
Lecture 8
The blow-up formula

Let i : Z ↪→ X be a quasi-smooth closed immersion. Then we may form the blow-up square

E X̃

Z X

iE

q p

i

where iE is a virtual Cartier divisor, i.e., a quasi-smooth closed immersion of virtual codimension
1. In this lecture our goal is to compute the group K0(X̃).

Theorem 1. Let X be a qcqs derived scheme. Let i : Z ↪→ X be a quasi-smooth closed immersion
of virtual codimension n. Then there is a canonical isomorphism of abelian groups

K0(X)⊕
n−1⊕
k=1

K0(Z) ' K0(X̃),

induced by the assignments [FX] 7→ [p∗FX] and [FZ] 7→ [(iE)∗(q
∗(FZ)⊗O(−k))] for 1 6 k 6 n−1.

This arises from a semi-orthogonal decomposition at the level of quasi-coherent sheaves:

Theorem 2. The stable ∞-category Qcoh(X̃) admits a semi-orthogonal decomposition

Qcoh(X̃) = 〈C(0),C(−1), . . . ,C(−n+ 1)〉,

where C(0) denotes the essential image of p∗ : Qcoh(X) → Qcoh(X̃), and C(−k) denotes the

essential image of (iE)∗(q
∗(−)⊗ O(−k)) : Qcoh(Z)→ Qcoh(X̃), for 1 6 k 6 n− 1. Moreover,

this restricts to a semi-orthogonal decomposition of Perf(X̃).

Recall that a closed immersion i : Z ↪→ X is called quasi-smooth if it is locally the derived
zero-locus of some functions f1, . . . , fn ∈ Γ(X,OX). In other words, there exists Zariski-locally
on X a morphism f : X→ An and a cartesian square of derived schemes

(0.1)

Z X

{0} An.

i

f

Equivalently, i is quasi-smooth if and only if the quasi-coherent sheaf NZ/X := LZ/X[−1] is
locally free of finite rank. The integer n = rk(NZ/X) is called the virtual codimension of i.

More generally, a morphism Y → X is called quasi-smooth if it factors, Zariski-locally on Y,
through a quasi-smooth closed immersion followed by a smooth morphism.

Lemma 3. Let i : Z ↪→ X be a quasi-smooth closed immersion of virtual codimension n > 1.
Let p : X̃→ X be the blow-up. Then p factors, Zariski-locally on X, as a composite

i : X̃
i′−→ Pn−1

X
π−→ X,

where i′ is a quasi-smooth closed immersion, and π is the canonical projection. In particular, p
is quasi-smooth and proper.
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Proof. The claim being local, it suffices to assume that X is affine and there exists a cartesian
square (0.1). Then we also have a cartesian square

X̃ Bl{0}/An

X An

p p0

f

since blow-ups are stable under derived base change. It is well-known that p0 is projective, and
it is quasi-smooth since Bl{0}/An and An are both smooth over Spec(Z). It follows that p is
projective and quasi-smooth. For the more precise statement, see [2, Prop. 1.8]. �

Recall that a virtual (effective) Cartier divisor is a quasi-smooth closed immersion of virtual
codimension 1. We can think of a virtual divisor as a “generalized (effective) Cartier divisor”,
cut out as the zero-locus of a section of a line bundle, where no regularity condition is imposed
on the section. More precisely:

Proposition 4. Let X be a derived scheme. There is a bijection between the set of isomorphism
classes of virtual Cartier divisors on X, and the set of equivalence classes of pairs (L, s), where
L is a locally free OX-module of rank 1, and s : OX → L∨ is a section of L∨.

Proof. Given a pair (L, s), let D be the derived zero-locus of s, fitting into the cartesian square

D X

X VX(L),

i

s

z

where VX(L) = SpecX(SymOX
(L)) is the vector bundle associated to L, and z is the zero section.

Then i is a virtual divisor with conormal sheaf ND/X ' L|D. In the other direction, let i : D ↪→ X
be a virtual Cartier divisor, and write L for the fibre of the canonical map OX → i∗(OD), so
that there is an exact triangle L → OX → i∗(OD). Locally, we have X = Spec(R) and

D = Spec(R//(f)) for some f ∈ π0(R), and this triangle takes the form R
f−→ R → R//(f). In

particular, L is locally free of rank one, and we assign to i : D ↪→ X the pair (L, s), where s is
the dual of L→ OX. One verifies that these two assignments are mutually inverse. �

Definition 5. Given a virtual Cartier divisor i : D ↪→ X, we denote the fibre of OX → i∗(OD)
by OX(−D), and call this the line bundle associated to D. By construction there is a tautological
exact sequence

(0.2) OX(−D)→ OX → i∗(OD).

Moreover, there is a canonical isomorphism i∗(OX(−D)) ' ND/X.

We will need the following computation:

Lemma 6. Let i : D ↪→ X be a virtual divisor. Then there is a canonical isomorphism

i∗i∗(OD) ' OD ⊕ND/X[1].

Proof. Applying i∗ to the exact triangle (0.2), we get the triangle

ND/X → OD → i∗i∗(OD).

The map OD → i∗i∗(OD) is induced by the natural transformation i∗(η) : i∗ → i∗i∗i
∗ (where η is

the unit), so by the triangle identities it has a retraction given by the co-unit map i∗i∗(OD)→ OD.
In other words, the triangle splits. �
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Finally, we need Grothendieck duality for virtual divisors. Let i : Z ↪→ X be a quasi-smooth
closed immersion of qcqs derived schemes. The functor i∗ admits a right adjoint i!, which for
formal reasons can be computed by the formula

i!(−) ' i∗(−)⊗ ωD/X,

where ωD/X := i!(OX) is called the relative dualizing sheaf. When i : D ↪→ X is a virtual divisor,
ωD/X can be computed as follows:

Proposition 7 (Grothendieck duality). Let X be a qcqs derived scheme. Then for any virtual
Cartier divisor i : D ↪→ X, there is a canonical isomorphism

N∨D/X[−1]
∼−→ ωD/X

in Qcoh(D).

Proof. Write L := OX(−D) and recall the exact triangle L → OX → i∗(OD). For any F ∈
Qcoh(X), this gives rise after tensoring with F to an exact triangle F ⊗ L → F → i∗i

∗(F)
(by the projection formula). That is, we have an exact triangle of natural transformations
id ⊗ L → id → i∗i

∗, and passing to right adjoints, an exact triangle i∗i
! → id → id ⊗ L∨. In

particular we get the exact triangle

(0.3) i∗i
!(OX)→ OX → L∨.

By adjunction, we obtain a canonical morphism

N∨D/X[−1] ' i∗(L∨)[−1]→ i!(OX).

Choose an affine Zariski covering (Xα ↪→ X)α, and let (jα : Dα ↪→ D)α denote the induced
covering of D. The family of functors j∗α is conservative by Zariski descent. Since the functor i!

commutes with f∗ for any morphism f (for essentially formal reasons, and independently of
Grothendieck duality), we may replace X by any Xα to assume that X is affine. In this case the
functor i∗ is conservative, so it will suffice to show that the canonical map

i∗(N
∨
D/X)[−1]→ i∗i

!(OX)

is invertible. Consider again the triangle F ⊗ L→ F → i∗i
∗(F) above. Taking F = L∨ we get

the exact triangle
OX → L∨ → i∗i

∗(L∨) ' i∗(N∨D/X),

since L is invertible. Comparing with (0.3) yields the claim. �

We are now ready to prove Theorem 2.

Claim 8. The functor p∗ : Qcoh(X)→ Qcoh(X̃) is fully faithful.

Proof. The claim is that for any F ∈ Qcoh(X), the unit map F → p∗p
∗(F) is invertible. By

Zariski descent we may reduce to the case where X is affine and i fits in a cartesian square of
the form (0.1). Since Qcoh(X) is then generated under colimits and finite limits by OX, we may
assume that F = OX. In other words, the claim is that the canonical map OX → p∗(OX̃) is
invertible. The square

E X̃

Z X

iE

q p

i

is a derived base change of the square

Pn−1 Bl{0}/An

{0} An,

p0

i0
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and the map OX → p∗(OX̃) is the pullback along f : X → An of the canonical map OAn →
(p0)∗(OBl{0}/An ). Thus we reduce to the case where i is the immersion {0} ↪→ An, which is a

classical computation (use the standard affine cover of Bl{0}/An , or see [2, Exp. 7]). �

Claim 9. The functor (iE)∗q
∗ : Qcoh(Z)→ Qcoh(X̃) is fully faithful.

Proof. Again it suffices to show the unit map F → q∗(iE)!(iE)∗q
∗(F) is invertible for all

F ∈ Qcoh(Z). As in the previous claim we may assume X is affine and that F = OZ. Using
Proposition 7 and the canonical identification NE/X̃ ' OE(1), the unit map is identified with

OZ → q∗((iE)∗(iE)∗(OE)⊗ OE(−1))[−1].

By Lemma 6 it is further identified with

OZ → q∗(OE(−1))⊕ q∗(OE).

Recall that q is identified with the projection E ' P(NZ/X)→ Z. Thus we have identifications
q∗(OE(−1)) ' 0, q∗(OE) ' OZ (Lecture 7), under which the map in question is the identity. �

Claim 10. For each 1 6 k 6 n − 1, the full stable subcategory C(−k) ⊂ Qcoh(X̃) is right
orthogonal to C(0), . . . ,C(−k + 1).

Proof. For FX ∈ Qcoh(X) and FZ ∈ Qcoh(Z), we have for each 1 6 k 6 n− 1,

Maps(p∗(FX), (iE)∗(q
∗(FZ)⊗ O(−k))) ' Maps(q∗i∗(FX), q∗(FZ)⊗ O(−k)) ' pt

by Lecture 7 (since E ' P(NZ/X) and NZ/X is of rank n). This shows that C(0) is left orthogonal
to each C(−k), 1 6 k 6 n− 1.

For 1 6 k 6 k′ 6 n− 1, we need to show that the mapping space

Maps((iE)∗(q
∗(FZ)⊗ O(−k)), (iE)∗(q

∗(F′Z)⊗ O(−k′)))

is contractible, for all FZ,F
′
Z ∈ Qcoh(Z). Choose an affine Zariski covering of X, and let

(j∗α : X̃α ↪→ X̃)α denote the induced covering of X̃. Using Zariski descent for the presheaf of
∞-categories Qcoh(−), and base change for (iE)∗ along j∗α, we may replace X by any n-fold

intersection Xα0
×X · · · ×X Xαn

, and Z, X̃, and E by their respective base changes. Thus we may
assume that X is separated. Repeating the same argument again, we may assume furthermore
that X is affine. Since Qcoh(Z) is then generated under colimits and finite limits by OZ, we may
assume that FZ = F′Z = OZ. Then we have

Maps((iE)∗(O(−k)), (iE)∗(O(−k′))) ' Maps((iE)∗(iE)∗(O(−k)),O(−k′))
' Maps(O(−k)⊕ O(−k + 1)[1],O(−k′))
' Maps(O(−k),O(−k′))×Maps(O(−k + 1)[1],O(−k′))
' Γ(P(NZ/X),O(k − k′))× Γ(P(NZ/X),O(k − k′ − 1)[−1])

which is contractible by Serre’s computation in Lecture 7. The isomorphism (iE)∗(iE)∗(O(−k)) '
O(−k)⊕ O(−k + 1)[1] follows from Lemma 6 and the projection formula. �

Claim 11. The stable ∞-category Qcoh(X̃) is generated by the full stable subcategories C(0),
C(−1), . . . , C(−n+ 1).

Proof. Denote by C(∗) the full stable subcategory of Qcoh(X̃) by C(0), C(−1), . . . , C(−n+ 1).

The claim is that the inclusion C(∗) ⊆ Qcoh(X̃) is an equality. Note that OX̃ ∈ C(0) ⊂ C(∗) and
(iE)∗(OE(−k)) ∈ C(−k) ⊂ C(∗) for 1 6 k 6 n−1. Consider the exact triangle OX̃(−E)→ OX̃ →
(iE)∗(OE) and recall that OX̃(−E) ' OX̃(1). Tensoring with O(−k) and using the projection
formula, we get the exact triangle

OX̃(−k + 1)→ OX̃(−k)→ (iE)∗(OE(−k))
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for each 1 6 k 6 n − 1. Taking k = 1 we deduce OX̃(−1) ∈ C(∗). Continuing recursively we
find that OX̃(−k) ∈ C(∗) for all 1 6 k 6 n− 1.

Now let F ∈ Qcoh(X̃). Let G0 denote the cofibre of the co-unit p∗p∗(F) → F → G0. Note
that G0 is right orthogonal to C(0). For 1 6 k 6 n− 1 define Gk recursively so that we have
exact triangles

(iE)∗(q
∗q∗((iE)!(Gk−1)⊗ O(k))⊗ O(−k))→ Gk−1 → Gk.

Note that each Gk is right orthogonal to each of the subcategories C(0), . . . ,C(k − 1). For
example, G1 is right orthogonal to C(−1) by construction. It is right orthogonal to C(0) since
the middle term G0 in the above sequence is, and the left-hand term is because C(−1) ⊆ C(0)⊥

by Claim 10. Proceeding inductively, the claim follows for each k. We now claim that Gn−1 is
zero. Working backwards, it will follow that F belongs to C(∗).

Since the objects Gk are stable under base change, we may use Zariski descent and base
change to assume that X is affine. Moreover we may assume that i : Z ↪→ X fits in a cartesian
square of the form (0.1). By Lemma 3, p : X̃ → X factors through a quasi-smooth closed

immersion i′ : X̃ ↪→ Pn−1
X . Recall from Lecture 7 that there is a canonical isomorphism

lim−→J([n−1] O(#J) ' O(n) in Qcoh(Pn−1
X ). Applying (i′)∗, we get lim−→J([n−1] OX̃(#J) ' OX̃(n) in

Qcoh(X̃). In particular, every OX̃(k) belongs to C(∗) for all k ∈ Z. Recall also that we may find
a map

⊕
α O(dα)[nα] → i′∗(Gn−1) which is surjective on all homotopy groups. By adjunction

this corresponds to a map
⊕

α O(dα)[nα]→ Gn−1 (which is also surjective on homotopy groups).
But the source belongs to C(∗), and the target is right orthogonal to C(∗), so this map is
null-homotopic. Thus Gn−1 is zero. �

Proof of Theorem 2. Combine Claims 8, 9, 10, and 11. For the statement at the level of perfect
complexes, simply note that all functors involved preserve perfect complexes. �

Proof of Theorem 1. Surjectivity follows from Claim 11. For injectivity, suppose given FX ∈
Perf(X), FkZ ∈ Perf(Z) for 1 6 k 6 n− 1, such that

0 = [p∗FX] +

n−1∑
k=1

[(iE)∗(q
∗(FkZ)⊗ O(−k))].

Applying p∗ (which preserves perfect complexes), we deduce that [FX] = 0 (using Claim 8 and
Claim 10). Applying q∗((iE)!(−)⊗ O(k)) (q∗ preserves perfect complexes, and (iE)! preserves
perfect complexes by Grothendieck duality), we deduce that [FkZ] = 0 for each k (using Claim 9
and Claim 10). �
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