Exercise sheet 7

1. (i) Let $F : \mathcal{A} \to \mathcal{A}'$ be an exact functor between abelian categories. Show that $\operatorname{Ker}(F) \subseteq \mathcal{A}$, the full subcategory spanned by objects A such that $F(A) \simeq 0$, is a Serre subcategory.

(ii) Let $F : \mathcal{A} \to \mathcal{A}'$ be an exact functor between abelian categories. Suppose that F admits a right adjoint G such that the co-unit transformation $FG \to id$ is invertible (equivalently, G is fully faithful). Show that there is a canonical equivalence

$$\mathcal{A}/\operatorname{Ker}(\operatorname{F}) \to \mathcal{A}'.$$

(iii) Let \mathcal{A} be an abelian category and $\mathcal{B} \subseteq \mathcal{A}$ a Serre subcategory. Let $\mathcal{A}_0 \subseteq \mathcal{A}$ be a full subabelian subcategory such that if $A \in \mathcal{A}_0$ and $B \in \mathcal{B}$ is a subobject or quotient of A then also $B \in \mathcal{A}_0$. Show that the canonical functor

$$\mathcal{A}_0/(\mathcal{B}\cap\mathcal{A}_0)\to\mathcal{A}/\mathcal{B}$$

is fully faithful.

(i) Let $0 \to X' \to X \to X'' \to 0$ be a short exact sequence in \mathcal{A} . Since F is exact,

 $0 \to F(X') \to F(X) \to F(X'') \to 0$

is still exact. Thus $F(X) \simeq 0$ iff $F(X') \simeq 0$ and $F(X'') \simeq 0$.

(ii) We show that the functor $F : \mathcal{A} \to \mathcal{A}'$ satisfies the universal property of the quotient $\gamma : \mathcal{A} \to \mathcal{A}/\operatorname{Ker}(F)$.

Thus, let $\alpha : \mathcal{A} \to \mathcal{B}$ be a functor such that $\alpha(\text{Ker}(F)) = 0$, i.e., $\text{Ker}(F) \subseteq \text{Ker}(\alpha)$. We first note that if β exists (making the diagram commute), then we have a canonical isomorphism

$$\beta \simeq \beta FG \simeq \alpha G$$
,

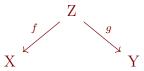
where the first isomorphism is induced by the co-unit id \simeq FG. Thus β is unique up to isomorphism if it exists. For existence, it will suffice to show that the only possible candidate $\beta := \alpha G$ does satisfy $\beta F \simeq \alpha$. For an object $X \in \mathcal{A}$, consider the unit morphism $\eta_X : X \to GF(X)$ and let K be its kernel. The triangle identities for the adjunction (F, G) imply that the composite

$$F(X) \xrightarrow{F(\eta_X)} FGF(X) \xrightarrow{\varepsilon_{F(X)}} F(X)$$

is the identity, where ε is the co-unit. Since the latter is invertible by assumption, so is $F(\eta_X) : F(X) \to FGF(X)$. In particular $F(K) \simeq 0$, hence also $\alpha(K) \simeq 0$ by the assumption on α . The same argument applies to the cokernel so we find that $\alpha(\eta_X)$ is an isomorphism $\beta F(X) = \alpha GF(X) \simeq \alpha(X)$. The argument is natural in X so we get an isomorphism of functors $\beta F \simeq \alpha$ as desired. (iii) [Thanks to V. Sosnilo for this argument.] The existence of the functor comes from the universal property: the inclusion functor $\mathcal{A}_0 \hookrightarrow \mathcal{A}$ clearly sends $\mathcal{B} \cap \mathcal{A}_0$ to \mathcal{B} . For objects X and Y of \mathcal{A}_0 , we need to show that the map

$$\operatorname{Hom}_{\mathcal{A}_0/(\mathcal{B}\cap\mathcal{A}_0)}(X,Y) \to \operatorname{Hom}_{\mathcal{A}/\mathcal{B}}(X,Y)$$

is bijective. An element of the target can be represented by a zig-zag in \mathcal{A}



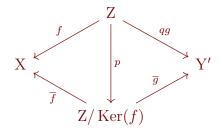
where f is a \mathcal{B} -isomorphism, i.e., $\operatorname{Ker}(f)$ and $\operatorname{Coker}(f)$ are contained in \mathcal{B} . This represents the morphism $g \circ f^{-1} : X \to Y$ in \mathcal{A}/\mathcal{B} .

Consider the short exact sequence

$$0 \to \operatorname{Im}(f) \to X \to \operatorname{Coker}(f) \to 0.$$

Since $X \in \mathcal{A}_0$ and $\operatorname{Coker}(f) \in \mathcal{B}$, the assumption implies $\operatorname{Coker}(f) \in \mathcal{A}_0$ and hence also $Z/\operatorname{Ker}(f) = \operatorname{Im}(f) \in \mathcal{A}_0$. Consider the commutative diagram of short exact sequences

Since $\operatorname{Ker}(f) \in \mathcal{B}$, also $g(\operatorname{Ker}(f)) \in \mathcal{B}$ since \mathcal{B} is a Serre subcategory. Since $Y \in \mathcal{A}_0$ it also follows by the assumption that $g(\operatorname{Ker}(f)) \in \mathcal{A}_0$. Since \mathcal{A}_0 is abelian, then $Y' := Y/g(\operatorname{Ker}(f))$ is also in \mathcal{A}_0 . In particular, q is a $(\mathcal{B} \cap \mathcal{A}_0)$ -isomorphism between objects of \mathcal{A}_0 . The commutative diagram



exhibits an equivalence between the two zig-zags $X \leftarrow Z \to Y'$ and $X \leftarrow Z/\operatorname{Ker}(f) \to Y'$. In particular, qgf^{-1} and $\overline{g}\overline{f}^{-1}$ represent the same morphism $X \to Y'$ in \mathcal{A}/\mathcal{B} . It follows that $q^{-1}qgf^{-1} = gf^{-1}$ and $q^{-1}\overline{g}\overline{f}^{-1}$ represent the same morphism $X \to Y$ in \mathcal{A}/\mathcal{B} . In other words, the zig-zags $X \leftarrow Z/\operatorname{Ker}(f) \to Y'$ and $Y' \leftarrow Y \to Y$ both represent morphisms in $\mathcal{A}_0/(\mathcal{A}_0 \cap \mathcal{B})$ which compose to a morphism whose image in \mathcal{A}/\mathcal{B} is equivalent to our original morphism $g \circ f^{-1}$.

2. Let A be a ring and $f \in A$ an element.

(i) Let $\operatorname{Mod}_A(f^{\infty}) \subseteq \operatorname{Mod}_A$ denote the full subcategory of A-modules M that are f^{∞} -torsion (i.e., for every $x \in M$, $f^k x = 0$ for $k \gg 0$). Show that this is a Serre subcategory and that the canonical functor

$$\operatorname{Mod}_{A}/(\operatorname{Mod}_{A}(f^{\infty})) \to \operatorname{Mod}_{A[f^{-1}]}$$

is an equivalence.

(ii) Assume that A is noetherian. Show that the canonical functor

$$\operatorname{Mod}_{A}^{\operatorname{tg}}/(\operatorname{Mod}_{A}^{\operatorname{tg}}(f^{\infty})) \to \operatorname{Mod}_{A[f^{-1}]}^{\operatorname{tg}}$$

is fully faithful.

(iii) Let $B = A[f^{-1}]$. Show that every f.g. B-module N lifts to a f.g. A-module M such that $M \otimes_A B \simeq N$. Deduce that the canonical functor

$$\operatorname{Mod}_{\mathcal{A}}^{\mathrm{fg}}/(\operatorname{Mod}_{\mathcal{A}}^{\mathrm{fg}}(f^{\infty})) \to \operatorname{Mod}_{\mathcal{A}[f^{-1}]}^{\mathrm{fg}}$$

is an equivalence. (Hint: consider $N_{[A]} \in Mod_A$, which may not be f.g. However you can find a surjection $A^{\oplus(I)} \to N_{[A]}$ from a free A-module indexed on a (possibly infinite) set I...)

(i) Consider the exact functor

$$(-) \otimes_{\mathcal{A}} \mathcal{A}[f^{-1}] : \mathcal{M}od_{\mathcal{A}} \to \mathcal{M}od_{\mathcal{A}[f^{-1}]}.$$

Its kernel consists of A-modules M such that $M[f^{-1}] = 0$, or equivalently, M is f^{∞} -torsion. In other words, this is the full subcategory $\operatorname{Mod}_{A}(f^{\infty})$. Thus by Exercise 1(i), the latter is a Serre subcategory. Recall that $(-) \otimes_{A} A[f^{-1}]$ is left adjoint to the restriction of scalars functor $(-)_{[A]}$. The latter is fully faithful (note that $A[f^{-1}] \otimes_{A} A[f^{-1}] \simeq A[f^{-1}]$ and then argue as in the proof that restriction of scalars along $A \twoheadrightarrow A/I$ is fully faithful, §1.2). Now the claim follows from Exercise 1(ii).

(ii) We want to apply Exercise 1(iii) to the Serre subcategory $\operatorname{Mod}_A(f^{\infty}) \subseteq \operatorname{Mod}_A$ and the subcategory $\operatorname{Mod}_A^{\operatorname{fg}} \subseteq \operatorname{Mod}_A$. The condition is that if $M \in \operatorname{Mod}_A^{\operatorname{fg}}$ and $N \in \operatorname{Mod}_A(f^{\infty})$ is a subobject or quotient of M, then N is also f.g. This is clear since A is noetherian. Thus Exercise 1(iii) yields that

$$\operatorname{Mod}_{A}^{\operatorname{rg}}/(\operatorname{Mod}_{A}^{\operatorname{rg}}(f^{\infty})) \to \operatorname{Mod}_{A}/(\operatorname{Mod}_{A}(f^{\infty}))$$

is fully faithful. By (i) the target is equivalent to $Mod_{A[f^{-1}]}$, so we have shown that

$$\operatorname{Mod}_{A}^{\operatorname{tg}}/(\operatorname{Mod}_{A}^{\operatorname{tg}}(f^{\infty})) \to \operatorname{Mod}_{A[f^{-1}]}$$

is fully faithful. But this functor lands in the full subcategory ${\rm Mod}_{{\rm A}[f^{-1}]}^{\rm fg}$ and the induced functor

 $\operatorname{Mod}_{\mathcal{A}}^{\mathrm{fg}}/(\operatorname{Mod}_{\mathcal{A}}^{\mathrm{fg}}(f^{\infty})) \to \operatorname{Mod}_{\mathcal{A}[f^{-1}]}^{\mathrm{fg}}$

must then also be fully faithful.

(iii) Consider the A-module N_[A]. We can find a surjection $\phi : A^{\oplus(I)} \to N_{[A]}$ from a free A-module indexed on a (possibly infinite) set I (for example, take I to be the set of elements of N). These correspond to elements $\phi_i \in N$ for $i \in I$. Since $N_{[A]} \otimes_A B \simeq N$ is f.g., we know that there exists a finite subset $J \subset I$ such that the induced map $B^{\oplus(J)} \to N$ is surjective. Let $M \subset N_{[A]}$ be the image of the map $A^{\oplus(J)} \to N_{[A]}$. It is then f.g. and satisfies $M \otimes_A B \simeq N$ by construction. This shows that the functor in question is essentially surjective, and it was already shown to be fully faithful in part (ii).

3. Let A be a noetherian ring.

(i) Show that $\phi : A \to A[T]$ induces is an injective homomorphism

$$\phi^*: \mathcal{G}_0(\mathcal{A}) \to \mathcal{G}_0(\mathcal{A}[\mathcal{T}]).$$

(Hint: Note that ϕ admits a retraction in the category of commutative rings...)

(ii) If A is a field k, show that $\phi^* : G_0(k) \to G_0(k[T])$ is an isomorphism.

(i) Note that $\phi : A \to A[T]$ is flat and in particular of finite Tor-amplitude. Therefore there is a well-defined homomorphism $\phi^* : G_0(A) \to G_0(A[T])$ (see §6.3). Let $\sigma : A[T] \to A$ be the ring homomorphism $T \mapsto 0$. Since $\sigma \circ \phi = id$, we have (see §6.3)

$$\sigma^* \phi^* = \mathrm{id} : \mathrm{G}_0(\mathrm{A}) \to \mathrm{G}_0(\mathrm{A}).$$

In particular, ϕ^* is injective.

(ii) It remains to show that ϕ^* is surjective. Note that we have a commutative square

$$\begin{array}{ccc} \mathrm{K}_{0}(k) & \stackrel{\phi^{*}}{\longrightarrow} & \mathrm{K}_{0}(k[\mathrm{T}]) \\ & \downarrow & & \downarrow \\ \mathrm{G}_{0}(k) & \stackrel{\phi^{*}}{\longrightarrow} & \mathrm{G}_{0}(k[\mathrm{T}]). \end{array}$$

Since k and k[T] are regular rings (see §2.3 in the lecture), the vertical arrows are invertible. The upper horizontal arrow is also invertible: for both k and k[T], every f.g. projective module is free, so the map is identified with the identity id : $\mathbf{Z} \to \mathbf{Z}$. It follows that the lower horizontal arrow is also invertible.

4. Let A be an integral domain. Given an element $f \in A$ and a point $p \in |\text{Spec}(A)|$, the value of f at p, denoted f(p), is the image of f by the homomorphism $\phi : A \to \kappa(p)$. (Elements of A are thought of as "algebraic functions" on Spec(A).)

(i) Show that if an element f vanishes at the generic point η then f = 0.

(ii) Give an example to show that if A is not an integral domain, then an element $f \in A$ can vanish at every point without being zero.

(Use the definition of |Spec(A)| given in the lecture, not the one using prime ideals.)

(i) Since $A \hookrightarrow \kappa(\eta) = Frac(A)$ is injective, we have $f(\eta) = 0$ iff f = 0.

(ii) Consider the ring of dual numbers $A = k[\varepsilon]/\langle \varepsilon^2 \rangle$ over a field k. Recall that A has a single point $p = [A \to k]$. The element $\varepsilon \in A$ has value $\varepsilon(p) = 0$ at this point, but $\varepsilon \neq 0$.