
Exercise sheet 7

1. (i) Let F : A → A′ be an exact functor between abelian categories. Show that
Ker(F) ⊆ A, the full subcategory spanned by objects A such that F(A) ' 0, is a
Serre subcategory.

(ii) Let F : A → A′ be an exact functor between abelian categories. Suppose
that F admits a right adjoint G such that the co-unit transformation FG→ id
is invertible (equivalently, G is fully faithful). Show that there is a canonical
equivalence

A/Ker(F)→ A′.

(iii) Let A be an abelian category and B ⊆ A a Serre subcategory. Let A0 ⊆ A

be a full subabelian subcategory such that if A ∈ A0 and B ∈ B is a subobject or
quotient of A then also B ∈ A0. Show that the canonical functor

A0/(B ∩A0)→ A/B

is fully faithful.

(i) Let 0→ X′ → X→ X′′ → 0 be a short exact sequence in A. Since F is exact,

0→ F(X′)→ F(X)→ F(X′′)→ 0

is still exact. Thus F(X) ' 0 iff F(X′) ' 0 and F(X′′) ' 0.

(ii) We show that the functor F : A→ A′ satisfies the universal property of the
quotient γ : A→ A/Ker(F).

A B

A′

α

F
β

Thus, let α : A→ B be a functor such that α(Ker(F)) = 0, i.e., Ker(F) ⊆ Ker(α).
We first note that if β exists (making the diagram commute), then we have a
canonical isomorphism

β ' βFG ' αG,

where the first isomorphism is induced by the co-unit id ' FG. Thus β is unique
up to isomorphism if it exists. For existence, it will suffice to show that the only
possible candidate β := αG does satisfy βF ' α. For an object X ∈ A, consider
the unit morphism ηX : X→ GF(X) and let K be its kernel. The triangle identities
for the adjunction (F,G) imply that the composite

F(X)
F(ηX)−−−→ FGF(X)

εF(X)−−−→ F(X)

is the identity, where ε is the co-unit. Since the latter is invertible by assumption,
so is F(ηX) : F(X)→ FGF(X). In particular F(K) ' 0, hence also α(K) ' 0 by
the assumption on α. The same argument applies to the cokernel so we find that
α(ηX) is an isomorphism βF(X) = αGF(X) ' α(X). The argument is natural in
X so we get an isomorphism of functors βF ' α as desired.
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(iii) [Thanks to V. Sosnilo for this argument.] The existence of the functor comes
from the universal property: the inclusion functor A0 ↪→ A clearly sends B ∩A0

to B. For objects X and Y of A0, we need to show that the map

HomA0/(B∩A0)(X,Y)→ HomA/B(X,Y)

is bijective. An element of the target can be represented by a zig-zag in A

Z

X Y

f g

where f is a B-isomorphism, i.e., Ker(f) and Coker(f) are contained in B. This
represents the morphism g ◦ f−1 : X→ Y in A/B.

Consider the short exact sequence

0→ Im(f)→ X→ Coker(f)→ 0.

Since X ∈ A0 and Coker(f) ∈ B, the assumption implies Coker(f) ∈ A0 and
hence also Z/Ker(f) = Im(f) ∈ A0. Consider the commutative diagram of short
exact sequences

0 Ker(f) Z Z/Ker(f) 0

0 g(Ker(f)) Y Y/g(Ker(f)) 0

p

g g

q

Since Ker(f) ∈ B, also g(Ker(f)) ∈ B since B is a Serre subcategory. Since Y ∈ A0

it also follows by the assumption that g(Ker(f)) ∈ A0. Since A0 is abelian, then
Y′ := Y/g(Ker(f)) is also in A0. In particular, q is a (B ∩ A0)-isomorphism
between objects of A0. The commutative diagram

Z

X Y′

Z/Ker(f)

f qg

p

f

g

exhibits an equivalence between the two zig-zags X ← Z → Y′ and X ←
Z/Ker(f) → Y′. In particular, qgf−1 and gf

−1
represent the same morphism

X→ Y′ in A/B. It follows that q−1qgf−1 = gf−1 and q−1gf
−1

represent the same
morphism X → Y in A/B. In other words, the zig-zags X ← Z/Ker(f) → Y′

and Y′ ← Y → Y both represent morphisms in A0/(A0 ∩B) which compose to a
morphism whose image in A/B is equivalent to our original morphism g ◦ f−1.

2. Let A be a ring and f ∈ A an element.
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(i) Let ModA(f∞) ⊆ ModA denote the full subcategory of A-modules M that are
f∞-torsion (i.e., for every x ∈ M, fkx = 0 for k � 0). Show that this is a Serre
subcategory and that the canonical functor

ModA/(ModA(f∞))→ ModA[f−1]

is an equivalence.

(ii) Assume that A is noetherian. Show that the canonical functor

Modfg
A/(Modfg

A(f∞))→ Modfg
A[f−1]

is fully faithful.

(iii) Let B = A[f−1]. Show that every f.g. B-module N lifts to a f.g. A-module M
such that M⊗A B ' N. Deduce that the canonical functor

Modfg
A/(Modfg

A(f∞))→ Modfg
A[f−1]

is an equivalence. (Hint: consider N[A] ∈ ModA, which may not be f.g. However

you can find a surjection A⊕(I) → N[A] from a free A-module indexed on a (possibly
infinite) set I...)

(i) Consider the exact functor

(−)⊗A A[f−1] : ModA → ModA[f−1].

Its kernel consists of A-modules M such that M[f−1] = 0, or equivalently, M is
f∞-torsion. In other words, this is the full subcategory ModA(f∞). Thus by
Exercise 1(i), the latter is a Serre subcategory. Recall that (−)⊗A A[f−1] is left
adjoint to the restriction of scalars functor (−)[A]. The latter is fully faithful (note
that A[f−1]⊗A A[f−1] ' A[f−1] and then argue as in the proof that restriction of
scalars along A � A/I is fully faithful, §1.2). Now the claim follows from Exercise
1(ii).

(ii) We want to apply Exercise 1(iii) to the Serre subcategory ModA(f∞) ⊆ ModA

and the subcategory Modfg
A ⊆ ModA. The condition is that if M ∈ Modfg

A and
N ∈ ModA(f∞) is a subobject or quotient of M, then N is also f.g. This is clear
since A is noetherian. Thus Exercise 1(iii) yields that

Modfg
A/(Modfg

A(f∞))→ ModA/(ModA(f∞))

is fully faithful. By (i) the target is equivalent to ModA[f−1], so we have shown
that

Modfg
A/(Modfg

A(f∞))→ ModA[f−1]

is fully faithful. But this functor lands in the full subcategory Modfg
A[f−1] and the

induced functor
Modfg

A/(Modfg
A(f∞))→ Modfg

A[f−1]

must then also be fully faithful.

(iii) Consider the A-module N[A]. We can find a surjection φ : A⊕(I) → N[A] from
a free A-module indexed on a (possibly infinite) set I (for example, take I to be
the set of elements of N). These correspond to elements φi ∈ N for i ∈ I. Since
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N[A] ⊗A B ' N is f.g., we know that there exists a finite subset J ⊂ I such that

the induced map B⊕(J) → N is surjective. Let M ⊂ N[A] be the image of the map

A⊕(J) → N[A]. It is then f.g. and satisfies M ⊗A B ' N by construction. This
shows that the functor in question is essentially surjective, and it was already
shown to be fully faithful in part (ii).

3. Let A be a noetherian ring.

(i) Show that φ : A→ A[T] induces is an injective homomorphism

φ∗ : G0(A)→ G0(A[T]).

(Hint: Note that φ admits a retraction in the category of commutative rings...)

(ii) If A is a field k, show that φ∗ : G0(k)→ G0(k[T]) is an isomorphism.

(i) Note that φ : A → A[T] is flat and in particular of finite Tor-amplitude.
Therefore there is a well-defined homomorphism φ∗ : G0(A) → G0(A[T]) (see
§6.3). Let σ : A[T]→ A be the ring homomorphism T 7→ 0. Since σ ◦ φ = id, we
have (see §6.3)

σ∗φ∗ = id : G0(A)→ G0(A).

In particular, φ∗ is injective.

(ii) It remains to show that φ∗ is surjective. Note that we have a commutative
square

K0(k) K0(k[T])

G0(k) G0(k[T]).

φ∗

φ∗

Since k and k[T] are regular rings (see §2.3 in the lecture), the vertical arrows
are invertible. The upper horizontal arrow is also invertible: for both k and k[T],
every f.g. projective module is free, so the map is identified with the identity
id : Z→ Z. It follows that the lower horizontal arrow is also invertible.

4. Let A be an integral domain. Given an element f ∈ A and a point p ∈
∣∣Spec(A)

∣∣,
the value of f at p, denoted f(p), is the image of f by the homomorphism
φ : A→ κ(p). (Elements of A are thought of as “algebraic functions” on Spec(A).)

(i) Show that if an element f vanishes at the generic point η then f = 0.

(ii) Give an example to show that if A is not an integral domain, then an element
f ∈ A can vanish at every point without being zero.

(Use the definition of
∣∣Spec(A)

∣∣ given in the lecture, not the one using prime
ideals.)

(i) Since A ↪→ κ(η) = Frac(A) is injective, we have f(η) = 0 iff f = 0.
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(ii) Consider the ring of dual numbers A = k[ε]/〈ε2〉 over a field k. Recall that
A has a single point p = [A→ k]. The element ε ∈ A has value ε(p) = 0 at this
point, but ε 6= 0.


