
Exercise sheet 5

1. Let A be a commutative ring.

(a) Show that A is a filtered colimit (inductive limit) of its finitely generated
subrings (i.e., subrings that are finitely generated as Z-algebras).

(b) Suppose given a diagram of commutative rings (Aλ)λ∈Λ indexed by a poset
(partially ordered set) Λ. Let A denote the filtered colimit lim−→λ

Aλ (in the category

of commutative rings). Show that there is a canonical isomorphism

K0(A) ' lim−→
λ∈Λ

K0(Aλ).

(c) Deduce from (a) and (b) that, for every commutative ring A, there is a canonical
isomorphism K0(A) ' lim−→λ∈Λ

K0(Aλ) where Λ is a poset and Aλ are noetherian.

(a) The set Λ of finitely generated subrings of A becomes a poset with the inclusion
order. Any poset can be regarded as a filtered category whose objects are the
elements of the poset, and there is at most one morphism between any two objects.
We then have a canonical functor Λ→ CRing, sending a f.g. subring Aλ ∈ Λ to
itself. Since A is the union of these subrings, it is easy to see that A is the colimit
of this diagram.

(b) We first show that the canonical homomorphism of monoids

lim−→
λ

M(Aλ)→M(A),

induced by the extension of scalars maps M(Aλ) → M(A), is invertible. For
surjectivity, we need to show that every f.g. projective A-module M descends to a
f.g. projective Aα-module Mα, for some sufficiently large α ∈ Λ. Note that M is a
direct summand of some A⊕n, so it is the image of some projector (idempotent
endomorphism) φ : A⊕n → A⊕n. This corresponds to a matrix (φi,j)i,j with entries
φi,j ∈ A. Since A is the colimit of (Aλ)λ, there exists some α ∈ Λ and a matrix
(ψi,j)i,j with entries in Aα, such that ψi,j 7→ φi,j for all i, j. We let Mα be the
image of the corresponding projector A⊕nα → A⊕nα . Then we have Mα ⊗Aα A ' M
by construction.

For injectivity, we need to show that if M and N are Aλ modules, then any A-
module isomorphism M⊗Aλ A ' N⊗Aλ A descends to an Aα-module isomorphism
M⊗Aλ Aα ' N⊗Aλ Aα for some α > λ. The argument is similar to above, noting
that such an A-module isomorphism is determined by (finitely many) elements of
A, which must come from some Aα.

Now, apply group completion (−)gp to the above monoid isomorphism. Since
(−)gp is left adjoint to the functor from abelian groups to commutative monoids,
it commutes with colimits. Thus the claim follows.

(c) We only need to show that finitely generated Z-algebras are noetherian. This
follows from the Hilbert basis theorem.
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2. (a) Let A be a commutative ring and φ : M• → N• a quasi-isomorphism of chain
complexes over A. Let P• be a chain complex of projective A-modules. Suppose
that M•, N• and P• are all bounded below. Show that any morphism β : P• → N•
lifts to a morphism α : P• → M•, such that the diagram

M•

P• N•

φ
α

β

commutes up to homotopy (i.e., the morphisms β and φ ◦ α are homotopic).

(b) Let M• and N• be bounded below complexes over A. If N• is projective, show
that any quasi-isomorphism φ : M• → N• admits a section up to homotopy, which
is also a quasi-isomorphism.

(c) Let M• and N• be bounded below complexes over A. Suppose they are quasi-
isomorphic (in the sense that there exists a zig-zag of quasi-isomorphisms between
them). Show that if M• is projective, then there exists a quasi-isomorphism
M• → N•. Give an example to show that this is not true if M• is not projective.

(a) We use the following observation:

Lemma 1. Let P• be a complex of projectives and Q• an acyclic complex. Let α
and β be morphisms P• → Q•. Suppose given, for some integer n, a collection of
morphisms hi : Pi → Qi+1 for i 6 n, satisfying

αi − βi = hi−1di + di+1hi

for each i 6 n− 1. Then the hi extend to a homotopy α ' β.

Proof. Let φn : Pn → Qn be the morphism (αn − βn) − hn−1dn. Note that φn
lands in Ker(dn). Indeed from the relation

αn−1 − βn−1 = dnhn−1 + hn−2dn−1

we derive, by composing with dn on the right (and using the fact that α and β
commute with d and that d2 = 0),

dn(αn − βn) = dnhn−1dn.

In other words, dnφn = 0. Now since Q• is acyclic and in particular Hn(Q•) = 0,
it follows that φn ∈ Im(dn+1). Since P•, we can find a lift in the diagram

Qn+1

Pn Im(dn+1).

dn+1

φn

hn

The relation
dn+1hn = φn = (αn − βn)− hn−1dn

translates to
αn − βn = hn−1dn + dn+1hn.

The claim follows by induction. �
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Let K• = Cone(φ)•. Since φ is a quasi-isomorphism, K• is acyclic. Applying the
Lemma (we can take hi = 0 for i� 0 since the complexes are bounded below),
we deduce that the morphism

P•
β−→ N• → K•

is homotopic to zero through a homotopy (hi)i. The morphisms hi : Pi → Ki+1 =
Ni+1 ⊕Mi give rise in particular to morphisms αi : Pi → Mi. From the homotopy
relation satisfied by hi, one reads off that α defines a morphism of chain complexes
and that β is homotopic to φ ◦ α.

(b) Apply (a) to the diagram

M•

N• N•.

φ

(c) If M• and N• are quasi-isomorphic, there exists a zig-zag

(0.1) M• = L0
• ← L1

• → L2
• ← · · · → Ln• = N•

where all arrows are quasi-isomorphisms. Note that the Li• are not necessarily
bounded below (and not necessarily projective). However, since M• is bounded
below, it is n-connective for some n, hence so are all Li•. For each diagram

Li−1
• ← Li• → Li+1

• ,

we can expand this to a diagram

Li−1
• Li• Li+1

•

τ>n(Li•)

where all arrows are still quasi-isomorphisms. For every odd i > 1, replace Li• in
(0.1) by τ>nLi• → Li+1

• . For every odd i > 1, we can also find a quasi-isomorphism
from a bounded below complex Pi

• of projectives, and replace every Li• by Pi
•.

Applying (b), we can now reverse the wrong-way arrows in the zigzag (0.1).

3. Let A be a commutative ring and let M• → N• → K• be an exact triangle of chain
complexes of A-modules. Show that if any two of the terms is perfect, so is the
third.

Given the technology we have, the proof is much easier in the case where A is
noetherian, which we assume. From the long exact sequence in homology we see
that if any two of the terms is coherent, then so is the third. Thus it will suffice to
show that if any two of the terms is of finite Tor-amplitude, then so is the third.
This follows by inspecting the long exact sequence associated to the exact triangle
M• ⊗L

A E→ N• ⊗L
A E→ K• ⊗L

A E, for every A-module E.



4

Here is another argument which works if we assume that the complexes are
bounded below. By rotating the triangle, we may assume that M• and N• are
perfect (since shifting has no effect on perfectness). We may assume that K• is
the cone of φ : M• → N•. Let P• → M• and Q• → N• be quasi-isomorphisms with
P•,Q• ∈ ProjbA. Then by Exercise 2 (a), we can find a morphism ψ making the
left-hand square below commute up to homotopy:

P• Q• Cone(ψ)•

M• N• Cone(φ)•

ψ

φ

Then there is an induced quasi-isomorphism between the cones. Since Pi and Qi

are all projectives, we also have Cone(ψ) ∈ ProjbA. Thus K• = Cone(φ)• is perfect.

4. Let A be a commutative ring. A chain complex M• is called connective if it is
0-connective, i.e., Hi(M•) = 0 for i < 0. Imitate the construction of K0(PerfA)
to define a variant K0(Perfcn

A ) using (quasi-isomorphism classes of) connective
perfect complexes. Show that there is a canonical isomorphism

K0(Perfcn
A )

∼−→ K0(PerfA).

Note that there is a commutative diagram

K0(A) K0(PerfA)

K0(Perfcn
A )

∼

(†) (?)

where the upper arrow is known to be an isomorphism from Lecture 4. This
already implies that the arrow in question is surjective. There are various ways to
proceed. One is to show that the map (†) is surjective, repeating the proof for
the upper arrow. Another is to write down a retraction K0(PerfA)→ K0(Perfcn

A ).
Given a perfect complex M• ∈ PerfA, send [M•] 7→ [M•[k]] where k is an arbitrary
even shift large enough so that M•[k] is connective.


