Exercise sheet 11

1. Let A be a ring.

(a) Let M and N be invertible A-modules. Show that [M] = [N] in $K_0(A)$ iff $M \simeq N$ as A-modules.

(b) Let M be a f.g. projective A-module such that $[M] \in K_0(A)$ is a unit. Show that M is invertible as an A-module.

(c) Show that the group homomorphism $Pic(A) \to K_0(A)^{\times}$ is injective but not always bijective.

- **2.** Let A be a regular ring. Show that the homomorphism $Pic(A) \rightarrow Pic(A[T_1, ..., T_n])$, induced by extension of scalars, is bijective for all n > 0.
- **3.** Let A be an integral domain. Recall the rank homomorphism $rk : G_0(A) \to \mathbb{Z}$ (Sheet 3, Exercise 4), which we regard as a homomorphism $rk : K_0(A) \to \mathbb{Z}$ by restricting along the canonical homomorphism $K_0(A) \to G_0(A)$. Let $x \in K_0(A)$ be a class of positive rank (rk(x) > 0). Show that

$$n \cdot x = [M]$$

for some $M \in Mod_A^{fgproj}$ and integer $n \ge 0$.

Hint: reduce to the case where A is of finite dimension d, and use a theorem of Serre which states that any projective A-module is the direct sum of a free module and a projective module of rank $\leq d$ (see [Serre, Modules projectifs et espaces fibrés à fibre vectorielle]).

4. Let k be an algebraically closed field and $A = k[X, Y]/\langle X^2 - Y^3 \rangle$ (an integral domain of dimension 1). Let $f \in \operatorname{Frac}(A)^{\times}$ denote the rational function (X - Y)/Y. For the closed point $x_0 = V(\langle X, Y \rangle)$ in $|\operatorname{Spec}(A)|$, show that $f_{\mathfrak{p}(x_0)} \in \operatorname{Frac}(A_{\mathfrak{p}(x_0)})$ is not contained in the subring $A_{\mathfrak{p}(x_0)}$. For every other closed point $x \neq x_0$, show that $f_{\mathfrak{p}(x)}$ is even contained in the subgroup of units $A_{\mathfrak{p}(x)}^{\times}$. Deduce that the principal Cartier divisor div_A(f) \in \operatorname{Cart}(A) is nonzero.