Exercise sheet 4

1. Let A be a commutative ring and M_• a chain complex of A-modules. Show that if M_• is acyclic, then it is perfect.

Note that the acyclicity of M_{\bullet} means that the unique morphism $0 \to M_{\bullet}$ is a quasi-isomorphism (where 0 is the zero complex). Since 0 is a bounded complex of f.g. projectives, this means that M_{\bullet} is perfect.

2. Let A be a commutative ring and M_{\bullet} a chain complex of A-modules. Suppose that M_{\bullet} is *n*-connective for some integer *n*, i.e., $H_i(M_{\bullet}) = 0$ for i < n. Then there is a diagram of chain complexes

$$\mathcal{M}_{\bullet} \xleftarrow{\operatorname{qus}} \tau_{\geq n}(\mathcal{M}_{\bullet}) \to \mathcal{H}_n(\mathcal{M}_{\bullet})[n].$$

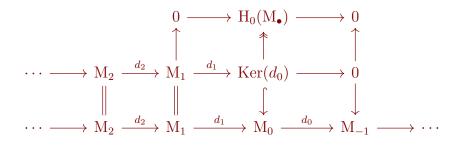
Here $\tau_{\geq n}(\mathbf{M}_{\bullet})$ denotes the truncated complex

$$\cdots \to \mathcal{M}_{n+2} \xrightarrow{d_{n+2}} \mathcal{M}_{n+1} \to \operatorname{Ker}(d_n) \to 0,$$

where $\operatorname{Ker}(d_n)$ is in degree n (and the differential $\operatorname{M}_{n+1} \to \operatorname{Ker}(d_n)$ factors through $\operatorname{Im}(d_{n+1}) \subseteq \operatorname{Ker}(d_n)$).

Note that replacing M_{\bullet} by $M_{\bullet}[n]$ has the effect of replacing $H_n(M_{\bullet})[n]$ by $H_n(M_{\bullet}[n])[n] = H_0(M_{\bullet})[n]$, and $\tau_{\leq n}(M_{\bullet})$ by $\tau_{\leq n}(M_{\bullet}[n]) = \tau_{\leq 0}(M_{\bullet})$. Therefore, we may as well assume that M_{\bullet} is 0-connective. (This simplifies nothing except the notation.)

The morphisms $M_{\bullet} \leftarrow \tau_{\geq 0}(M_{\bullet}) \rightarrow H_0(M_{\bullet})[0]$ are defined as



It is clear that $M_{\bullet} \leftarrow \tau_{\geq 0}(M_{\bullet})$ is a quasi-isomorphism.

- **3.** Let A be a commutative ring and M_• a chain complex of A-modules. Show that the following conditions are equivalent:
 - (a) $H_i(M_{\bullet}) \neq 0$ for exactly one $i \in \mathbb{Z}$.

(b) M_{\bullet} is quasi-isomorphic to $H_i(M_{\bullet})[i]$, via a zig-zag $M_{\bullet} \leftarrow ? \rightarrow H_i(M_{\bullet})[i]$, where both arrows are quasi-isomorphisms.

Since the complex $H_i(M_{\bullet})[i]$ is concentrated in degree *i*, it is clear that it has exactly one non-vanishing homology group. Since the condition in (a) is preserved by quasi-isomorphisms, it follows that (b) implies (a).

Suppose (a), and let $H_i(M_{\bullet})$ be the only non-vanishing homology group. Then M_{\bullet} is in particular *i*-connective, so by Exercise 1 there exists a zig-zag

$$\mathcal{M}_{\bullet} \xleftarrow{q_{\mathrm{ls}}} \tau_{\geq i}(\mathcal{M}_{\bullet}) \to \mathcal{H}_{i}(\mathcal{M}_{\bullet})[i].$$

By definition, $\tau_{\geq i}(\mathbf{M}_{\bullet})$ and $\mathbf{H}_{i}(\mathbf{M}_{\bullet})[i]$ are both bounded on the right by *i* (below *i*, all their terms vanish). At *i*, the map clearly induces an isomorphism on \mathbf{H}_{i} . To the left (above *i*), $\tau_{\geq i}(\mathbf{M}_{\bullet})$ has the same homology groups as \mathbf{M}_{\bullet} and is therefore acyclic. Thus we see that $\tau_{\geq i}(\mathbf{M}_{\bullet}) \to \mathbf{H}_{i}(\mathbf{M}_{\bullet})[i]$ is also a quasi-isomorphism.

4. (i) Give an example of a perfect complex P_{\bullet} over some ring A which is unbounded $(P_i \neq 0 \text{ for infinitely many } i \in \mathbf{Z}).$

(ii) Give an example of a perfect complex Q_{\bullet} over some ring A which has $H_i(Q_{\bullet}) \neq 0$ for at least two $i \in \mathbb{Z}$, and which is not a bounded complex of f.g. projective modules.

(i) For example,

$$\mathbf{P}_{\bullet} = \left(\cdots \xrightarrow{\mathbf{0}} \mathbf{A} \xrightarrow{\mathrm{id}} \mathbf{A} \xrightarrow{\mathbf{0}} \mathbf{A} \xrightarrow{\mathrm{id}} \mathbf{A} \xrightarrow{\mathbf{0}} \cdots \right)$$

for any commutative ring A. Since $H_i(P_{\bullet}) = 0$ for all *i*, this complex is acyclic. By exercise 1, it is perfect.

(ii) For example, the complex of **Z**-modules

$$\mathbf{Q}_{\bullet} = \left(0 \to \mathbf{Z}/4\mathbf{Z} \xrightarrow{2} \mathbf{Z}/4\mathbf{Z} \to 0 \right)$$

where the map is multiplication by 2. Certainly $\mathbf{Z}/4\mathbf{Z}$ is not a projective \mathbf{Z} -module, and the complex has non-vanishing H₀ and H₁ (both isomorphic to $\mathbf{Z}/2\mathbf{Z}$). But it is indeed perfect:

(0)

This diagram depicts a quasi-isomorphism between the upper row, a finite complex of f.g. free **Z**-modules, and the lower row, Q_{\bullet} .