
Exercise sheet 10

1. Show that for any noetherian ring A and every n > 0, inverse image along
φ : A→ A[T1, . . . ,Tn] induces an isomorphism

φ∗ : G0(A)→ G0(A[T1, . . . ,Tn]).

(We showed this when A is a field and n = 1. For the case of an integral domain,
use a noetherian induction argument and the localization sequence to reduce to
the fraction field.)

The homomorphism φ∗ exists since φ is flat. By induction we may assume n = 1.

Let ρ : A� Ared be the reduction homomorphism. Since φ : A→ A[T] is flat, the
base change formula (§6.3) implies that the square

G0(Ared) G0(Ared[T])

G0(A) G0(A[T])

φ∗

ρ∗ ρ∗

φ∗

commutes. We have abused notation by writing φ also for Ared → Ared[T], and ρ
also for A[T]� (A[T])red ' Ared[T]. By nil-invariance (§6.4), the vertical arrows
are invertible. Therefore, we may replace A by Ared (which is still noetherian)
and thereby assume that A is reduced.

Since A is noetherian, it has finitely many minimal primes p1, . . . , pn. Let B
denote the total ring of fractions of A, i.e., the localization at the set of zero
divisors. Recall:

Lemma 1. Let A be a reduced ring with finitely many minimal prime ideals
p1, . . . , pn. If B denotes the total ring of fractions of A, then we have a canonical
isomorphism

B '
∏
i

B/piB.

Moreover, each B/piB is the field of fractions of the integral domain A/pi.

Therefore, we have

G0(B) '
⊕
i

G0(Ki)

where Ki = Frac(A/pi), since it is easy to check that G0 sends finite products of
rings to direct sums.

We now want to apply the localization sequence (§7.3), except that we are not in
the case of a localization at a single element. Nevertheless, it’s easy to check that
our proof generalizes to show:
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Theorem 2. Let A be a ring and S a multiplicative subset. Then there is a
canonical exact sequence

lim−→
s∈S

G0(A/〈s〉)→ G0(A)→ G0(A[S−1])→ 0

(Implicit here is a filtered colimit argument,

K0(Modfg
A(S)) ' lim−→

s∈S
G0(A/〈s〉),

where Modfg
A(S) denotes the category of f.g. A-modules that are S-torsion, i.e.,

s-torsion for some element s ∈ S.)

In our case, we get the localization sequence

lim−→
s

G0(A/〈s〉)→ G0(A)→
⊕
i

G0(Ki)→ 0.

where the colimit is taken over zero-divisors s. We also have

G0(B[T]) '
⊕
i

G0(Ki[T])

as B[T] '
∏

i Ki[T], so this fits into the commutative diagram with exact rows:

lim−→s
G0(A/〈s〉) G0(A)

⊕
i G0(Ki) 0

lim−→s
G0(A/〈s〉[T]) G0(A[T])

⊕
i G0(Ki[T]) 0

φ∗ φ∗ φ∗

where we again use φ to denote each of the ring homomorphisms ?→ ?[T].

Since the Ki are fields, we already know that the right-hand vertical arrow is
invertible (Sheet 7, Exercise 3). We also know that our middle vertical arrow is
injective, by the existence of a morphism ψ : A[T]→ A, which is of Tor-amplitude
6 1 (use the Koszul complex KoszA[T](T) to resolve A as an A-module), and is
a retraction of φ (so that ψ∗φ∗ = id). Thus it remains to show surjectivity. For
that we could apply the five lemma if we only knew that the left-hand vertical
arrow was invertible.

We can finish the proof by a noetherian induction argument. Call an ideal I ⊆ A
good if the inverse image map G0(A/I)→ G0(A/I[T]) is invertible. The conclusion
of the discussion above can be summarized as: if every nonzero ideal of A is good,
then the zero ideal is also good. This holds for any reduced noetherian ring A.

Now let’s show that every nonzero ideal of A is good. Suppose that isn’t the case.
Then since A is noetherian, we can choose a maximal one out of the bad ideals,
say I, and then every nonzero ideal of A/I is good. Then the above argument
yields that the zero ideal of A/I is good, i.e., G0(A/I)→ G0(A/I[T]) is invertible.
But that contradicts the assumption that I was bad. Thus, every nonzero ideal of
A is good, so by above, the zero ideal is good, as desired.
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2. Let k be an algebraically closed field and A = k[X,Y,Z]/〈XZ,Z(Z2 − Y3)〉.
Show that

∣∣Spec(A)
∣∣ has two irreducible components, Y1 = V(〈Z〉) and Y2 =

V(〈X,Z2 − Y3〉), and is not of pure dimension.

Let I1 = 〈Z〉 and I2 = 〈X,Z2 − Y3〉 as ideals of B = k[X,Y,Z]. Then I1I2 =
〈ZX,Z(Z2 − Y3)〉, so VB(I1) ∪VB(I2) = VB(I1I2) as subsets of

∣∣Spec(B)
∣∣. Under

the identification VB(I1I2) '
∣∣Spec(A)

∣∣, we get Y1 ∪Y2 = VA(I1A) ∪VA(I2A) =∣∣Spec(A)
∣∣. Moreover, Y1 and Y2 are integral since

A/I1A = k[X,Y,Z]/〈Z,XZ,Z(Z2 − Y3)〉 ' k[X,Y]

A/I2A = k[X,Y,Z]/〈X,Z2 − Y3,XZ,Z(Z2 − Y3)〉 ' k[Y,Z]/〈Z2 − Y3〉

are integral domains. (For the second, it suffices to show that the polynomial
Z2 − Y3 is irreducible, since k[Y,Z] is factorial. Regarding it as a polynomial
in k[Z][Y], it suffices by Gauss’s lemma to show that it is irreducible in k(Z)[Y].
But it is a degree 3 polynomial with no root in k(Z), so it is irreducible.) In
particular, Y1 and Y2 are the irreducible components of

∣∣Spec(A)
∣∣. Moreover, the

computations above show that

dim(Y1) = dim(A/I1A) = dim(k[X,Y]) = 2,

dim(Y2) = dim(A/I2A) = dim(k[Y,Z]/〈Z2 − Y3〉) = 1

where the last equality on the second line follows from Krull’s principal ideal
theorem and the fact that Z2 −Y3 is a zero divisor in the integral domain k[Y,Z].
(Since dim(A) = supm dim(Am) by Sheet 9, Exercise 3, we can localize at a maximal
ideal and then apply Krull’s theorem.)

3. Let k be an algebraically closed field and A = k[X,Y]. Let f, g ∈ A be polynomials.
In each of the following examples, determine whether V(f) and V(g) intersect
properly, and compute the cycle [A/〈f, g〉]d ∈ Zd(A), where d = dim(V(f)) +
dim(V(g))− dim(A).

(a) f = X, g = Y

(b) f = X, g = X

(c) f = Y − X2, g = Y

(d) f = XY, g = Y2

(Note: we only defined properness of intersection between irreducible subsets.
However the same definition makes sense as long as both subsets are of pure
dimension.)

(a) We have V(X) ∩V(Y) = V(〈X,Y〉) which is a closed point x, since 〈X,Y〉 is
maximal. In particular it is of dimension 0 which is the same as d = 1 + 1− 2. So
the intersection is proper.

We compute [A/〈f, g〉]0 = [k[X,Y]/〈X,Y〉]0 = [k]0. The support of k is V(〈X,Y〉) =
{x} which has a single irreducible component corresponding to the generic
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point x. The multiplicity at x is 1 because k is a simple Ap(x)-module. So
[A/〈f, g〉]0 = [V(〈X,Y〉)].
(b) We have V(X) ∩V(X) = V(X) which is of dimension 1, while d = 0. So the
intersection is not proper.

We have [A/〈f, g〉]0 = [k[X,Y]/〈X〉]0 = 0 because V(X) has no irreducible compo-
nent of dimension 0.

(c) We have V(Y−X2) ∩V(Y) = V(〈Y,Y − X2〉) = V(〈Y,X2〉). Since the radical
of 〈X2,Y〉 is 〈X,Y〉, this is again the closed point {x} of (a). The intersection is
proper as d = 1 + 1− 2 again.

We have [A/〈f, g〉]0 = [k[X,Y]/〈X2,Y〉]0 = [k[X]/〈X2〉]0. Since Vk[X](X
2) =

Vk[X](X) is a closed point, it has a single irreducible component of dimension 0.
The multiplicity at that point is given by the length of k[X]〈X〉/〈X2〉 as a module
over k[X]〈X〉, which is 2. So we get [A/〈f, g〉]0 = 2 · [V(〈X,Y〉)]. Note that this is
double the cycle in (a), which reflects that the parabola Y = X2 intersects the
line Y = 0 in a double point at (0, 0).

(d) We have V(XY) ∩ V(Y2) = V(XY) ∩ V(Y) = V(Y) which is of dimension 1
(note V(Y) ⊂ V(XY)). But d = 1 + 1− 2 (note V(XY) = V(X) ∪V(Y) has two
irreducible components both of dimension 1). So the intersection is not proper.

We have [A/〈f, g〉]0 = [k[X,Y]/〈XY,Y2〉]0 = 0 because V(Y) has no irreducible
component of dimension 0.

4. Let A be a noetherian ring and f ∈ A an element. Let φ : A → A[f−1] and
ψ : A→ A/〈f〉. Show that there is an exact sequence

CHn(A/〈f〉) ψ∗−→ CHn(A)
φ∗−→ CHn(A[f−1])→ 0

for every n.

We have φ∗ψ∗ = 0 since for any prime ideal p of A/〈f〉,

φ∗ψ∗[VA/〈f〉(p)] = φ∗[VA(q)] = [A[f−1]/qA[f−1]]n = 0

where q = ψ−1(p) (since f ∈ q).

For surjectivity of φ∗, let V(p) be an integral subset of
∣∣Spec(A[f−1])

∣∣ of dimension
n. The contraction of the prime ideal p is a prime ideal q = φ−1(p) ⊂ A
not containing f , and whose extension qA[f−1] recovers p. Thus φ∗[V(q)] =
[A[f−1]/qA[f−1]]n = [A[f−1]/p]n = [V(p)].

Finally let α be an n-cycle on A such that φ∗(α) ∈ Zn(A[f−1]) is rationally
equivalent to zero. We need to show that there exists a cycle α̃ ∈ Zn(A/〈f〉) such
that ψ∗(α̃)− α is rationally equivalent to zero. Write α as a linear combination

α =
∑
i

ni[V(pi)]
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where the pi are prime ideals of A. By assumption, we have∑
i

ni[V(pi)] =
∑
j

divV(qj)(gj)

in Zn(A[f−1]), where V(qj) are integral subsets of
∣∣Spec(A[f−1])

∣∣ of dimension
n + 1 and gj are elements of A[f−1] with gj 6∈ qj. Each qj is an extension of a
prime of A (which we denote by qj again). We can also assume that gj come from
A by clearing denominators (multiply by a large enough power of f). Then the
difference

β =
∑
i

ni[V(pi)]−
∑
j

divV(qj)(gj)

may be viewed as an element of Zn(A) which goes to zero in Zk(A[f−1]). Since
the latter is a free abelian group, this means that β can have nonzero multiplicity
at an integral subset V(p) ⊆

∣∣Spec(A)
∣∣ only if φ∗[V(p)] = 0 ∈ Zn(A[f−1]), hence

pA[f−1] = A[f−1], hence f ∈ p. In particular, β lifts to an element α̃ ∈ Zn(A/〈f〉)
such that ψ∗(α̃) = β. The claim follows.


