
Exercise sheet 3

1. Let A be a regular ring. Show that the polynomial ring A[t1, . . . , tn] is regular for
every n > 0.

(Hint: Show that you can reduce to the following: if A is regular local, then A[t]p
is regular local, where p ⊂ A[t] is a prime ideal containing the maximal ideal of A.
Then use a resolution of the residue field of A to build a resolution for the residue
field of A[t]p.)

By induction we may take n = 1. To show that A[t] is regular it will suffice to
show that (A[t])p is regular for every prime ideal p ⊂ A[t] (Lecture notes, §2.3).
The preimage of p under the canonical homomorphism A → A[t] is the prime
ideal q = A∩ p ⊂ A. We would like to replace A by Aq to be able to reduce to the
local case, so we need to relate (A[t])p with Aq[t]. Note that there is a canonical
isomorphism Aq[t] ' (A[t])[(A r q)−1]. Since A r q ⊂ A[t] r p, we see that (A[t])p
is a localization of Aq[t]. Since we know that localizations of regular rings are
regular (Lecture notes, §2.3), we would be done if the assertion was known for
the local ring Aq. Thus we may replace A by Aq.

Now A is a regular local ring, with maximal ideal m, and our prime ideal p ⊂ A[t]
contains m. We still want to show that A[t]p is regular. It is enough to show that
its residue field κ(p) is perfect as an A[t]p-module (Lecture notes, §2.2). Note that
κ(p) is the localization of κ[t] = κ⊗A A[t] at the multiplicative subset A[t] r p,
where κ = A/m. Since A is regular, there exists a finite f.g.proj. resolution
P• → κ of A-modules. Tensoring with the flat A-module A[t], we get a finite
f.g.proj. resolution P• ⊗A A[t] → κ[t] of A[t]-modules. Localizing at the subset
A[t] r p is also exact and thus yields a finite f.g.proj. resolution of κ(p).

2. (i) Let X be the commutative monoid with two elements 0, x with x+ x = x (and
0 is the neutral element). Show that its group completion Xgp is zero.

(ii) Let Y be the additive commutative monoid whose underlying set is N ∪ {∞}
and where ∞+∞ =∞ and n+∞ =∞ for every n ∈ N. Show that its group
completion Ygp is zero.

(i) We have (x, 0) = (0, 0) in Xgp since x+x = x in X, and the same for its inverse
−(x, 0) = (0, x), and for (x, x) = (x, 0) + (0, x).

(ii) We have (m,n) = (0, 0) for all m,n ∈ N since m + ∞ = n + ∞. Also
(∞, x) = (0, 0) and (x,∞) = (0, 0) since ∞+∞ = x+∞ for all x ∈ Y.

3. Let A be a nonzero commutative ring.

(i) Show that there is a canonical group homomorphism φ : Z→ K0(A) sending
n 7→ [A⊕n] for n > 0.
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(ii) Show that φ exhibits Z as a direct summand of K0(A). (Hint: recall Z ' K0(k)
for any field k. Since A is nonzero there exists at least one ring homomorphism
A→ k. Use this to construct a retraction of φ, i.e., a morphism ψ : K0(A)→ Z
such that ψ ◦ φ = id.)

(iii) Show that φ is bijective iff every f.g. projective A-module is stably free (i.e.,
stably equivalent to a free module).

(i) There is a unique monoid homomorphism N → M(A) that sends 1 7→ [A].

Here M(A) is the monoid of isomorphism classes of objects of Modfgproj
A , and the

operation on N is addition (this is the free commutative monoid on one generator).
Passing to group completions, we get an induced homomorphism Z → K0(A)
(group completion is functorial).

Alternatively, one can show that the unique ring homomorphism Z→ A induces
a homomorphism Z ' K0(Z)→ K0(A) by extension of scalars (which preserves
f.g. projectives, §1.2).

(ii) Since A is nonempty there exists a ring homomorphism A→ k with k a field.
Extension of scalars defines an induced monoid homomorphism M(A)→M(k).
The homomorphism

N→M(A)→M(k)

sends 1 7→ [A] → [k], and is bijective. Hence so is the induced map on group
completions:

Z
φ−→ K0(A)→ K0(k).

It follows that φ is a split monomorphism, so by the splitting lemma, Z is a direct
summand of K0(A).

(iii) By the Lemma in §3.1 of the Lecture, every x ∈ K0(A) can be written as

[M] − n · [A] where M ∈ Modfgproj
A and n > 0 (note n · [A] = [A⊕n]). Thus φ is

surjective iff for every such M and n, there exists an integer m ∈ Z such that
[M]− n · [A] = m · [A] in K0(A). Adding some multiple of [A] to both sides, this is
equivalent to [M⊕ A⊕k] = (m+ n) · [A] = [A⊕m+n] for some integer m > 0. Then
by the second part of the Lemma in §3.1, this is equivalent to M ⊕ A⊕k being
stably free, which is equivalent to M being stably free.

4. (i) If A is an integral domain, show that there is a well-defined homomorphism
G0(A)→ Z sending [M] to the rank rkA(M) := dimK(M⊗A K), where K is the
field of fractions.

(ii) If A is a PID, use (i) to show that the canonical homomorphism K0(A)→ G0(A)
is injective.

(iii) If A is a PID, show that the canonical map K0(A)→ G0(A) is also surjective
by using the structure theory of f.g. modules over a PID.

(In the lecture, we will show that (ii) and (iii) hold for every regular ring A; this
is a special case since PID’s are regular.)
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(i) If 0→ M′ → M→ M′′ → 0 is an exact sequence of f.g. A-modules, then one
has rkA(M) = rkA(M′) + rkA(M′′). This follows from the fact that K is flat as
an A-module (since it is a localization), and for K-vector spaces, dimension is
“additive”.

Alternatively, take the composite

G0(A)→ G0(K) ' Z,

where the first map is induced by [M] 7→ [M⊗AK]. The fact that this is well-defined
again follows from the flatness of K.

(ii) We know that for a PID, K0(A) ' Z since every f.g. projective A-module is
free. By (i), we know that this extends to a map G0(A)→ Z making the diagram

K0(A) Z

G0(A)

∼

commute. So K0(A)→ G0(A) is a split monomorphism.

(iii) Recall that K0(A) ' Z so the main thing is to compute G0(A). Let M be a
f.g. A-module. Then since A is a PID, M is a direct sum of a free A-module (say
of rank r) and finitely many cyclic modules of the form A/xA, where x ∈ A is
nonzero. Since A is a domain, the sequence

0→ A
x−→ A→ A/xA→ 0

is exact and induces a relation [A] = [A] + [A/xA] in G0(A), hence [A/xA] = 0.
Thus [M] = r · [A]. It follows that G0(A) is generated by [A]. In particular,
K0(A)→ G0(A) is surjective.


