D} \hookrightarrow \mathbf{X}$ be a virtual Cartier divisor, and write \mathcal{L} for the fibre of the canonical map $\mathcal{O}_{\mathbf{X}} \to i_*(\mathcal{O}_{\mathbf{D}})$, so that there is an exact triangle $\mathcal{L} \to \mathcal{O}_{\mathbf{X}} \to i_*(\mathcal{O}_{\mathbf{D}})$. Locally, we have $\mathbf{X} = \operatorname{Spec}(\mathbf{R})$ and $\mathbf{D} = \operatorname{Spec}(\mathbf{R}/\!\!/(f))$ for some $f \in \pi_0(\mathbf{R})$, and this triangle takes the form $\mathbf{R} \xrightarrow{f} \mathbf{R} \to \mathbf{R}/\!\!/(f)$. In particular, \mathcal{L} is locally free of rank one, and we assign to $i : \mathbf{D} \hookrightarrow \mathbf{X}$ the pair (\mathcal{L}, s) , where s is the dual of $\mathcal{L} \to \mathcal{O}_{\mathbf{X}}$. One verifies that these two assignments are mutually inverse. \Box

Definition 5. Given a virtual Cartier divisor $i : D \hookrightarrow X$, we denote the fibre of $\mathcal{O}_X \to i_*(\mathcal{O}_D)$ by $\mathcal{O}_X(-D)$, and call this the *line bundle associated to* D. By construction there is a tautological exact sequence

$$(0.2) \qquad \qquad \mathcal{O}_{\mathbf{X}}(-\mathbf{D}) \to \mathcal{O}_{\mathbf{X}} \to i_*(\mathcal{O}_{\mathbf{D}}).$$

Moreover, there is a canonical isomorphism $i^*(\mathcal{O}_X(-D)) \simeq \mathcal{N}_{D/X}$.

We will need the following computation:

Lemma 6. Let $i: D \hookrightarrow X$ be a virtual divisor. Then there is a canonical isomorphism

$$i^*i_*(\mathcal{O}_{\mathrm{D}})\simeq\mathcal{O}_{\mathrm{D}}\oplus\mathcal{N}_{\mathrm{D}/\mathrm{X}}[1]$$

Proof. Applying i^* to the exact triangle (0.2), we get the triangle

$$\mathcal{N}_{\mathrm{D}/\mathrm{X}} \to \mathcal{O}_{\mathrm{D}} \to i^* i_*(\mathcal{O}_{\mathrm{D}}).$$

The map $\mathcal{O}_{\mathrm{D}} \to i^* i_*(\mathcal{O}_{\mathrm{D}})$ is induced by the natural transformation $i^*(\eta) : i^* \to i^* i_* i^*$ (where η is the unit), so by the triangle identities it has a retraction given by the co-unit map $i^* i_*(\mathcal{O}_{\mathrm{D}}) \to \mathcal{O}_{\mathrm{D}}$. In other words, the triangle splits.

Finally, we need Grothendieck duality for virtual divisors. Let $i : \mathbb{Z} \hookrightarrow \mathbb{X}$ be a quasi-smooth closed immersion of qcqs derived schemes. The functor i_* admits a right adjoint $i^!$, which for formal reasons can be computed by the formula

$$i^{!}(-) \simeq i^{*}(-) \otimes \omega_{\mathrm{D/X}},$$

where $\omega_{D/X} := i^!(\mathcal{O}_X)$ is called the *relative dualizing sheaf*. When $i : D \hookrightarrow X$ is a virtual divisor, $\omega_{D/X}$ can be computed as follows:

Proposition 7 (Grothendieck duality). Let X be a qcqs derived scheme. Then for any virtual Cartier divisor $i : D \to X$, there is a canonical isomorphism

$$\mathcal{N}_{\mathrm{D/X}}^{\vee}[-1] \xrightarrow{\sim} \omega_{\mathrm{D/X}}$$

 $in \operatorname{Qcoh}(D).$

Proof. Write $\mathcal{L} := \mathcal{O}_{\mathbf{X}}(-\mathbf{D})$ and recall the exact triangle $\mathcal{L} \to \mathcal{O}_{\mathbf{X}} \to i_*(\mathcal{O}_{\mathbf{D}})$. For any $\mathcal{F} \in \operatorname{Qcoh}(\mathbf{X})$, this gives rise after tensoring with \mathcal{F} to an exact triangle $\mathcal{F} \otimes \mathcal{L} \to \mathcal{F} \to i_*i^*(\mathcal{F})$ (by the projection formula). That is, we have an exact triangle of natural transformations $\operatorname{id} \otimes \mathcal{L} \to \operatorname{id} \to i_*i^*$, and passing to right adjoints, an exact triangle $i_*i^! \to \operatorname{id} \to \operatorname{id} \otimes \mathcal{L}^{\vee}$. In particular we get the exact triangle

By adjunction, we obtain a canonical morphism

$$\mathbb{N}_{\mathrm{D/X}}^{\vee}[-1] \simeq i^*(\mathcal{L}^{\vee})[-1] \to i^!(\mathcal{O}_{\mathrm{X}}).$$

Choose an affine Zariski covering $(X_{\alpha} \hookrightarrow X)_{\alpha}$, and let $(j_{\alpha} : D_{\alpha} \hookrightarrow D)_{\alpha}$ denote the induced covering of D. The family of functors j_{α}^* is conservative by Zariski descent. Since the functor $i^!$ commutes with f^* for any morphism f (for essentially formal reasons, and independently of Grothendieck duality), we may replace X by any X_{α} to assume that X is affine. In this case the functor i_* is conservative, so it will suffice to show that the canonical map

$$i_*(\mathcal{N}_{\mathrm{D/X}}^{\vee})[-1] \to i_*i^!(\mathcal{O}_{\mathrm{X}})$$

is invertible. Consider again the triangle $\mathcal{F} \otimes \mathcal{L} \to \mathcal{F} \to i_*i^*(\mathcal{F})$ above. Taking $\mathcal{F} = \mathcal{L}^{\vee}$ we get the exact triangle

$$\mathcal{O}_{\mathcal{X}} \to \mathcal{L}^{\vee} \to i_* i^* (\mathcal{L}^{\vee}) \simeq i_* (\mathcal{N}_{\mathcal{D}/\mathcal{X}}^{\vee})$$

since \mathcal{L} is invertible. Comparing with (0.3) yields the claim.

We are now ready to prove Theorem 2.

Claim 8. The functor $p^* : \operatorname{Qcoh}(X) \to \operatorname{Qcoh}(\tilde{X})$ is fully faithful.

Proof. The claim is that for any $\mathcal{F} \in \operatorname{Qcoh}(X)$, the unit map $\mathcal{F} \to p_*p^*(\mathcal{F})$ is invertible. By Zariski descent we may reduce to the case where X is affine and *i* fits in a cartesian square of the form (0.1). Since $\operatorname{Qcoh}(X)$ is then generated under colimits and finite limits by \mathcal{O}_X , we may assume that $\mathcal{F} = \mathcal{O}_X$. In other words, the claim is that the canonical map $\mathcal{O}_X \to p_*(\mathcal{O}_{\tilde{X}})$ is invertible. The square

$$\begin{array}{ccc} & \stackrel{i_{E}}{\longrightarrow} & \tilde{X} \\ & \downarrow^{q} & & \downarrow^{i} \\ & Z & \stackrel{i}{\longrightarrow} & X \end{array}$$

is a derived base change of the square

$$\begin{array}{cccc}
\mathbf{P}^{n-1} & \longrightarrow & \operatorname{Bl}_{\{0\}/\mathbf{A}^n} \\
\downarrow & & \downarrow^{p_0} \\
\{0\} & \stackrel{i_0}{\longrightarrow} & \mathbf{A}^n,
\end{array}$$

and the map $\mathcal{O}_{\mathbf{X}} \to p_*(\mathcal{O}_{\tilde{\mathbf{X}}})$ is the pullback along $f: \mathbf{X} \to \mathbf{A}^n$ of the canonical map $\mathcal{O}_{\mathbf{A}^n} \to (p_0)_*(\mathcal{O}_{\mathrm{Bl}_{\{0\}}/\mathbf{A}^n})$. Thus we reduce to the case where i is the immersion $\{0\} \hookrightarrow \mathbf{A}^n$, which is a classical computation (use the standard affine cover of $\mathrm{Bl}_{\{0\}}/\mathbf{A}^n$, or see [2, Exp. 7]). \Box

Claim 9. The functor $(i_{\rm E})_*q^*: \operatorname{Qcoh}({\rm Z}) \to \operatorname{Qcoh}({\rm \tilde{X}})$ is fully faithful.

Proof. Again it suffices to show the unit map $\mathcal{F} \to q_*(i_{\mathrm{E}})^!(i_{\mathrm{E}})_*q^*(\mathcal{F})$ is invertible for all $\mathcal{F} \in \operatorname{Qcoh}(\mathbb{Z})$. As in the previous claim we may assume X is affine and that $\mathcal{F} = \mathcal{O}_{\mathbb{Z}}$. Using Proposition 7 and the canonical identification $\mathcal{N}_{\mathrm{E}/\tilde{X}} \simeq \mathcal{O}_{\mathrm{E}}(1)$, the unit map is identified with

$$\mathcal{O}_{\mathbf{Z}} \to q_*((i_{\mathbf{E}})^*(i_{\mathbf{E}})_*(\mathcal{O}_{\mathbf{E}}) \otimes \mathcal{O}_{\mathbf{E}}(-1))[-1].$$

By Lemma 6 it is further identified with

$$\mathcal{O}_{\mathrm{Z}} \to q_*(\mathcal{O}_{\mathrm{E}}(-1)) \oplus q_*(\mathcal{O}_{\mathrm{E}})$$

Recall that q is identified with the projection $E \simeq \mathbf{P}(N_{Z/X}) \to Z$. Thus we have identifications $q_*(\mathcal{O}_E(-1)) \simeq 0, q_*(\mathcal{O}_E) \simeq \mathcal{O}_Z$ (Lecture 7), under which the map in question is the identity. \Box

Claim 10. For each $1 \leq k \leq n-1$, the full stable subcategory $\mathbf{C}(-k) \subset \operatorname{Qcoh}(\tilde{X})$ is right orthogonal to $\mathbf{C}(0), \ldots, \mathbf{C}(-k+1)$.

Proof. For $\mathcal{F}_{\mathbf{X}} \in \operatorname{Qcoh}(\mathbf{X})$ and $\mathcal{F}_{\mathbf{Z}} \in \operatorname{Qcoh}(\mathbf{Z})$, we have for each $1 \leq k \leq n-1$,

$$\operatorname{Maps}(p^*(\mathfrak{F}_{\mathbf{X}}), (i_{\mathbf{E}})_*(q^*(\mathfrak{F}_{\mathbf{Z}}) \otimes \mathcal{O}(-k))) \simeq \operatorname{Maps}(q^*i^*(\mathfrak{F}_{\mathbf{X}}), q^*(\mathfrak{F}_{\mathbf{Z}}) \otimes \mathcal{O}(-k)) \simeq p$$

by Lecture 7 (since $E \simeq \mathbf{P}(\mathcal{N}_{Z/X})$ and $\mathcal{N}_{Z/X}$ is of rank n). This shows that $\mathbf{C}(0)$ is left orthogonal to each $\mathbf{C}(-k)$, $1 \leq k \leq n-1$.

For $1 \leq k \leq k' \leq n-1$, we need to show that the mapping space

$$Maps((i_{\rm E})_*(q^*(\mathcal{F}_{\rm Z})\otimes \mathcal{O}(-k)), (i_{\rm E})_*(q^*(\mathcal{F}_{\rm Z}')\otimes \mathcal{O}(-k')))$$

is contractible, for all $\mathcal{F}_{Z}, \mathcal{F}'_{Z} \in \operatorname{Qcoh}(Z)$. Choose an affine Zariski covering of X, and let $(j_{\alpha}^{*}: \tilde{X}_{\alpha} \hookrightarrow \tilde{X})_{\alpha}$ denote the induced covering of \tilde{X} . Using Zariski descent for the presheaf of ∞ -categories $\operatorname{Qcoh}(-)$, and base change for $(i_{E})_{*}$ along j_{α}^{*} , we may replace X by any *n*-fold intersection $X_{\alpha_{0}} \times_{X} \cdots \times_{X} X_{\alpha_{n}}$, and Z, \tilde{X} , and E by their respective base changes. Thus we may assume that X is separated. Repeating the same argument again, we may assume furthermore that X is affine. Since $\operatorname{Qcoh}(Z)$ is then generated under colimits and finite limits by \mathcal{O}_{Z} , we may assume that $\mathcal{F}_{Z} = \mathcal{F}'_{Z} = \mathcal{O}_{Z}$. Then we have

$$\begin{aligned} \operatorname{Maps}((i_{\mathrm{E}})_{*}(\mathcal{O}(-k)), (i_{\mathrm{E}})_{*}(\mathcal{O}(-k'))) &\simeq \operatorname{Maps}((i_{\mathrm{E}})^{*}(i_{\mathrm{E}})_{*}(\mathcal{O}(-k)), \mathcal{O}(-k')) \\ &\simeq \operatorname{Maps}(\mathcal{O}(-k) \oplus \mathcal{O}(-k+1)[1], \mathcal{O}(-k')) \\ &\simeq \operatorname{Maps}(\mathcal{O}(-k), \mathcal{O}(-k')) \times \operatorname{Maps}(\mathcal{O}(-k+1)[1], \mathcal{O}(-k')) \\ &\simeq \Gamma(\mathbf{P}(\mathcal{N}_{\mathbf{Z}/\mathbf{X}}), \mathcal{O}(k-k')) \times \Gamma(\mathbf{P}(\mathcal{N}_{\mathbf{Z}/\mathbf{X}}), \mathcal{O}(k-k'-1)[-1]) \end{aligned}$$

which is contractible by Serre's computation in Lecture 7. The isomorphism $(i_{\rm E})^*(i_{\rm E})_*(\mathcal{O}(-k)) \simeq \mathcal{O}(-k) \oplus \mathcal{O}(-k+1)[1]$ follows from Lemma 6 and the projection formula. \Box

Claim 11. The stable ∞ -category $\operatorname{Qcoh}(\tilde{X})$ is generated by the full stable subcategories $\mathbf{C}(0)$, $\mathbf{C}(-1)$, ..., $\mathbf{C}(-n+1)$.

Proof. Denote by $\mathbf{C}(*)$ the full stable subcategory of $\operatorname{Qcoh}(\tilde{X})$ by $\mathbf{C}(0)$, $\mathbf{C}(-1)$, ..., $\mathbf{C}(-n+1)$. The claim is that the inclusion $\mathbf{C}(*) \subseteq \operatorname{Qcoh}(\tilde{X})$ is an equality. Note that $\mathcal{O}_{\tilde{X}} \in \mathbf{C}(0) \subset \mathbf{C}(*)$ and $(i_{\mathrm{E}})_*(\mathcal{O}_{\mathrm{E}}(-k)) \in \mathbf{C}(-k) \subset \mathbf{C}(*)$ for $1 \leq k \leq n-1$. Consider the exact triangle $\mathcal{O}_{\tilde{X}}(-\mathbb{E}) \to \mathcal{O}_{\tilde{X}} \to (i_{\mathrm{E}})_*(\mathcal{O}_{\mathrm{E}})$ and recall that $\mathcal{O}_{\tilde{X}}(-\mathbb{E}) \simeq \mathcal{O}_{\tilde{X}}(1)$. Tensoring with $\mathcal{O}(-k)$ and using the projection formula, we get the exact triangle

$$\mathcal{O}_{\tilde{\mathbf{X}}}(-k+1) \to \mathcal{O}_{\tilde{\mathbf{X}}}(-k) \to (i_{\mathrm{E}})_*(\mathcal{O}_{\mathrm{E}}(-k))$$

for each $1 \leq k \leq n-1$. Taking k = 1 we deduce $\mathcal{O}_{\tilde{X}}(-1) \in \mathbf{C}(*)$. Continuing recursively we find that $\mathcal{O}_{\tilde{X}}(-k) \in \mathbf{C}(*)$ for all $1 \leq k \leq n-1$.

Now let $\mathcal{F} \in \operatorname{Qcoh}(X)$. Let \mathcal{G}_0 denote the cofibre of the co-unit $p^*p_*(\mathcal{F}) \to \mathcal{F} \to \mathcal{G}_0$. Note that \mathcal{G}_0 is right orthogonal to $\mathbf{C}(0)$. For $1 \leq k \leq n-1$ define \mathcal{G}_k recursively so that we have exact triangles

$$(i_{\rm E})_*(q^*q_*((i_{\rm E})^!(\mathfrak{G}_{k-1})\otimes \mathfrak{O}(k))\otimes \mathfrak{O}(-k))\to \mathfrak{G}_{k-1}\to \mathfrak{G}_k.$$

Note that each \mathcal{G}_k is right orthogonal to each of the subcategories $\mathbf{C}(0), \ldots, \mathbf{C}(k-1)$. For example, \mathcal{G}_1 is right orthogonal to $\mathbf{C}(-1)$ by construction. It is right orthogonal to $\mathbf{C}(0)$ since the middle term \mathcal{G}_0 in the above sequence is, and the left-hand term is because $\mathbf{C}(-1) \subseteq \mathbf{C}(0)^{\perp}$ by Claim 10. Proceeding inductively, the claim follows for each k. We now claim that \mathcal{G}_{n-1} is zero. Working backwards, it will follow that \mathcal{F} belongs to $\mathbf{C}(*)$.

Since the objects \mathcal{G}_k are stable under base change, we may use Zariski descent and base change to assume that X is affine. Moreover we may assume that $i: \mathbb{Z} \hookrightarrow X$ fits in a cartesian square of the form (0.1). By Lemma 3, $p: \tilde{X} \to X$ factors through a quasi-smooth closed immersion $i': \tilde{X} \hookrightarrow \mathbf{P}_X^{n-1}$. Recall from Lecture 7 that there is a canonical isomorphism $\varinjlim_{J\subseteq[n-1]} \mathcal{O}(\#J) \simeq \mathcal{O}(n)$ in $\operatorname{Qcoh}(\mathbf{P}_X^{n-1})$. Applying $(i')^*$, we get $\varinjlim_{J\subseteq[n-1]} \mathcal{O}_{\tilde{X}}(\#J) \simeq \mathcal{O}_{\tilde{X}}(n)$ in $\operatorname{Qcoh}(\tilde{X})$. In particular, every $\mathcal{O}_{\tilde{X}}(k)$ belongs to $\mathbf{C}(*)$ for all $k \in \mathbf{Z}$. Recall also that we may find a map $\bigoplus_{\alpha} \mathcal{O}(d_{\alpha})[n_{\alpha}] \to i'_*(\mathcal{G}_{n-1})$ which is surjective on all homotopy groups. By adjunction this corresponds to a map $\bigoplus_{\alpha} \mathcal{O}(d_{\alpha})[n_{\alpha}] \to \mathcal{G}_{n-1}$ (which is also surjective on homotopy groups). But the source belongs to $\mathbf{C}(*)$, and the target is right orthogonal to $\mathbf{C}(*)$, so this map is null-homotopic. Thus \mathcal{G}_{n-1} is zero. \Box

Proof of Theorem 2. Combine Claims 8, 9, 10, and 11. For the statement at the level of perfect complexes, simply note that all functors involved preserve perfect complexes. \Box

Proof of Theorem 1. Surjectivity follows from Claim 11. For injectivity, suppose given $\mathcal{F}_{\mathbf{X}} \in \operatorname{Perf}(\mathbf{X}), \mathcal{F}_{\mathbf{Z}}^k \in \operatorname{Perf}(\mathbf{Z})$ for $1 \leq k \leq n-1$, such that

$$0 = [p^* \mathcal{F}_{\mathbf{X}}] + \sum_{k=1}^{n-1} [(i_{\mathbf{E}})_* (q^* (\mathcal{F}_{\mathbf{Z}}^k) \otimes \mathcal{O}(-k))]$$

Applying p_* (which preserves perfect complexes), we deduce that $[\mathcal{F}_X] = 0$ (using Claim 8 and Claim 10). Applying $q_*((i_E)!(-) \otimes \mathcal{O}(k))$ (q_* preserves perfect complexes, and $(i_E)!$ preserves perfect complexes by Grothendieck duality), we deduce that $[\mathcal{F}_Z^k] = 0$ for each k (using Claim 9 and Claim 10).

References

A. A. Khan, Virtual Cartier divisors and blow-ups.
 SGA 6.