Lecture 11
Divisors

11.1. The Picard group.

Definition 1. Let A be a ring. An A-module M is invertible iff there exists an
A-module N and an A-module isomorphism M ®, N ~ A. Equivalently, M is
finitely generated and the localization at every prime ideal p C A is free of rank
one (i.e., there exists an Ay-linear isomorphism M, >~ A,).

Proposition 2. For any invertible A-module M, the canonical evaluation homo-
morphism

M®a HomA(M, A) — A
is inwvertible. In particular, M®~1 ~ Homa (M, A) (since the inverse is unique up
to isomorphism,).

Definition 3. The set of isomorphism classes of invertible A-modules forms an
abelian group, under the operation ®. The identity element is A itself. This group
is called the Picard group of A and is denoted Pic(A).

Construction 4. Note that there is a canonical map

Pic(A) — Ky(A)
given by [M] — [M]. It is a monoid homomorphism with respect to the multiplica-
tion on Ko(A), and in particular induces a group homomorphism Pic(A) — Kq(A)*

valued in the group of units. It is functorial in A with respect to inverse image ¢*
(for any ring homomorphism ¢ : A — B).

Definition 5. Let M be a f.g. projective A-module. The rank of M at a point
z € [Spec(A)| is tka (M, z) = dim, (M ®4 £(z)). We say M is of constant rank n
if rka (M, ) = n for every z.

Proposition 6. Let M be a f.g. projective A-module. Then there exists a ring
isomorphism A ~ Ay X -+ x A,,, inducing a bijection |Spec(A)| ~= T,|Spec(A;)],
such that the function rka(M, —) : |Spec(A)| — N is constant on each component
Spec(A;). Moreover, we then have M ~ [, M;, where M; = M ®4 A;.

Proof. The function f = rka(M, —) can only take finitely many values rq,...,7,,
and each preimage f~!(r;) is necessarily a closed subset VA (I;). Using an idempo-
tent lifting argument (as in the proof of Sheet 6, Exercise 3), one may assume A is
reduced. In that case one shows that the I; are mutually disjoint and comaximal,
so the Chinese remainder theorem yields the decomposition A >~ [], A/L. O

Construction 7. For any f.g. projective A-module M, there is an invertible
A-module dety (M), called the determinant. If M is of constant rank n, then
deta (M) is the top exterior power A% (M) (which is of constant rank 1). In general,
choose a decomposition A ~ []. A; such that each M; = M ®4 A; is of constant
rank. Then dety (M) = [], deta, (M;).
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Proposition 8.

(i) For any A-module M and ring homomorphism ¢ : A — B, there is a canonical
1somorphism of invertible B-modules

deta(M) @5 B ~ detg(M @, B).

(ii) For any short exact sequence of A-modules
0—-M —-M-—M =0,

there is a canonical isomorphism of invertible A-modules

detA(M) ~ detA(M') XA detA(M”).
Proposition 9. The assignment M +— detx (M) induces a canonical homomor-
phism

detp : Ko(A) — Pic(A)

which is a retraction of Pic(A) — Ko(A).

Proof. The fact that it descends to Ky(A) follows from point (ii) of the previous
proposition. The fact that it is a retraction follows from the canonical isomorphism
deta (M) =~ AL (M) ~ M when M is invertible (hence of constant rank one). [

Remark 10. Using the isomorphism Kg(Perfa) ~ Ko(A), we obtain a notion of
determinant of a perfect complex. Explicitly,

deta (M) ~ @;cz deta (Mg)2D".

11.2. Effective Cartier divisors.

Definition 11. Let A be a ring. An effective Cartier divisor on A is a surjective
ring homomorphism ¢ : A — A/I that is quasi-smooth of relative dimension —1.
Recall this means that for every point = € !Spec(A/ I)| ~ V(I), corresponding to
a prime ideal p C A, the localized ideal I, is generated by a single element which
is a non-zero-divisor.

Example 12. For any non-zero-divisor f € A, ¢ : A — A/(f) is an effective
Cartier divisor. Warning: not every effective Cartier divisor is of this form.

Proposition 13. Let I be an ideal of A. Then ¢ : A — A/I is an effective Cartier
divisor iff 1 is invertible as an A-module.

Proof. Suppose that ¢ is an effective Cartier divisor. It will suffice to show that,
for every prime p C A, I, is free of rank one as an Ay-module. If [A — k(p)] € V(I),
then by assumption there exists an element f, € A, and an exact sequence of
A,-modules

0= A, 5 A, A/T, — 0.
In particular, multiplication by f, gives an isomorphism I, = f,A, ~ A,. Now
suppose p is a prime such that [A — &(p)] € V(I), i.e., I ¢ p. In this case the

inclusion I, C A, is easily seen to be an equality. Thus I, is free of rank one for
every prime ideal p C A.
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Conversely, assume I is invertible. Then for every prime ideal p, I, is free of rank
one and comes with a canonical Ay-module injection I, — A,. Choose a basis,
i.e., an element f, € I, such that multiplication by f, induces an isomorphism
fy : Ay = I,. Through the inclusion I, C A,, we can view f, as an element of A,
which fits in a short exact sequence

0= A, &5 A, = AT, > 0.
Thus, A — A/I is an effective Cartier divisor. O

Remark 14. It follows that an effective Cartier divisor on A is the same data as
that of an invertible ideal I, or equivalently an invertible A-module M together
with an A-linear injection M — A. Note however that two A-linear injections
M <— A and N < A can have the same image in A. This happens if there exists
an A-linear isomorphism M — N such that the diagram

M\A/N

commutes. In that case, we regard them as the same effective Cartier divisor.

11.3. Non-effective Cartier divisors. We generalize the notion of effective
Cartier divisor to allow rational functions (i.e., to allow poles).

Remark 15. Let A be an integral domain. Recall that we view elements f € A
as “regular functions” on the scheme Spec(A). Similarly, elements f/g € Frac(A)
are “rational functions” on Spec(A). For example, 3/4 is a rational function on
Spec(Z) with a pole of order 2 at the point [Z — Fs).

Definition 16. Let A be an integral domain. A Cartier divisor on A is an
invertible A-module M together with an A-linear injection M «— Frac(A).

Remark 17. We regard two pairs (M, M < Frac(A)) and (N,N — Frac(A))
as the same Cartier divisor if there is an A-module isomorphism M ~ N which
commutes with the injections into Frac(A). This way, a Cartier divisor on A is
the same datum as an sub-A-module of Frac(A).

Remark 18. Cartier divisors are also called invertible fractional ideals (but note
that they are not necessarily ideals).

Remark 19. Note that if M is invertible, injectivity of M — Frac(A) is equivalent
to being nonzero. Indeed, injectivity can be checked on localizations, and every
nonzero Ay-module homomorphism A, ~ M, — Frac(A), ~ Frac(A,) is injective
(as A, is an integral domain).

Example 20. If [ is an invertible ideal of A, then I < A < Frac(A) is injective.
Thus effective Cartier divisors are Cartier divisors.
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Example 21. Any nonzero element f/g € Frac(A)*, induces an A-linear injection
A — Frac(A), a — af/g. The pair (A,A — Frac(A)) is called the principal
Cartier divisor defined by f/g, and is denoted diva(f/g).

Construction 22. The tensor product of two Cartier divisors (M,u : M —
Frac(A)) and (N,v : N < Frac(A)) is defined as (M ®a N,u ® v), where u ® v is
the composite

mult

u®v:M®aN— Frac(A) ®, Frac(A) — Frac(A).

Since u ® v is nonzero, it is indeed injective. The unit with respect to this product
is (A, A — Frac(A)), where A < Frac(A) is the canonical injection.

Proposition 23. The set of Cartier divisors on A forms an abelian group under
tensor product.

Proof. Let D = (M, u: M < Frac(A)) be a Cartier divisor. Let D™! = (M®~! v :
M®! < Frac(A)), where v is defined as follows. Fix a nonzero element m € M
(an invertible module is nonzero). Under the isomorphism M®~! ~ Homa (M, A),
v sends

(¢ € Homa(M,A))  +—  ¢(m)/m.
One checks that D7 is inverse to D. O

Notation 24. We let Cart(A) denote the abelian group of Cartier divisors on A.

11.4. Cartier divisors and the Picard group.

Proposition 25. Let A be an integral domain. There is an exact sequence of
abelian groups

0 — AX — Frac(A)* I Cart(A) — Pic(A) — 0.

Proof. Consider the map Cart(A) — Pic(A) sending (M, M — Frac(A)) — [M],
which is clearly a group homomorphism. To show it is surjective, we have to
embed any invertible A-module M into Frac(A). Consider the homomorphism

M — M ®4 Frac(A) ~ M,

Since it is nonzero, it is injective. Since M is invertible, My ~ A = Frac(A).
Thus we have constructed a Cartier divisor (M, M < Frac(A)).
The kernel is the subgroup of Cartier divisors (M, M < Frac(A)), such that M

is isomorphic to A. Let f € M be the image of 1 € A under such an isomorphism;
then M is the principal Cartier divisor diva(f).

Finally let f € Frac(A)* such that diva(f) is equal to (A, A < Frac(A)) (with
the canonical injection). This means that fA = A in Frac(A). But fA C A
implies f € A, and then A C fA implies that f is a unit. OJ



11.5. From Weil divisors to Cartier divisors.

Lemma 26. Let A be a locally factorial ring (i.e., A, is factorial for every prime
ideal p). For every integral subset V(p) C ’SpeC(A)’ of codimension 1, p 1is
invertible as an A-module.

Proof. It will suffice to show p; ~ A, for every prime ideal q. Note that V(p,)
is still of codimension 1 in ‘Spec(Ap)’. Therefore, as A, is factorial, a lemma
used in the proof of Exercise 3 on Sheet 8 yields that p, is a principal ideal. It is
then generated by some non-zero-divisor f, multiplication with which induces an
isomorphism f : Ay — pg. O

Definition 27. Let A be a noetherian ring. A Weil divisor on A is an element
of the free abelian group Z'(A) generated by integral subsets V(p) C }Spec(A)|
of codimension 1. If A is an integral domain of finite type over a field k, then
ZY(A) = Z4_1(A), where d = dim(A).

Construction 28. Let A be regular. Then A is in particular locally factorial, so
the lemma applies. Let Z'(A) be the free abelian group on integral subsets V(p)
of codimension 1. Then there is a canonical homomorphism

Z'(A) — Cart(A)
sending [V(p)] — (p,p — A — Frac(A)).
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