
Lecture 11
Divisors

11.1. The Picard group.

Definition 1. Let A be a ring. An A-module M is invertible iff there exists an
A-module N and an A-module isomorphism M ⊗A N ' A. Equivalently, M is
finitely generated and the localization at every prime ideal p ⊂ A is free of rank
one (i.e., there exists an Ap-linear isomorphism Mp ' Ap).

Proposition 2. For any invertible A-module M, the canonical evaluation homo-
morphism

M⊗A HomA(M,A)→ A

is invertible. In particular, M⊗−1 ' HomA(M,A) (since the inverse is unique up
to isomorphism).

Definition 3. The set of isomorphism classes of invertible A-modules forms an
abelian group, under the operation ⊗. The identity element is A itself. This group
is called the Picard group of A and is denoted Pic(A).

Construction 4. Note that there is a canonical map

Pic(A)→ K0(A)

given by [M] 7→ [M]. It is a monoid homomorphism with respect to the multiplica-
tion on K0(A), and in particular induces a group homomorphism Pic(A)→ K0(A)×

valued in the group of units. It is functorial in A with respect to inverse image φ∗

(for any ring homomorphism φ : A→ B).

Definition 5. Let M be a f.g. projective A-module. The rank of M at a point
x ∈

∣∣Spec(A)
∣∣ is rkA(M, x) = dimκ(M⊗A κ(x)). We say M is of constant rank n

if rkA(M, x) = n for every x.

Proposition 6. Let M be a f.g. projective A-module. Then there exists a ring
isomorphism A ' A1 × · · · × An, inducing a bijection

∣∣Spec(A)
∣∣ '∐i

∣∣Spec(Ai)
∣∣,

such that the function rkA(M,−) :
∣∣Spec(A)

∣∣→ N is constant on each component
Spec(Ai). Moreover, we then have M '

∏
i Mi, where Mi = M⊗A Ai.

Proof. The function f = rkA(M,−) can only take finitely many values r1, . . . , rn,
and each preimage f−1(ri) is necessarily a closed subset VA(Ii). Using an idempo-
tent lifting argument (as in the proof of Sheet 6, Exercise 3), one may assume A is
reduced. In that case one shows that the Ii are mutually disjoint and comaximal,
so the Chinese remainder theorem yields the decomposition A '

∏
i A/Ii. �

Construction 7. For any f.g. projective A-module M, there is an invertible
A-module detA(M), called the determinant. If M is of constant rank n, then
detA(M) is the top exterior power Λn

A(M) (which is of constant rank 1). In general,
choose a decomposition A '

∏
i Ai such that each Mi = M⊗A Ai is of constant

rank. Then detA(M) =
∏

i detAi
(Mi).
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Proposition 8.

(i) For any A-module M and ring homomorphism φ : A→ B, there is a canonical
isomorphism of invertible B-modules

detA(M)⊗A B ' detB(M⊗A B).

(ii) For any short exact sequence of A-modules

0→ M′ → M→ M′′ → 0,

there is a canonical isomorphism of invertible A-modules

detA(M) ' detA(M′)⊗A detA(M′′).

Proposition 9. The assignment M 7→ detA(M) induces a canonical homomor-
phism

detA : K0(A)→ Pic(A)

which is a retraction of Pic(A)→ K0(A).

Proof. The fact that it descends to K0(A) follows from point (ii) of the previous
proposition. The fact that it is a retraction follows from the canonical isomorphism
detA(M) ' Λ1

A(M) ' M when M is invertible (hence of constant rank one). �

Remark 10. Using the isomorphism K0(PerfA) ' K0(A), we obtain a notion of
determinant of a perfect complex. Explicitly,

detA(M•) ' ⊗i∈Z detA(M•)
⊗(−1)i .

11.2. Effective Cartier divisors.

Definition 11. Let A be a ring. An effective Cartier divisor on A is a surjective
ring homomorphism φ : A � A/I that is quasi-smooth of relative dimension −1.
Recall this means that for every point x ∈

∣∣Spec(A/I)
∣∣ ' V(I), corresponding to

a prime ideal p ⊂ A, the localized ideal Ip is generated by a single element which
is a non-zero-divisor.

Example 12. For any non-zero-divisor f ∈ A, φ : A → A/〈f〉 is an effective
Cartier divisor. Warning: not every effective Cartier divisor is of this form.

Proposition 13. Let I be an ideal of A. Then φ : A→ A/I is an effective Cartier
divisor iff I is invertible as an A-module.

Proof. Suppose that φ is an effective Cartier divisor. It will suffice to show that,
for every prime p ⊂ A, Ip is free of rank one as an Ap-module. If [A→ κ(p)] ∈ V(I),
then by assumption there exists an element fp ∈ Ap and an exact sequence of
Ap-modules

0→ Ap
fp−→ Ap � Ap/Ip → 0.

In particular, multiplication by fp gives an isomorphism Ip = fpAp ' Ap. Now
suppose p is a prime such that [A → κ(p)] 6∈ V(I), i.e., I 6⊂ p. In this case the
inclusion Ip ⊆ Ap is easily seen to be an equality. Thus Ip is free of rank one for
every prime ideal p ⊂ A.



3

Conversely, assume I is invertible. Then for every prime ideal p, Ip is free of rank
one and comes with a canonical Ap-module injection Ip → Ap. Choose a basis,
i.e., an element fp ∈ Ip such that multiplication by fp induces an isomorphism
fp : Ap → Ip. Through the inclusion Ip ⊆ Ap, we can view fp as an element of Ap

which fits in a short exact sequence

0→ Ap
fp−→ Ap � Ap/Ip → 0.

Thus, A � A/I is an effective Cartier divisor. �

Remark 14. It follows that an effective Cartier divisor on A is the same data as
that of an invertible ideal I, or equivalently an invertible A-module M together
with an A-linear injection M ↪→ A. Note however that two A-linear injections
M ↪→ A and N ↪→ A can have the same image in A. This happens if there exists
an A-linear isomorphism M→ N such that the diagram

M N

A

commutes. In that case, we regard them as the same effective Cartier divisor.

11.3. Non-effective Cartier divisors. We generalize the notion of effective
Cartier divisor to allow rational functions (i.e., to allow poles).

Remark 15. Let A be an integral domain. Recall that we view elements f ∈ A
as “regular functions” on the scheme Spec(A). Similarly, elements f/g ∈ Frac(A)
are “rational functions” on Spec(A). For example, 3/4 is a rational function on
Spec(Z) with a pole of order 2 at the point [Z→ F2].

Definition 16. Let A be an integral domain. A Cartier divisor on A is an
invertible A-module M together with an A-linear injection M ↪→ Frac(A).

Remark 17. We regard two pairs (M,M ↪→ Frac(A)) and (N,N ↪→ Frac(A))
as the same Cartier divisor if there is an A-module isomorphism M ' N which
commutes with the injections into Frac(A). This way, a Cartier divisor on A is
the same datum as an sub-A-module of Frac(A).

Remark 18. Cartier divisors are also called invertible fractional ideals (but note
that they are not necessarily ideals).

Remark 19. Note that if M is invertible, injectivity of M→ Frac(A) is equivalent
to being nonzero. Indeed, injectivity can be checked on localizations, and every
nonzero Ap-module homomorphism Ap ' Mp → Frac(A)p ' Frac(Ap) is injective
(as Ap is an integral domain).

Example 20. If I is an invertible ideal of A, then I ↪→ A ↪→ Frac(A) is injective.
Thus effective Cartier divisors are Cartier divisors.
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Example 21. Any nonzero element f/g ∈ Frac(A)×, induces an A-linear injection
A ↪→ Frac(A), a 7→ af/g. The pair (A,A ↪→ Frac(A)) is called the principal
Cartier divisor defined by f/g, and is denoted divA(f/g).

Construction 22. The tensor product of two Cartier divisors (M, u : M ↪→
Frac(A)) and (N, v : N ↪→ Frac(A)) is defined as (M⊗A N, u⊗ v), where u⊗ v is
the composite

u⊗ v : M⊗A N ↪→ Frac(A)⊗A Frac(A)
mult−−→ Frac(A).

Since u⊗ v is nonzero, it is indeed injective. The unit with respect to this product
is (A,A ↪→ Frac(A)), where A ↪→ Frac(A) is the canonical injection.

Proposition 23. The set of Cartier divisors on A forms an abelian group under
tensor product.

Proof. Let D = (M, u : M ↪→ Frac(A)) be a Cartier divisor. Let D−1 = (M⊗−1, v :
M⊗−1 ↪→ Frac(A)), where v is defined as follows. Fix a nonzero element m ∈ M
(an invertible module is nonzero). Under the isomorphism M⊗−1 ' HomA(M,A),
v sends

(φ ∈ HomA(M,A)) 7→ φ(m)/m.

One checks that D−1 is inverse to D. �

Notation 24. We let Cart(A) denote the abelian group of Cartier divisors on A.

11.4. Cartier divisors and the Picard group.

Proposition 25. Let A be an integral domain. There is an exact sequence of
abelian groups

0→ A× → Frac(A)×
divA−−→ Cart(A) � Pic(A)→ 0.

Proof. Consider the map Cart(A)→ Pic(A) sending (M,M ↪→ Frac(A)) 7→ [M],
which is clearly a group homomorphism. To show it is surjective, we have to
embed any invertible A-module M into Frac(A). Consider the homomorphism

M→ M⊗A Frac(A) ' M〈0〉

Since it is nonzero, it is injective. Since M is invertible, M〈0〉 ' A〈0〉 = Frac(A).
Thus we have constructed a Cartier divisor (M,M ↪→ Frac(A)).

The kernel is the subgroup of Cartier divisors (M,M ↪→ Frac(A)), such that M
is isomorphic to A. Let f ∈ M be the image of 1 ∈ A under such an isomorphism;
then M is the principal Cartier divisor divA(f).

Finally let f ∈ Frac(A)× such that divA(f) is equal to (A,A ↪→ Frac(A)) (with
the canonical injection). This means that fA = A in Frac(A). But fA ⊆ A
implies f ∈ A, and then A ⊆ fA implies that f is a unit. �
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11.5. From Weil divisors to Cartier divisors.

Lemma 26. Let A be a locally factorial ring (i.e., Ap is factorial for every prime
ideal p). For every integral subset V(p) ⊂

∣∣Spec(A)
∣∣ of codimension 1, p is

invertible as an A-module.

Proof. It will suffice to show pq ' Aq for every prime ideal q. Note that V(pq)
is still of codimension 1 in

∣∣Spec(Ap)
∣∣. Therefore, as Aq is factorial, a lemma

used in the proof of Exercise 3 on Sheet 8 yields that pq is a principal ideal. It is
then generated by some non-zero-divisor f , multiplication with which induces an
isomorphism f : Aq → pq. �

Definition 27. Let A be a noetherian ring. A Weil divisor on A is an element
of the free abelian group Z1(A) generated by integral subsets V(p) ⊂

∣∣Spec(A)
∣∣

of codimension 1. If A is an integral domain of finite type over a field k, then
Z1(A) = Zd−1(A), where d = dim(A).

Construction 28. Let A be regular. Then A is in particular locally factorial, so
the lemma applies. Let Z1(A) be the free abelian group on integral subsets V(p)
of codimension 1. Then there is a canonical homomorphism

Z1(A)→ Cart(A)

sending [V(p)] 7→ (p, p ↪→ A ↪→ Frac(A)).
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