Lecture 11 Divisors

11.1. The Picard group.

Definition 1. Let A be a ring. An A-module M is *invertible* iff there exists an A-module N and an A-module isomorphism $M \otimes_A N \simeq A$. Equivalently, M is finitely generated and the localization at every prime ideal $\mathfrak{p} \subset A$ is free of rank one (i.e., there exists an $A_{\mathfrak{p}}$ -linear isomorphism $M_{\mathfrak{p}} \simeq A_{\mathfrak{p}}$).

Proposition 2. For any invertible A-module M, the canonical evaluation homomorphism

$$M \otimes_A Hom_A(M, A) \to A$$

is invertible. In particular, $M^{\otimes -1} \simeq Hom_A(M, A)$ (since the inverse is unique up to isomorphism).

Definition 3. The set of isomorphism classes of invertible A-modules forms an abelian group, under the operation \otimes . The identity element is A itself. This group is called the *Picard group* of A and is denoted Pic(A).

Construction 4. Note that there is a canonical map

$$\operatorname{Pic}(A) \to \operatorname{K}_0(A)$$

given by $[M] \mapsto [M]$. It is a monoid homomorphism with respect to the multiplication on $K_0(A)$, and in particular induces a group homomorphism $\operatorname{Pic}(A) \to K_0(A)^{\times}$ valued in the group of units. It is functorial in A with respect to inverse image ϕ^* (for any ring homomorphism $\phi : A \to B$).

Definition 5. Let M be a f.g. projective A-module. The rank of M at a point $x \in |\text{Spec}(A)|$ is $\text{rk}_A(M, x) = \dim_{\kappa}(M \otimes_A \kappa(x))$. We say M is of constant rank n if $\text{rk}_A(M, x) = n$ for every x.

Proposition 6. Let M be a f.g. projective A-module. Then there exists a ring isomorphism $A \simeq A_1 \times \cdots \times A_n$, inducing a bijection $|\text{Spec}(A)| \simeq \coprod_i |\text{Spec}(A_i)|$, such that the function $\operatorname{rk}_A(M, -) : |\text{Spec}(A)| \to \mathbf{N}$ is constant on each component $\operatorname{Spec}(A_i)$. Moreover, we then have $M \simeq \prod_i M_i$, where $M_i = M \otimes_A A_i$.

Proof. The function $f = \operatorname{rk}_A(M, -)$ can only take finitely many values r_1, \ldots, r_n , and each preimage $f^{-1}(r_i)$ is necessarily a closed subset $V_A(I_i)$. Using an idempotent lifting argument (as in the proof of Sheet 6, Exercise 3), one may assume A is reduced. In that case one shows that the I_i are mutually disjoint and comaximal, so the Chinese remainder theorem yields the decomposition $A \simeq \prod_i A/I_i$. \Box

Construction 7. For any f.g. projective A-module M, there is an invertible A-module $\det_A(M)$, called the *determinant*. If M is of constant rank n, then $\det_A(M)$ is the top exterior power $\Lambda_A^n(M)$ (which is of constant rank 1). In general, choose a decomposition $A \simeq \prod_i A_i$ such that each $M_i = M \otimes_A A_i$ is of constant rank. Then $\det_A(M) = \prod_i \det_{A_i}(M_i)$.

Proposition 8.

(i) For any A-module M and ring homomorphism $\phi : A \to B$, there is a canonical isomorphism of invertible B-modules

$$\det_{A}(M) \otimes_{A} B \simeq \det_{B}(M \otimes_{A} B).$$

(ii) For any short exact sequence of A-modules

$$0 \to M' \to M \to M'' \to 0,$$

there is a canonical isomorphism of invertible A-modules

$$\det_{A}(M) \simeq \det_{A}(M') \otimes_{A} \det_{A}(M'').$$

Proposition 9. The assignment $M \mapsto det_A(M)$ induces a canonical homomorphism

$$\det_{A} : K_{0}(A) \to \operatorname{Pic}(A)$$

which is a retraction of $Pic(A) \rightarrow K_0(A)$.

Proof. The fact that it descends to $K_0(A)$ follows from point (ii) of the previous proposition. The fact that it is a retraction follows from the canonical isomorphism $det_A(M) \simeq \Lambda^1_A(M) \simeq M$ when M is invertible (hence of constant rank one). \Box

Remark 10. Using the isomorphism $K_0(Perf_A) \simeq K_0(A)$, we obtain a notion of determinant of a perfect complex. Explicitly,

 $\det_{\mathcal{A}}(\mathcal{M}_{\bullet}) \simeq \otimes_{i \in \mathbf{Z}} \det_{\mathcal{A}}(\mathcal{M}_{\bullet})^{\otimes (-1)^{i}}.$

11.2. Effective Cartier divisors.

Definition 11. Let A be a ring. An *effective Cartier divisor* on A is a surjective ring homomorphism $\phi : A \twoheadrightarrow A/I$ that is quasi-smooth of relative dimension -1. Recall this means that for every point $x \in |\operatorname{Spec}(A/I)| \simeq V(I)$, corresponding to a prime ideal $\mathfrak{p} \subset A$, the localized ideal $I_{\mathfrak{p}}$ is generated by a single element which is a non-zero-divisor.

Example 12. For any non-zero-divisor $f \in A$, $\phi : A \to A/\langle f \rangle$ is an effective Cartier divisor. Warning: not every effective Cartier divisor is of this form.

Proposition 13. Let I be an ideal of A. Then $\phi : A \to A/I$ is an effective Cartier divisor iff I is invertible as an A-module.

Proof. Suppose that ϕ is an effective Cartier divisor. It will suffice to show that, for every prime $\mathfrak{p} \subset A$, $I_{\mathfrak{p}}$ is free of rank one as an $A_{\mathfrak{p}}$ -module. If $[A \to \kappa(\mathfrak{p})] \in V(I)$, then by assumption there exists an element $f_{\mathfrak{p}} \in A_{\mathfrak{p}}$ and an exact sequence of $A_{\mathfrak{p}}$ -modules

$$0 \to \mathbf{A}_{\mathfrak{p}} \xrightarrow{f_{\mathfrak{p}}} \mathbf{A}_{\mathfrak{p}} \twoheadrightarrow \mathbf{A}_{\mathfrak{p}} / \mathbf{I}_{\mathfrak{p}} \to 0.$$

In particular, multiplication by $f_{\mathfrak{p}}$ gives an isomorphism $I_{\mathfrak{p}} = f_{\mathfrak{p}}A_{\mathfrak{p}} \simeq A_{\mathfrak{p}}$. Now suppose \mathfrak{p} is a prime such that $[A \to \kappa(\mathfrak{p})] \notin V(I)$, i.e., $I \not\subset \mathfrak{p}$. In this case the inclusion $I_{\mathfrak{p}} \subseteq A_{\mathfrak{p}}$ is easily seen to be an equality. Thus $I_{\mathfrak{p}}$ is free of rank one for every prime ideal $\mathfrak{p} \subset A$.

 $\mathbf{2}$

Conversely, assume I is invertible. Then for every prime ideal \mathfrak{p} , $I_{\mathfrak{p}}$ is free of rank one and comes with a canonical $A_{\mathfrak{p}}$ -module injection $I_{\mathfrak{p}} \to A_{\mathfrak{p}}$. Choose a basis, i.e., an element $f_{\mathfrak{p}} \in I_{\mathfrak{p}}$ such that multiplication by $f_{\mathfrak{p}}$ induces an isomorphism $f_{\mathfrak{p}} : A_{\mathfrak{p}} \to I_{\mathfrak{p}}$. Through the inclusion $I_{\mathfrak{p}} \subseteq A_{\mathfrak{p}}$, we can view $f_{\mathfrak{p}}$ as an element of $A_{\mathfrak{p}}$ which fits in a short exact sequence

$$0 \to \mathbf{A}_{\mathfrak{p}} \xrightarrow{f_{\mathfrak{p}}} \mathbf{A}_{\mathfrak{p}} \twoheadrightarrow \mathbf{A}_{\mathfrak{p}} / \mathbf{I}_{\mathfrak{p}} \to 0.$$

Thus, $A \rightarrow A/I$ is an effective Cartier divisor.

Remark 14. It follows that an effective Cartier divisor on A is the same data as that of an invertible ideal I, or equivalently an invertible A-module M together with an A-linear injection $M \hookrightarrow A$. Note however that two A-linear injections $M \hookrightarrow A$ and $N \hookrightarrow A$ can have the same image in A. This happens if there exists an A-linear isomorphism $M \to N$ such that the diagram

commutes. In that case, we regard them as the same effective Cartier divisor.

11.3. Non-effective Cartier divisors. We generalize the notion of effective Cartier divisor to allow rational functions (i.e., to allow poles).

Remark 15. Let A be an integral domain. Recall that we view elements $f \in A$ as "regular functions" on the scheme Spec(A). Similarly, elements $f/g \in Frac(A)$ are "rational functions" on Spec(A). For example, 3/4 is a rational function on Spec(\mathbf{Z}) with a pole of order 2 at the point $[\mathbf{Z} \to \mathbf{F}_2]$.

Definition 16. Let A be an integral domain. A *Cartier divisor* on A is an invertible A-module M together with an A-linear injection $M \hookrightarrow Frac(A)$.

Remark 17. We regard two pairs $(M, M \hookrightarrow Frac(A))$ and $(N, N \hookrightarrow Frac(A))$ as the same Cartier divisor if there is an A-module isomorphism $M \simeq N$ which commutes with the injections into Frac(A). This way, a Cartier divisor on A is the same datum as an sub-A-module of Frac(A).

Remark 18. Cartier divisors are also called *invertible fractional ideals* (but note that they are not necessarily ideals).

Remark 19. Note that if M is invertible, injectivity of $M \to Frac(A)$ is equivalent to being nonzero. Indeed, injectivity can be checked on localizations, and every nonzero $A_{\mathfrak{p}}$ -module homomorphism $A_{\mathfrak{p}} \simeq M_{\mathfrak{p}} \to Frac(A)_{\mathfrak{p}} \simeq Frac(A_{\mathfrak{p}})$ is injective (as $A_{\mathfrak{p}}$ is an integral domain).

Example 20. If I is an invertible ideal of A, then $I \hookrightarrow A \hookrightarrow Frac(A)$ is injective. Thus effective Cartier divisors are Cartier divisors.

4

Example 21. Any nonzero element $f/g \in \operatorname{Frac}(A)^{\times}$, induces an A-linear injection $A \hookrightarrow \operatorname{Frac}(A)$, $a \mapsto af/g$. The pair $(A, A \hookrightarrow \operatorname{Frac}(A))$ is called the *principal Cartier divisor* defined by f/g, and is denoted $\operatorname{div}_A(f/g)$.

Construction 22. The tensor product of two Cartier divisors $(M, u : M \hookrightarrow Frac(A))$ and $(N, v : N \hookrightarrow Frac(A))$ is defined as $(M \otimes_A N, u \otimes v)$, where $u \otimes v$ is the composite

$$u \otimes v : \mathbf{M} \otimes_{\mathbf{A}} \mathbf{N} \hookrightarrow \operatorname{Frac}(\mathbf{A}) \otimes_{\mathbf{A}} \operatorname{Frac}(\mathbf{A}) \xrightarrow{\operatorname{mult}} \operatorname{Frac}(\mathbf{A}).$$

Since $u \otimes v$ is nonzero, it is indeed injective. The unit with respect to this product is $(A, A \hookrightarrow Frac(A))$, where $A \hookrightarrow Frac(A)$ is the canonical injection.

Proposition 23. The set of Cartier divisors on A forms an abelian group under tensor product.

Proof. Let $D = (M, u : M \hookrightarrow Frac(A))$ be a Cartier divisor. Let $D^{-1} = (M^{\otimes -1}, v : M^{\otimes -1} \hookrightarrow Frac(A))$, where v is defined as follows. Fix a nonzero element $m \in M$ (an invertible module is nonzero). Under the isomorphism $M^{\otimes -1} \simeq Hom_A(M, A)$, v sends

$$(\phi \in \operatorname{Hom}_{\mathcal{A}}(\mathcal{M}, \mathcal{A})) \mapsto \phi(m)/m.$$

One checks that D^{-1} is inverse to D.

Notation 24. We let Cart(A) denote the abelian group of Cartier divisors on A.

11.4. Cartier divisors and the Picard group.

Proposition 25. Let A be an integral domain. There is an exact sequence of abelian groups

$$0 \to A^{\times} \to \operatorname{Frac}(A)^{\times} \xrightarrow{\operatorname{div}_A} \operatorname{Cart}(A) \twoheadrightarrow \operatorname{Pic}(A) \to 0.$$

Proof. Consider the map $Cart(A) \rightarrow Pic(A)$ sending $(M, M \hookrightarrow Frac(A)) \mapsto [M]$, which is clearly a group homomorphism. To show it is surjective, we have to embed any invertible A-module M into Frac(A). Consider the homomorphism

$$M \to M \otimes_A Frac(A) \simeq M_{\langle 0 \rangle}$$

Since it is nonzero, it is injective. Since M is invertible, $M_{\langle 0 \rangle} \simeq A_{\langle 0 \rangle} = Frac(A)$. Thus we have constructed a Cartier divisor $(M, M \hookrightarrow Frac(A))$.

The kernel is the subgroup of Cartier divisors $(M, M \hookrightarrow Frac(A))$, such that M is isomorphic to A. Let $f \in M$ be the image of $1 \in A$ under such an isomorphism; then M is the principal Cartier divisor $\operatorname{div}_A(f)$.

Finally let $f \in \operatorname{Frac}(A)^{\times}$ such that $\operatorname{div}_A(f)$ is equal to $(A, A \hookrightarrow \operatorname{Frac}(A))$ (with the canonical injection). This means that fA = A in $\operatorname{Frac}(A)$. But $fA \subseteq A$ implies $f \in A$, and then $A \subseteq fA$ implies that f is a unit.

11.5. From Weil divisors to Cartier divisors.

Lemma 26. Let A be a locally factorial ring (i.e., $A_{\mathfrak{p}}$ is factorial for every prime ideal \mathfrak{p}). For every integral subset $V(\mathfrak{p}) \subset |Spec(A)|$ of codimension 1, \mathfrak{p} is invertible as an A-module.

Proof. It will suffice to show $\mathfrak{p}_{\mathfrak{q}} \simeq A_{\mathfrak{q}}$ for every prime ideal \mathfrak{q} . Note that $V(\mathfrak{p}_{\mathfrak{q}})$ is still of codimension 1 in $|\operatorname{Spec}(A_{\mathfrak{p}})|$. Therefore, as $A_{\mathfrak{q}}$ is factorial, a lemma used in the proof of Exercise 3 on Sheet 8 yields that $\mathfrak{p}_{\mathfrak{q}}$ is a principal ideal. It is then generated by some non-zero-divisor f, multiplication with which induces an isomorphism $f: A_{\mathfrak{q}} \to \mathfrak{p}_{\mathfrak{q}}$.

Definition 27. Let A be a noetherian ring. A *Weil divisor* on A is an element of the free abelian group $Z^1(A)$ generated by integral subsets $V(\mathfrak{p}) \subset |\text{Spec}(A)|$ of codimension 1. If A is an integral domain of finite type over a field k, then $Z^1(A) = Z_{d-1}(A)$, where $d = \dim(A)$.

Construction 28. Let A be regular. Then A is in particular locally factorial, so the lemma applies. Let $Z^{1}(A)$ be the free abelian group on integral subsets $V(\mathfrak{p})$ of codimension 1. Then there is a canonical homomorphism

$$Z^1(A) \to Cart(A)$$

sending $[V(\mathfrak{p})] \mapsto (\mathfrak{p}, \mathfrak{p} \hookrightarrow A \hookrightarrow Frac(A)).$