Exercise sheet 10

1. Show that for any noetherian ring A and every $n \ge 0$, inverse image along $\phi : A \to A[T_1, \ldots, T_n]$ induces an isomorphism

$$\phi^*: \mathbf{G}_0(\mathbf{A}) \to \mathbf{G}_0(\mathbf{A}[\mathbf{T}_1, \dots, \mathbf{T}_n]).$$

(We showed this when A is a field and n = 1. For the case of an integral domain, use a noetherian induction argument and the localization sequence to reduce to the fraction field.)

The homomorphism ϕ^* exists since ϕ is flat. By induction we may assume n = 1. Let $\rho : A \rightarrow A_{red}$ be the reduction homomorphism. Since $\phi : A \rightarrow A[T]$ is flat, the base change formula (§6.3) implies that the square

$$\begin{array}{ccc} G_0(A_{red}) & \stackrel{\phi^*}{\longrightarrow} & G_0(A_{red}[T]) \\ & & \downarrow^{\rho_*} & & \downarrow^{\rho_*} \\ G_0(A) & \stackrel{\phi^*}{\longrightarrow} & G_0(A[T]) \end{array}$$

commutes. We have abused notation by writing ϕ also for $A_{red} \rightarrow A_{red}[T]$, and ρ also for $A[T] \rightarrow (A[T])_{red} \simeq A_{red}[T]$. By nil-invariance (§6.4), the vertical arrows are invertible. Therefore, we may replace A by A_{red} (which is still noetherian) and thereby assume that A is reduced.

Since A is noetherian, it has finitely many minimal primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$. Let B denote the total ring of fractions of A, i.e., the localization at the set of zero divisors. Recall:

Lemma 1. Let A be a reduced ring with finitely many minimal prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$. If B denotes the total ring of fractions of A, then we have a canonical isomorphism

$$\mathbf{B} \simeq \prod_i \mathbf{B} / \mathbf{p}_i \mathbf{B}.$$

Moreover, each $B/\mathfrak{p}_i B$ is the field of fractions of the integral domain A/\mathfrak{p}_i .

Therefore, we have

$$G_0(B) \simeq \bigoplus_i G_0(K_i)$$

where $K_i = Frac(A/\mathfrak{p}_i)$, since it is easy to check that G_0 sends finite products of rings to direct sums.

We now want to apply the localization sequence (§7.3), except that we are not in the case of a localization at a single element. Nevertheless, it's easy to check that our proof generalizes to show: **Theorem 2.** Let A be a ring and S a multiplicative subset. Then there is a canonical exact sequence

$$\varinjlim_{s \in \mathcal{S}} \mathcal{G}_0(\mathcal{A}/\langle s \rangle) \to \mathcal{G}_0(\mathcal{A}) \to \mathcal{G}_0(\mathcal{A}[\mathcal{S}^{-1}]) \to 0$$

(Implicit here is a filtered colimit argument,

$$\mathrm{K}_{0}(\mathrm{Mod}_{\mathrm{A}}^{\mathrm{tg}}(\mathrm{S})) \simeq \varinjlim_{s \in \mathrm{S}} \mathrm{G}_{0}(\mathrm{A}/\langle s \rangle),$$

where $\operatorname{Mod}_{A}^{fg}(S)$ denotes the category of f.g. A-modules that are S-torsion, i.e., s-torsion for some element $s \in S$.)

In our case, we get the localization sequence

$$\varinjlim_{s} \mathbf{G}_0(\mathbf{A}/\langle s \rangle) \to \mathbf{G}_0(\mathbf{A}) \to \bigoplus_{i} \mathbf{G}_0(\mathbf{K}_i) \to 0.$$

where the colimit is taken over zero-divisors s. We also have

$$G_0(B[T]) \simeq \bigoplus_i G_0(K_i[T])$$

as $B[T] \simeq \prod_i K_i[T]$, so this fits into the commutative diagram with exact rows:

where we again use ϕ to denote each of the ring homomorphisms ? \rightarrow ?[T].

Since the K_i are fields, we already know that the right-hand vertical arrow is invertible (Sheet 7, Exercise 3). We also know that our middle vertical arrow is injective, by the existence of a morphism $\psi : A[T] \to A$, which is of Tor-amplitude ≤ 1 (use the Koszul complex $\text{Kosz}_{A[T]}(T)$ to resolve A as an A-module), and is a retraction of ϕ (so that $\psi^* \phi^* = \text{id}$). Thus it remains to show surjectivity. For that we could apply the five lemma if we only knew that the left-hand vertical arrow was invertible.

We can finish the proof by a noetherian induction argument. Call an ideal $I \subseteq A$ good if the inverse image map $G_0(A/I) \to G_0(A/I[T])$ is invertible. The conclusion of the discussion above can be summarized as: if every nonzero ideal of A is good, then the zero ideal is also good. This holds for any reduced noetherian ring A.

Now let's show that every nonzero ideal of A is good. Suppose that isn't the case. Then since A is noetherian, we can choose a maximal one out of the bad ideals, say I, and then every nonzero ideal of A/I is good. Then the above argument yields that the zero ideal of A/I is good, i.e., $G_0(A/I) \rightarrow G_0(A/I[T])$ is invertible. But that contradicts the assumption that I was bad. Thus, every nonzero ideal of A is good, so by above, the zero ideal is good, as desired.

2. Let k be an algebraically closed field and $A = k[X, Y, Z]/\langle XZ, Z(Z^2 - Y^3) \rangle$. Show that |Spec(A)| has two irreducible components, $Y_1 = V(\langle Z \rangle)$ and $Y_2 = V(\langle X, Z^2 - Y^3 \rangle)$, and is not of pure dimension.

Let $I_1 = \langle Z \rangle$ and $I_2 = \langle X, Z^2 - Y^3 \rangle$ as ideals of B = k[X, Y, Z]. Then $I_1I_2 = \langle ZX, Z(Z^2 - Y^3) \rangle$, so $V_B(I_1) \cup V_B(I_2) = V_B(I_1I_2)$ as subsets of |Spec(B)|. Under the identification $V_B(I_1I_2) \simeq |\text{Spec}(A)|$, we get $Y_1 \cup Y_2 = V_A(I_1A) \cup V_A(I_2A) = |\text{Spec}(A)|$. Moreover, Y_1 and Y_2 are integral since

$$A/I_1A = k[X, Y, Z]/\langle Z, XZ, Z(Z^2 - Y^3) \rangle \simeq k[X, Y]$$
$$A/I_2A = k[X, Y, Z]/\langle X, Z^2 - Y^3, XZ, Z(Z^2 - Y^3) \rangle \simeq k[Y, Z]/\langle Z^2 - Y^3 \rangle$$

are integral domains. (For the second, it suffices to show that the polynomial $Z^2 - Y^3$ is irreducible, since k[Y, Z] is factorial. Regarding it as a polynomial in k[Z][Y], it suffices by Gauss's lemma to show that it is irreducible in k(Z)[Y]. But it is a degree 3 polynomial with no root in k(Z), so it is irreducible.) In particular, Y_1 and Y_2 are the irreducible components of |Spec(A)|. Moreover, the computations above show that

$$\dim(\mathbf{Y}_1) = \dim(\mathbf{A}/\mathbf{I}_1\mathbf{A}) = \dim(k[\mathbf{X},\mathbf{Y}]) = 2,$$

$$\dim(\mathbf{Y}_2) = \dim(\mathbf{A}/\mathbf{I}_2\mathbf{A}) = \dim(k[\mathbf{Y},\mathbf{Z}]/\langle \mathbf{Z}^2 - \mathbf{Y}^3 \rangle) = 1$$

where the last equality on the second line follows from Krull's principal ideal theorem and the fact that $Z^2 - Y^3$ is a zero divisor in the integral domain k[Y, Z]. (Since dim(A) = sup_m dim(A_m) by Sheet 9, Exercise 3, we can localize at a maximal ideal and then apply Krull's theorem.)

- **3.** Let k be an algebraically closed field and A = k[X, Y]. Let $f, g \in A$ be polynomials. In each of the following examples, determine whether V(f) and V(g) intersect properly, and compute the cycle $[A/\langle f, g \rangle]_d \in \mathbb{Z}_d(A)$, where $d = \dim(V(f)) + \dim(V(g)) - \dim(A)$.
 - (a) $f = \mathbf{X}, g = \mathbf{Y}$
 - (b) $f = \mathbf{X}, g = \mathbf{X}$
 - (c) $f = Y X^2$, g = Y
 - (d) $f = XY, g = Y^2$

(Note: we only defined properness of intersection between *irreducible* subsets. However the same definition makes sense as long as both subsets are of pure dimension.)

(a) We have $V(X) \cap V(Y) = V(\langle X, Y \rangle)$ which is a closed point x, since $\langle X, Y \rangle$ is maximal. In particular it is of dimension 0 which is the same as d = 1 + 1 - 2. So the intersection is proper.

We compute $[A/\langle f, g \rangle]_0 = [k[X, Y]/\langle X, Y \rangle]_0 = [k]_0$. The support of k is $V(\langle X, Y \rangle) = \{x\}$ which has a single irreducible component corresponding to the generic

point x. The multiplicity at x is 1 because k is a simple $A_{\mathfrak{p}(x)}$ -module. So $[A/\langle f, g \rangle]_0 = [V(\langle X, Y \rangle)].$

(b) We have $V(X) \cap V(X) = V(X)$ which is of dimension 1, while d = 0. So the intersection is not proper.

We have $[A/\langle f, g \rangle]_0 = [k[X, Y]/\langle X \rangle]_0 = 0$ because V(X) has no irreducible component of dimension 0.

(c) We have $V(Y - X^2) \cap V(Y) = V(\langle Y, Y - X^2 \rangle) = V(\langle Y, X^2 \rangle)$. Since the radical of $\langle X^2, Y \rangle$ is $\langle X, Y \rangle$, this is again the closed point $\{x\}$ of (a). The intersection is proper as d = 1 + 1 - 2 again.

We have $[A/\langle f,g\rangle]_0 = [k[X,Y]/\langle X^2,Y\rangle]_0 = [k[X]/\langle X^2\rangle]_0$. Since $V_{k[X]}(X^2) = V_{k[X]}(X)$ is a closed point, it has a single irreducible component of dimension 0. The multiplicity at that point is given by the length of $k[X]_{\langle X\rangle}/\langle X^2\rangle$ as a module over $k[X]_{\langle X\rangle}$, which is 2. So we get $[A/\langle f,g\rangle]_0 = 2 \cdot [V(\langle X,Y\rangle)]$. Note that this is double the cycle in (a), which reflects that the parabola $Y = X^2$ intersects the line Y = 0 in a double point at (0,0).

(d) We have $V(XY) \cap V(Y^2) = V(XY) \cap V(Y) = V(Y)$ which is of dimension 1 (note $V(Y) \subset V(XY)$). But d = 1 + 1 - 2 (note $V(XY) = V(X) \cup V(Y)$ has two irreducible components both of dimension 1). So the intersection is not proper.

We have $[A/\langle f, g \rangle]_0 = [k[X, Y]/\langle XY, Y^2 \rangle]_0 = 0$ because V(Y) has no irreducible component of dimension 0.

4. Let A be a noetherian ring and $f \in A$ an element. Let $\phi : A \to A[f^{-1}]$ and $\psi : A \to A/\langle f \rangle$. Show that there is an exact sequence

$$\operatorname{CH}_n(\mathcal{A}/\langle f \rangle) \xrightarrow{\psi_*} \operatorname{CH}_n(\mathcal{A}) \xrightarrow{\phi^*} \operatorname{CH}_n(\mathcal{A}[f^{-1}]) \to 0$$

for every n.

We have $\phi^* \psi_* = 0$ since for any prime ideal \mathfrak{p} of $A/\langle f \rangle$,

$$\phi^*\psi_*[\mathcal{V}_{\mathcal{A}/\langle f\rangle}(\mathfrak{p})] = \phi^*[\mathcal{V}_{\mathcal{A}}(\mathfrak{q})] = [\mathcal{A}[f^{-1}]/\mathfrak{q}\mathcal{A}[f^{-1}]]_n = 0$$

where $\mathbf{q} = \psi^{-1}(\mathbf{p})$ (since $f \in \mathbf{q}$).

For surjectivity of ϕ^* , let $V(\mathfrak{p})$ be an integral subset of $|\operatorname{Spec}(A[f^{-1}])|$ of dimension n. The contraction of the prime ideal \mathfrak{p} is a prime ideal $\mathfrak{q} = \phi^{-1}(\mathfrak{p}) \subset A$ not containing f, and whose extension $\mathfrak{q}A[f^{-1}]$ recovers \mathfrak{p} . Thus $\phi^*[V(\mathfrak{q})] = [A[f^{-1}]/\mathfrak{q}A[f^{-1}]]_n = [A[f^{-1}]/\mathfrak{p}]_n = [V(\mathfrak{p})].$

Finally let α be an *n*-cycle on A such that $\phi^*(\alpha) \in \mathbb{Z}_n(A[f^{-1}])$ is rationally equivalent to zero. We need to show that there exists a cycle $\tilde{\alpha} \in \mathbb{Z}_n(A/\langle f \rangle)$ such that $\psi_*(\tilde{\alpha}) - \alpha$ is rationally equivalent to zero. Write α as a linear combination

$$\alpha = \sum_{i} n_i [\mathbf{V}(\mathbf{p}_i)]$$

where the \mathfrak{p}_i are prime ideals of A. By assumption, we have

$$\sum_{i} n_{i}[\mathcal{V}(\mathfrak{p}_{i})] = \sum_{j} \operatorname{div}_{\mathcal{V}(\mathfrak{q}_{j})}(g_{j})$$

in $Z_n(A[f^{-1}])$, where $V(\mathbf{q}_j)$ are integral subsets of $|\text{Spec}(A[f^{-1}])|$ of dimension n + 1 and g_j are elements of $A[f^{-1}]$ with $g_j \notin \mathbf{q}_j$. Each \mathbf{q}_j is an extension of a prime of A (which we denote by \mathbf{q}_j again). We can also assume that g_j come from A by clearing denominators (multiply by a large enough power of f). Then the difference

$$\beta = \sum_{i} n_{i} [\mathbf{V}(\mathbf{p}_{i})] - \sum_{j} \operatorname{div}_{\mathbf{V}(\mathbf{q}_{j})}(g_{j})$$

may be viewed as an element of $Z_n(A)$ which goes to zero in $Z_k(A[f^{-1}])$. Since the latter is a free abelian group, this means that β can have nonzero multiplicity at an integral subset $V(\mathfrak{p}) \subseteq |\operatorname{Spec}(A)|$ only if $\phi^*[V(\mathfrak{p})] = 0 \in Z_n(A[f^{-1}])$, hence $\mathfrak{p}A[f^{-1}] = A[f^{-1}]$, hence $f \in \mathfrak{p}$. In particular, β lifts to an element $\tilde{\alpha} \in Z_n(A/\langle f \rangle)$ such that $\psi_*(\tilde{\alpha}) = \beta$. The claim follows.