
Lecture 12
More on divisors

12.1. Regular local rings of dimension 1. Recall that DVR’s are regular
(§2.3) and of dimension 1 (Sheet 9, Exercise 1). The converse is also true: any
1-dimensional regular local ring is a DVR.

Let’s review how this works. Let A be a regular local ring of dimension 1.

Claim 1. The maximal ideal m is principal.

Proof. Since A is local, V(m) ⊆
∣∣Spec(A)

∣∣ is the unique closed point. It is of
codimension 1 by Exercise 2 on Sheet 9. Since regular rings are factorial, it follows
that m is principal (by the Lemma used in the solution of Sheet 8, Exercise 3). �

We fix a uniformizer, i.e., a generator π ∈ m.

Claim 2. For every nonzero element a ∈ A, there is a unique n > 0 such that
a = uπn for some unit u ∈ A×.

Proof. By Krull’s intersection theorem, the intersection
⋂∞

i=1m
i is zero. This

means that there is a maximal n > 0 such that a ∈ mn and a 6∈ mn+1. Then we
have a = uπn for some u 6∈ m, which is necessarily a unit. �

Construction 3. We define a (discrete) valuation v : K× → Z, where K =
Frac(A). Take x ∈ K× and choose a fraction f/g representing it. Then by
above we may write f = uπm, g = vπn with u, v ∈ A× and m,n > 0. Then
f/g = (u/v)πm−n and we define v(f/g) = m − n. One checks that this is well-
defined (doesn’t depend on the fraction representing x) and indeed defines a
valuation.

Claim 4. Let A be a regular local ring of dimension 1, with maximal ideal m.
Then every nonzero ideal I ⊆ A is of the form 〈πn〉, where n = mina∈I v(a).

Proof. Choose a nonzero element a ∈ I of minimal valuation n. Then we may
write a = uπn with u ∈ A× and n > 0, and every other element of I is divisible
by a (since it is either 0 or vπm for m > n), and hence by πn. Thus I ⊆ 〈πn〉.
Conversely, πn = u−1a ∈ 〈a〉 ⊆ I. �

12.2. Effective vs. non-effective Cartier divisors. By multiplying with an
appropriate element a ∈ A, we can turn any Cartier divisor M into an effective
one aM:

Lemma 5. Let A be a ring and (M,M ↪→ Frac(A)) a Cartier divisor on A. Then
there exists a nonzero element a ∈ A such that the submodule aM ⊂ Frac(A) is
contained in the subring A ⊂ Frac(A).
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Proof. Since M is invertible, it is finitely generated. Identifying M with a submod-
ule of Frac(A), we can choose a finite set of generators and view them as elements
f1/g1, . . . , fn/gn ∈ Frac(A). Then a = g1 · · · gn does the job. �

Every Cartier divisor is a difference of two effective Cartier divisors:

Lemma 6. Let (M,M ↪→ Frac(A)) be a Cartier divisor on A. Let a ∈ A be
nonzero such that aM ⊂ A. Then we have

(M,M ↪→ Frac(A)) = (aM, aM ↪→ A ↪→ Frac(A))− divA(a)

in the group Cart(A).

Exercise 7. Let Cart+(A) denote the set of effective Cartier divisors. This admits
a canonical monoid structure and there is a canonical injective homomorphism

Cart+(A)→ Cart(A)

which exhibits Cart(A) as the group completion of Cart+(A).

12.3. Multiplicities of Cartier divisors. We want to define a map from Cartier
divisors to Weil divisors. This amounts to assigning multiplicities to a Cartier
divisors for every integral subset V(p) ⊂

∣∣Spec(A)
∣∣ of codimension 1.

Remark 8. Let A be a regular ring. For every integral subset V(p) ⊂
∣∣Spec(A)

∣∣
of codimension 1, the localization Ap is a 1-dimensional regular local ring (since
dim(Ap) = codim(V(p)) by Sheet 9, Exercise 2). By §11.6, it is a DVR; in
particular, every nonzero ideal of Ap is of the form 〈πn〉 where π is a uniformizer
and n > 0.

Claim 9. Let A and p as above. Every Cartier divisor on Ap is of the form
(πnAp, π

nAp ↪→ Frac(Ap)), where n ∈ Z (possibly negative).

Proof. Let (M,M ↪→ Frac(Ap)) be a Cartier divisor. Consider the ideal of Ap

generated by elements a ∈ Ap such that the submodule aM ⊂ Frac(Ap) is contained
in Ap. By §12.2 it is nonzero, and as such it must be of the form πrAp, r > 0
(previous remark). Then by construction, the submodule πrM ⊂ Frac(Ap) is
contained in Ap, hence is also of the form πsAp, s > 0. We deduce that M is the
submodule of Frac(Ap) given by πs−rAp. �

Definition 10. Let A be a regular ring and V(p) ⊂
∣∣Spec(A)

∣∣ an integral subset
of codimension 1. For a Cartier divisor (M,M ↪→ Frac(A)) on A, its multiplicity
along p is the integer np such that Mp is of the form πnpAp. When there is possible
ambiguity, we may write np(M).

Lemma 11. Let (I, I ↪→ A) be an effective Cartier divisor on A. Let V(p) ⊂∣∣Spec(A)
∣∣ be an integral subset of codimension 1.

(a) The multiplicity at p is zero unless V(p) ⊆ V(I).

(b) We have V(p) ⊆ V(I) iff V(p) is an irreducible component of V(I).
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Proof.

(a) By definition, Ip = 〈πnp〉 for every p. If V(p) 6⊆ V(I), i.e., I 6⊆ rad(p) = p, take
some x ∈ I \ p. Then 1 = x/x ∈ Ip, so np = 0.

(b) Suppose V(p) ⊆ V(I). Since I is invertible, we have V(I) ( V(0). If there was
an integral subset V(q) with V(p) ( V(q) ⊆ V(I), then

V(p) ( V(q) ( V(0) =
∣∣Spec(A)

∣∣
would be a chain of integral subsets of length 2, in contradiction with codim(V(p)) =
1. �

Corollary 12. Let (I, I ↪→ A) be an effective Cartier divisor on A. As V(p) ⊂∣∣Spec(A)
∣∣ ranges over integral subsets of codimension 1, only finitely many of the

multiplicities np are nonzero.

Proof. If np is nonzero, then V(p) is an irreducible component of V(I). But since
A/I is noetherian, there are only finitely many such. �

Corollary 13. Let (M,M ↪→ Frac(A)) be a Cartier divisor on A. As V(p) ⊂∣∣Spec(A)
∣∣ ranges over integral subsets of codimension 1, only finitely many of the

multiplicities np are nonzero.

Proof. Write M as a difference of two effective Cartier divisors. It follows from
the definitions that multiplicities are additive, so we reduce to the effective case.

�

12.4. Examples of multiplicities.

Example 14. Let A = k[T] for a field k and f = T − 1 ∈ k[T]. Consider the
principal Cartier divisor divk[T](f) ∈ Cart(k[T]). This is an effective Cartier divisor
corresponding to the ideal p = 〈T− 1〉 ⊂ k[T]. Let’s compute its multiplicities.
Given an integral subset V(q) of codimension 1, we know that the multiplicity nq

is zero unless V(q) is an irreducible component of V(p). But the latter is integral
since p is prime. Thus the only nonzero multiplicity is at the prime p. Clearly the
ideal pp ⊂ Ap = k[T]〈T−1〉 is generated by π where π = T− 1 is the uniformizer,
so np = 1.

Example 15. Let A = k[T] and f = T2 ∈ k[T]. Then divk[T](f) ∈ Cart(k[T])
is the effective Cartier divisor corresponding to the ideal I = 〈T2〉 ⊂ k[T]. We
have V(I) = V(T) since rad(I) = 〈T〉, so p = 〈T〉 is the only prime with
nonzero multiplicity. At p, the DVR Ap = k[T]〈T〉 has uniformizer π = T and
Ip = 〈T2〉 = 〈π2〉, so the multiplicity is np = 2.

Example 16. Let A = k[X,Y] and f = XY ∈ k[X,Y]. Then div(f) is the effective
Cartier divisor corresponding to the ideal I = 〈XY〉 ⊂ k[X,Y]. In this case V(I) is
not integral but rather has two irreducible components: V(I) = V(X)∪V(Y), since
〈XY〉 = 〈X〉 ∩ 〈Y〉. Let’s compute the multiplicity at p = 〈X〉. The uniformizer of
Ap is X, since its maximal ideal is pp = (X)Ap. We also have Ip = (XY)Ap = (X)Ap
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(since Y is a unit in Ap), so we find that the multiplicity np is 1. By symmetry,
the multiplicity at q = 〈Y〉 is also 1.

Example 17. Let A = k[T] and f = T2/(T − 1) ∈ Frac(k[T]). Then div(f)
is the (non-effective!) Cartier divisor given by the A-submodule I of Frac(k[T])
generated by f . We can write it as the difference of two effective Cartier divisors:

div(f) = div(T2)− div(T− 1).

So it has multiplicity 2 at 〈T〉, −1 at 〈T− 1〉, and zero everywhere else.

12.5. From Cartier divisors to Weil divisors.

Construction 18. Let A be a regular ring. Define a homomorphism

Cart(A)→ Z1(A)

by sending (M,M ↪→ Frac(A)) to ∑
V(p)

np[V(p)],

where V(p) ⊂
∣∣Spec(A)

∣∣ ranges over integral subsets of codimension 1, and np is
the multiplicity of M at p.

Example 19. The Weil divisor associated to the Cartier divisor div(T2/(T− 1))
on k[T] is

2[V(T)]− [V(T− 1)] ∈ Z1(k[T]) = Z0(k[T]).

Thus, the Weil divisor encodes the fact that the rational function T2/(T− 1) has
a zero of order 2 at T = 0 and a pole of order 1 at T = 1.

Theorem 20. Let A be a regular ring. The canonical homomorphisms

Z1(A)→ Cart(A), Cart(A)→ Z1(A)

are inverse to each other.

Proof. Let V(p) ⊂
∣∣Spec(A)

∣∣ be an integral subset of codimension 1. The left-hand
map sends [V(p)] to the effective Cartier divisor (p, p ↪→ Frac(A)). Clearly, this
has multiplicity 1 at p and zero multiplicity elsewhere, so the right-hand map
sends it back to [V(p)]. This shows that one composite is the identity.

It will suffice to show that the right-hand map is injective. Let (M,M ↪→
Frac(A)) be a Cartier divisor and suppose that it goes to zero, i.e., that all the
multiplicities np are zero. Identify M with a sub-A-module of Frac(A). We’ll show
that M = A (which is the zero Cartier divisor), or equivalently Mm = Am for every
maximal ideal m.

Since M is invertible, Mm ⊂ Frac(A)m = Frac(A) is a principal ideal. If x = f/g
is a generator, then by choosing prime factorizations of f and g we may write
x = upe11 · · · penn for some unit u, primes pi, and integers en ∈ Z. Then M has
multiplicity ei at 〈pi〉. But since all the multiplicities are zero by assumption, we
deduce that x is a unit, hence Mm = Am. �
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12.6. The Cartier divisor class group.

Definition 21. Two Cartier divisors on A are linearly equivalent if their difference
is a principal Cartier divisor. We let CartCl(A) denote the quotient of Cart(A)
by the subgroup of principal Cartier divisors. This is called the Cartier divisor
class group.

Proposition 22. Let A be an integral domain. Then the forgetful map Cart(A)→
Pic(A) induces a canonical isomorphism

CartCl(A) ' Pic(A).

Proof. Follows from the exact sequence (Lecture §11.4)

Frac(A)×
divA−−→ Cart(A)� Pic(A)→ 0

as the image of divA is precisely the subgroup of principal Cartier divisors. �

Exercise 23. The isomorphism Cart(A)→ Z1(A) ' Zd−1(A), where d = dim(A),
sends the subgroup of principal Cartier divisors to the subgroup Rd−1(A) of
principal Weil divisors.

Corollary 24. Let A be a regular ring. Then there are canonical isomorphisms

Pic(A) ' CartCl(A) ' CH1(A).

We have finally achieved our goal of giving an explicit description of the group
CH1(A) ' CHd−1(A).
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