Exercise sheet 3

1. Let A be a regular ring. Show that the polynomial ring $A[t_1, \ldots, t_n]$ is regular for every $n \ge 0$.

(Hint: Show that you can reduce to the following: if A is regular local, then $A[t]_{\mathfrak{p}}$ is regular local, where $\mathfrak{p} \subset A[t]$ is a prime ideal containing the maximal ideal of A. Then use a resolution of the residue field of A to build a resolution for the residue field of $A[t]_{\mathfrak{p}}$.)

2. (i) Let X be the commutative monoid with two elements 0, x with x + x = x (and 0 is the neutral element). Show that its group completion X^{gp} is zero.

(ii) Let Y be the additive commutative monoid whose underlying set is $\mathbf{N} \cup \{\infty\}$ and where $\infty + \infty = \infty$ and $n + \infty = \infty$ for every $n \in \mathbf{N}$. Show that its group completion Y^{gp} is zero.

3. Let A be a nonzero commutative ring.

(i) Show that there is a canonical group homomorphism $\phi : \mathbb{Z} \to K_0(A)$ sending $n \mapsto [A^{\oplus n}]$ for $n \ge 0$.

(ii) Show that ϕ exhibits **Z** as a direct summand of $K_0(A)$. (Hint: recall $\mathbf{Z} \simeq K_0(k)$ for any field k. Since A is nonzero there exists at least one ring homomorphism $A \to k$. Use this to construct a retraction of ϕ , i.e., a morphism $\psi : K_0(A) \to \mathbf{Z}$ such that $\psi \circ \phi = id$.)

(iii) Show that ϕ is bijective iff every f.g. projective A-module is stably free (i.e., stably equivalent to a free module).

4. (i) If A is an integral domain, show that there is a well-defined homomorphism $G_0(A) \rightarrow \mathbb{Z}$ sending [M] to the rank $\operatorname{rk}_A(M) := \dim_K(M \otimes_A K)$, where K is the field of fractions.

(ii) If A is a PID, use (i) to show that the canonical homomorphism $K_0(A) \to G_0(A)$ is injective.

(iii) If A is a PID, show that the canonical map $K_0(A) \to G_0(A)$ is also surjective by using the structure theory of f.g. modules over a PID.

(In the lecture, we will show that (ii) and (iii) hold for every regular ring A; this is a special case since PID's are regular.)