Exercise sheet 5

1. (a) Show that every commutative ring A is a filtered colimit (inductive limit) of its finitely generated subrings (i.e., subrings that are finitely generated as **Z**-algebras).

(b) Suppose given a diagram of commutative rings $(A_{\alpha})_{\alpha \in \Lambda}$ indexed by a poset (partially ordered set) Λ . Let A denote the filtered colimit $\varinjlim_{\alpha} A_{\alpha}$ (in the category of commutative rings). Show that there is a canonical isomorphism

$$\mathrm{K}_{0}(\mathrm{A}) \simeq \varinjlim_{\alpha \in \Lambda} \mathrm{K}_{0}(\mathrm{A}_{\alpha}).$$

(c) Deduce from (a) and (b) that, for every commutative ring A, there is a canonical isomorphism $K_0(A) \simeq \varinjlim_{\alpha \in \Lambda} K_0(A_{\alpha})$ where Λ is a poset and A_{α} are noetherian.

2. (a) Let A be a commutative ring and $\phi : M_{\bullet} \to N_{\bullet}$ a quasi-isomorphism of chain complexes over A. Let P_{\bullet} be a chain complex of projective A-modules. Suppose that M_{\bullet} , N_{\bullet} and P_{\bullet} are all bounded below. Show that any morphism $\beta : P_{\bullet} \to N_{\bullet}$ lifts to a morphism $\alpha : P_{\bullet} \to M_{\bullet}$, such that the diagram

commutes up to homotopy (i.e., the morphisms β and $\phi \circ \alpha$ are homotopic).

(b) Let M_{\bullet} and N_{\bullet} be bounded below complexes over A. If N_{\bullet} is projective, show that any quasi-isomorphism $\phi : M_{\bullet} \to N_{\bullet}$ admits a section up to homotopy, which is also a quasi-isomorphism.

(c) Let M_{\bullet} and N_{\bullet} be bounded below complexes over A. Suppose they are quasiisomorphic (in the sense that there exists a zig-zag of quasi-isomorphisms between them). Show that if M_{\bullet} is projective, then there exists a quasi-isomorphism $M_{\bullet} \to N_{\bullet}$. Give an example to show that this is not true if M_{\bullet} is not projective.

- 3. Let A be a commutative ring and let $M_{\bullet} \to N_{\bullet} \to K_{\bullet}$ be an exact triangle of chain complexes of A-modules. Show that if any two of the terms are perfect, so is the third.
- 4. Let A be a commutative ring. A chain complex M_{\bullet} is called *connective* if it is 0-connective, i.e., $H_i(M_{\bullet}) = 0$ for i < 0. Imitate the construction of $K_0(\operatorname{Perf}_A)$ to define a variant $K_0(\operatorname{Perf}_A^{\operatorname{cn}})$ using (quasi-isomorphism classes of) connective perfect complexes. Show that there is a canonical isomorphism

$$\mathrm{K}_{0}(\mathrm{Perf}_{\mathrm{A}}^{\mathrm{cn}}) \xrightarrow{\sim} \mathrm{K}_{0}(\mathrm{Perf}_{\mathrm{A}}).$$