Exercise sheet 3

1. Let A be a regular ring. Show that the polynomial ring $A[t_1, \ldots, t_n]$ is regular for every $n \ge 0$.

(Hint: Show that you can reduce to the following: if A is regular local, then $A[t]_{\mathfrak{p}}$ is regular local, where $\mathfrak{p} \subset A[t]$ is a prime ideal containing the maximal ideal of A. Then use a resolution of the residue field of A to build a resolution for the residue field of $A[t]_{\mathfrak{p}}$.)

By induction we may take n = 1. To show that A[t] is regular it will suffice to show that $(A[t])_p$ is regular for every prime ideal $\mathfrak{p} \subset A[t]$ (Lecture notes, §2.3). The preimage of \mathfrak{p} under the canonical homomorphism $A \to A[t]$ is the prime ideal $\mathfrak{q} = A \cap \mathfrak{p} \subset A$. We would like to replace A by $A_\mathfrak{q}$ to be able to reduce to the local case, so we need to relate $(A[t])_p$ with $A_\mathfrak{q}[t]$. Note that there is a canonical isomorphism $A_\mathfrak{q}[t] \simeq (A[t])[(A \smallsetminus \mathfrak{q})^{-1}]$. Since $A \searrow \mathfrak{q} \subset A[t] \searrow \mathfrak{p}$, we see that $(A[t])_p$ is a localization of $A_\mathfrak{q}[t]$. Since we know that localizations of regular rings are regular (Lecture notes, §2.3), we would be done if the assertion was known for the local ring $A_\mathfrak{q}$. Thus we may replace A by $A_\mathfrak{q}$.

Now A is a regular local ring, with maximal ideal \mathfrak{m} , and our prime ideal $\mathfrak{p} \subset A[t]$ contains \mathfrak{m} . We still want to show that $A[t]_{\mathfrak{p}}$ is regular. It is enough to show that its residue field $\kappa(\mathfrak{p})$ is perfect as an $A[t]_{\mathfrak{p}}$ -module (Lecture notes, §2.2). Note that $\kappa(\mathfrak{p})$ is the localization of $\kappa[t] = \kappa \otimes_A A[t]$ at the multiplicative subset $A[t] \setminus \mathfrak{p}$, where $\kappa = A/\mathfrak{m}$. Since A is regular, there exists a finite f.g.proj. resolution $P_{\bullet} \to \kappa$ of A-modules. Tensoring with the flat A-module A[t], we get a finite f.g.proj. resolution $P_{\bullet} \otimes_A A[t] \to \kappa[t]$ of A[t]-modules. Localizing at the subset $A[t] \setminus \mathfrak{p}$ is also exact and thus yields a finite f.g.proj. resolution of $\kappa(\mathfrak{p})$.

2. (i) Let X be the commutative monoid with two elements 0, x with x + x = x (and 0 is the neutral element). Show that its group completion X^{gp} is zero.

(ii) Let Y be the additive commutative monoid whose underlying set is $\mathbf{N} \cup \{\infty\}$ and where $\infty + \infty = \infty$ and $n + \infty = \infty$ for every $n \in \mathbf{N}$. Show that its group completion Y^{gp} is zero.

(i) We have (x, 0) = (0, 0) in X^{gp} since x + x = x in X, and the same for its inverse -(x, 0) = (0, x), and for (x, x) = (x, 0) + (0, x).

(ii) We have (m,n) = (0,0) for all $m,n \in \mathbb{N}$ since $m + \infty = n + \infty$. Also $(\infty, x) = (0,0)$ and $(x, \infty) = (0,0)$ since $\infty + \infty = x + \infty$ for all $x \in Y$.

3. Let A be a nonzero commutative ring.

(i) Show that there is a canonical group homomorphism $\phi : \mathbb{Z} \to K_0(A)$ sending $n \mapsto [A^{\oplus n}]$ for $n \ge 0$.

(ii) Show that ϕ exhibits **Z** as a direct summand of $K_0(A)$. (Hint: recall $\mathbf{Z} \simeq K_0(k)$ for any field k. Since A is nonzero there exists at least one ring homomorphism $A \to k$. Use this to construct a retraction of ϕ , i.e., a morphism $\psi : K_0(A) \to \mathbf{Z}$ such that $\psi \circ \phi = id$.)

(iii) Show that ϕ is bijective iff every f.g. projective A-module is stably free (i.e., stably equivalent to a free module).

(i) There is a unique monoid homomorphism $\mathbf{N} \to \mathcal{M}(A)$ that sends $1 \mapsto [A]$. Here $\mathcal{M}(A)$ is the monoid of isomorphism classes of objects of $\operatorname{Mod}_A^{\operatorname{fgproj}}$, and the operation on \mathbf{N} is addition (this is the free commutative monoid on one generator). Passing to group completions, we get an induced homomorphism $\mathbf{Z} \to K_0(A)$ (group completion is functorial).

Alternatively, one can show that the unique ring homomorphism $\mathbf{Z} \to A$ induces a homomorphism $\mathbf{Z} \simeq K_0(\mathbf{Z}) \to K_0(A)$ by extension of scalars (which preserves f.g. projectives, §1.2).

(ii) Since A is nonempty there exists a ring homomorphism $A \to k$ with k a field. Extension of scalars defines an induced monoid homomorphism $\mathcal{M}(A) \to \mathcal{M}(k)$. The homomorphism

$$\mathbf{N} \to \mathcal{M}(\mathbf{A}) \to \mathcal{M}(k)$$

sends $1 \mapsto [A] \to [k]$, and is bijective. Hence so is the induced map on group completions:

$$\mathbf{Z} \xrightarrow{\phi} \mathbf{K}_0(\mathbf{A}) \to \mathbf{K}_0(k).$$

It follows that ϕ is a split monomorphism, so by the splitting lemma, \mathbf{Z} is a direct summand of $K_0(A)$.

(iii) By the Lemma in §3.1 of the Lecture, every $x \in K_0(A)$ can be written as $[M] - n \cdot [A]$ where $M \in Mod_A^{\text{fgproj}}$ and $n \ge 0$ (note $n \cdot [A] = [A^{\oplus n}]$). Thus ϕ is surjective iff for every such M and n, there exists an integer $m \in \mathbb{Z}$ such that $[M] - n \cdot [A] = m \cdot [A]$ in $K_0(A)$. Adding some multiple of [A] to both sides, this is equivalent to $[M \oplus A^{\oplus k}] = (m + n) \cdot [A] = [A^{\oplus m+n}]$ for some integer $m \ge 0$. Then by the second part of the Lemma in §3.1, this is equivalent to $M \oplus A^{\oplus k}$ being stably free, which is equivalent to M being stably free.

4. (i) If A is an integral domain, show that there is a well-defined homomorphism $G_0(A) \rightarrow \mathbb{Z}$ sending [M] to the rank $\operatorname{rk}_A(M) := \dim_K(M \otimes_A K)$, where K is the field of fractions.

(ii) If A is a PID, use (i) to show that the canonical homomorphism $K_0(A) \to G_0(A)$ is injective.

(iii) If A is a PID, show that the canonical map $K_0(A) \to G_0(A)$ is also surjective by using the structure theory of f.g. modules over a PID.

(In the lecture, we will show that (ii) and (iii) hold for every regular ring A; this is a special case since PID's are regular.)

 $\mathbf{2}$

(i) If $0 \to M' \to M \to M'' \to 0$ is an exact sequence of f.g. A-modules, then one has $rk_A(M) = rk_A(M') + rk_A(M'')$. This follows from the fact that K is flat as an A-module (since it is a localization), and for K-vector spaces, dimension is "additive".

Alternatively, take the composite

$$G_0(A) \to G_0(K) \simeq \mathbb{Z},$$

where the first map is induced by $[M] \mapsto [M \otimes_A K]$. The fact that this is well-defined again follows from the flatness of K.

(ii) We know that for a PID, $K_0(A) \simeq \mathbb{Z}$ since every f.g. projective A-module is free. By (i), we know that this extends to a map $G_0(A) \to \mathbb{Z}$ making the diagram

commute. So $K_0(A) \to G_0(A)$ is a split monomorphism.

(iii) Recall that $K_0(A) \simeq \mathbb{Z}$ so the main thing is to compute $G_0(A)$. Let M be a f.g. A-module. Then since A is a PID, M is a direct sum of a free A-module (say of rank r) and finitely many cyclic modules of the form A/xA, where $x \in A$ is nonzero. Since A is a domain, the sequence

$$0 \to A \xrightarrow{x} A \to A/xA \to 0$$

is exact and induces a relation [A] = [A] + [A/xA] in $G_0(A)$, hence [A/xA] = 0. Thus $[M] = r \cdot [A]$. It follows that $G_0(A)$ is generated by [A]. In particular, $K_0(A) \rightarrow G_0(A)$ is surjective.