Exercise sheet 12

- 1. Let \mathcal{O}_{K} be the ring of integers in a number field K. Show that there is a canonical isomorphism between the group of Weil divisors modulo linear equivalence, and the ideal class group of \mathcal{O}_{K} .
- **2.** Let A be a noetherian ring and \mathfrak{p} a minimal prime ideal. Show that $[V(\mathfrak{p})]$ is nonzero in $CH_*(A)$.

The subgroup $R_d(A)$ consists of linear combinations of principal divisors $\operatorname{div}_{V(\mathfrak{q}_i)}(f_i)$, where $V(\mathfrak{q}_i)$ are integral of dimension d+1 and $f_i \notin \mathfrak{q}$:

$$\sum_{i} n_i \cdot \operatorname{div}_{\mathcal{V}(\mathfrak{q}_i)}(f_i) = \sum_{i} n_i \cdot [(\mathcal{A}/\mathfrak{q}_i)/f_i(\mathcal{A}/\mathfrak{q}_i)]_d$$

with coefficients $n_i \in \mathbb{Z}$. Expanding out the definition of $[-]_d$, the classes appearing on the right-hand side are all irreducible components of $V(\mathfrak{q}_i) \cap V(f_i)$. Thus if $V(\mathfrak{p})$ is an integral subset of dimension d such that $[V(\mathfrak{p})] \in R_d(A)$, then it must be an irreducible component of $V(\mathfrak{q}_i) \cap V(f_i)$. In particular, such a $V(\mathfrak{p})$ is contained inside $V(\mathfrak{q}_i)$, which is integral. But then $V(\mathfrak{p})$ cannot be an irreducible component of |Spec(A)|, i.e., \mathfrak{p} cannot be a minimal prime ideal of A.

3. Let A be an integral domain. Show that the set Cart⁺(A) of effective Cartier divisors admits a canonical monoid structure, and there is a canonical injective homomorphism

$$\operatorname{Cart}^+(A) \to \operatorname{Cart}(A)$$

which exhibits Cart(A) as the group completion of $Cart^+(A)$.

Since A is an integral domain, being a non-zero-divisor is equivalent to being non-zero.

Define the monoid structure by tensor product of invertible modules. Then the canonical map

$$(I, I \hookrightarrow A) \mapsto (I, I \hookrightarrow A \hookrightarrow Frac(A))$$

is a monoid homomorphism $\operatorname{Cart}^+(A) \to \operatorname{Cart}(A)$ by construction. Injectivity is clear because if $I \subset A$ is an invertible ideal such that $(I, I \hookrightarrow A \hookrightarrow \operatorname{Frac}(A))$ is the neutral element of $\operatorname{Cart}(A)$, i.e., I = A as sub-A-modules of $\operatorname{Frac}(A)$, then also I = A as ideals of A.

To show that the map is a group completion, let $f : \operatorname{Cart}(A)^+ \to X$ be a monoid homomorphism with X a group. It will suffice to show that there is a unique extension $f : \operatorname{Cart}(A) \to X$. Let $(M, M \hookrightarrow \operatorname{Frac}(A)) \in \operatorname{Cart}(A)$. We can write it as a difference of effective Cartier divisors $(I, I \hookrightarrow A)$ and $(J, J \hookrightarrow A)$ (see §12.2). Then set

$$f(\mathbf{M}) := \underset{\mathbf{I}}{f(\mathbf{I})} - f(\mathbf{J})$$

(where we commit an abuse of notation to simplify the notation, and we denote the group operation of X additively). Suppose we can write it as another difference M = I' - J'. Then we have to check

$$f(I) - f(J) = f(I') - f(J'),$$

or equivalently f(I + J') = f(I' + J). But I + J' = I' + J in Cart⁺(A) and f is a monoid homomorphism.

4. Let A be a noetherian ring of dimension d. Recall the homomorphism $\gamma : \mathbb{Z}_*(A) \to \mathbb{G}_0(A)$ defined in Sheet 9, Exercise 3. Note that γ sends $\mathbb{Z}_k(A)$ to $\mathbb{G}_0(A)_{\leq k}$, the subgroup generated by classes [M] such that $\dim(\operatorname{Supp}_A(M)) \leq k$.

Let $M \in Mod_A^{fg}$ and suppose that $Supp_A(M)$ is of pure dimension n. Prove the formula

$$\gamma([\mathbf{M}]_n) = [\mathbf{M}]$$

in $G_0(A)_{\leq n}/G_0(A)_{\leq n-1}$.

Choose a filtration of M by submodules M_i such that the successive quotients M_i/M_{i-1} are of the form A/\mathfrak{p}_i . Then $Supp_A(M) = \bigcup_i V(\mathfrak{p}_i)$ and

$$[\mathbf{M}] = \sum_{i} [\mathbf{A}/\mathfrak{p}_{i}]$$

in $G_0(A)$. Let $\{\mathbf{q}_j\}_j$ be the subset of minimal elements of $\{\mathbf{p}_i\}_i$, i.e., those which correspond to the irreducible components $V(\mathbf{q}_j)$ of $\operatorname{Supp}_A(M)$. Let $\eta_j = [A \rightarrow \kappa(\mathbf{q}_j)]$ denote the generic point of $V(\mathbf{q}_j)$. Recall that the number of times A/\mathbf{q}_j appears as a quotient M_i/M_{i-1} is exactly the multiplicity $\operatorname{mult}_{A,\eta_j}(M)$ (see §9.2). Modulo $G_0(A)_{\leq n-1}$ the class of $[A/\mathbf{p}_i]$ will die for every $V(\mathbf{p}_i)$ which is not an irreducible component (as it then has dimension < n), so we have

$$[\mathbf{M}] = \sum_{i} [\mathbf{A}/\mathbf{p}_{i}] = \sum_{j} \operatorname{mult}_{\mathbf{A},\eta_{j}}(\mathbf{M}) \cdot [\mathbf{A}/\mathbf{q}_{j}]$$

in $G_0(A)_{\leq n}/G_0(A)_{\leq n-1}$. This is precisely the image of $[M]_n$ by γ , as by definition,

$$[\mathbf{M}]_n = \sum_j \operatorname{mult}_{\mathbf{A},\eta_j}(\mathbf{M}) \cdot [\mathbf{V}(\mathbf{q}_j)]$$

in $Z_n(A)$.