
Lecture 13
Algebraic geometry

In this lecture, we’ll explain how everything we’ve done so far can be interpreted
in the language of algebraic geometry. For simplicity, we’ll restrict our attention
to k-schemes over a field k.

13.1. Affine k-schemes.

Definition 1. We define affine n-space over k as the affine k-scheme

An
k = Spec(k[T1, . . . ,Tn])

for every n > 0.

Definition 2. Let X be a k-scheme. A regular function on X is a morphism of
k-schemes

f : X→ A1
k.

If X is affine, say X = Spec(A) for some k-algebra A, then a regular function on
X is the same data as that of a k-algebra morphism k[T] → A, or equivalently
that of an element a ∈ A (the image of T).

Remark 3. Let m : A1
k×A1

k → A1
k be the multiplication morphism, corresponding

to the k-algebra homomorphism

k[T]→ k[T1]⊗k k[T2] ' k[T1,T2]

which sends T 7→ T1T2. This induces a multiplication of regular functions
f : X→ A1

k and g : X→ A1
k,

f · g : X
(f,g)−−→ A1

k ×A1
k

m−→ A1
k,

where the first morphism is induced by the universal property of the product.
One defines addition of regular functions similarly, using the addition morphism
A1

k ×A1
k → A1

k. These operations turns the set of regular functions on X into
a ring (in fact a k-algebra), which we denote Γ(X,OX). We call it the ring of
regular functions or ring of functions on X.

Theorem 4. The assignments X 7→ Γ(X,OX) and A 7→ Spec(A) induce an
equivalence between the category of affine k-schemes and the opposite of the
category of k-algebras.

Proof. The main point is that if X = Spec(A), the ring of functions Γ(X,OX) is
canonically isomorphic to A as a k-algebra. �

Remark 5. If f : X→ S and g : Y → S are morphisms of k-schemes, there is a
fibred product X×S Y which fits into the cartesian square

X×S Y X

Y S.

f

g

1
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The ring of functions is given by the tensor product

Γ(X×
S

Y,OX×S Y) ' Γ(X,OX)⊗Γ(S,OS) Γ(Y,OY).

13.2. Zero loci.

Remark 6. Note that k-scheme morphisms Spec(k)→ An
k are in bijection with

k-algebra homomorphisms k[T1, . . . ,Tn] → k. The latter are in bijection with
n-tuples (x1, . . . , xn) ∈ k×n. Given such an n-tuple, we write

{(x1, . . . , xn)} : Spec(k)→ An
k

for the corresponding morphism. In case of the tuple (0, . . . , 0), we write simply
{0} : Spec(k) → An

k for the corresponding morphism (the “inclusion of the
origin”).

Construction 7. Let X be a k-scheme. Let f1, . . . , fn ∈ Γ(X,OX) be regular
functions on X. These are morphisms fi : X → A1

k which together define a
morphism f : X→ (A1

k)×n = An
k . The zero locus Z = Z(f1, . . . , fn) is defined by

the cartesian square

Z X

Spec(k) An
k

f

{0}

The ring of functions on Z is thus given by the tensor product

Γ(Z,OZ) = Γ(X,OX)⊗Γ(An
k ,OAn

k
) Γ(Spec(k),OSpec(k))

' Γ(X,OX)⊗k[T1,...,Tn] k

' Γ(X,OX)/〈f1, . . . , fn〉.

Definition 8. A morphism of affine k-schemes i : Z→ X is a closed immersion if
the induced map of rings of functions

Γ(X,OX)→ Γ(Z,OZ)

is surjective. In other words, if X = Spec(A) and Z = Spec(B), then the condition
is that A→ B is surjective.

Example 9. Let X be an affine k-scheme. Then for any collection of regular
functions f1, . . . , fn, the inclusion of the zero locus

Z(f1, . . . , fn)→ X

is a closed immersion. Moreover, every closed immersion i : Z→ X is of this form
(choose generators fi for the kernel of Γ(X,OX)→ Γ(Z,OZ)).



3

13.3. Algebraic k-varieties. The following definitions can be generalized to
non-affine schemes, but we’ll restrict to the affine case in this lecture for simplicity.

Definition 10. An algebraic k-scheme is a k-scheme of finite type. An affine
k-scheme X is algebraic iff there exists a cartesian square of k-schemes

X An
k

Spec(k) Am
k .

f

{0}

In other words, X is the zero locus of some regular functions f1, . . . , fm on some
ambient affine space. Equivalently, the ring of regular functions Γ(X,OX) is of
the form

Γ(X,OX) ' k[T1, . . . ,Tn]/〈f1, . . . , fm〉,
i.e., it is of finite type as a k-algebra.

Definition 11. An affine k-scheme X is reduced if the ring of regular functions
Γ(X,OX) is reduced (i.e., its only nilpotent element is zero). It is irreducible if
the reduction Γ(X,OX)red is an integral domain. It is integral if it is reduced and
irreducible, or equivalently Γ(X,OX) is an integral domain.

Definition 12. An affine algebraic k-variety is an integral algebraic affine k-
scheme. Equivalently, it is an affine k-scheme X whose ring of functions Γ(X,OX)
is an integral domain that is of finite type as a k-algebra.

13.4. Coherent sheaves.

Remark 13. Let X be a k-scheme. The ring of regular functions Γ(X,OX) can
be identified with the ring of global sections of the structure sheaf OX (which is
the reason for the notation). More generally, given any quasi-coherent OX-module
F on X, its global sections form a module

Γ(X,F)

over the ring Γ(X,OX). We will usually say “quasi-coherent sheaf” instead of
“quasi-coherent OX-module”.

Theorem 14. Let X be an affine k-scheme.

(i) The assignment F 7→ Γ(X,F) defines an equivalence from the category of
quasi-coherent sheaves on X to the category of modules over Γ(X,OX).

(ii) If X is moreover noetherian, then the equivalence in (i) restricts to an equiva-
lence from the category of coherent sheaves on X to the category of f.g. modules
over Γ(X,OX).

(iii) The equivalence in (i) restricts to an equivalence from the category of finite
locally free sheaves on X to the category of f.g. projective modules over Γ(X,OX).
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Remark 15. Let X be a k-scheme. If F is a perfect complex on X (roughly, a
chain complex of quasi-coherent sheaves which restricts to perfect complexes over
some open covering), then its derived global sections RΓ(X,F) form a perfect
complex over Γ(X,OX). If X is affine, there is an equivalence between the category
of perfect complexes on X and PerfΓ(X,OX).

Remark 16. Let f : X→ Y be a morphism of finite type k-schemes. Then there
is a pair of adjoint functors

f ∗ : Qcoh(Y)→ Qcoh(X), f∗ : Qcoh(X)→ Qcoh(Y).

If X and Y are affine, these are identified with extension and restriction of scalars
along Γ(Y,OY)→ Γ(X,OX), respectively. The inverse image functor f ∗ preserves
the subcategories of coherent and finite locally free sheaves. The direct image
functor f∗ preserves coherent sheaves if it is proper, and finite locally free sheaves
if it is finite and flat. If X and Y are affine, f : X→ Y is proper iff it is finite iff
Γ(X,OX) is f.g. as a Γ(Y,OY)-module.

Example 17. Any closed immersion i : Z→ X is finite (hence a fortiori proper).
In particular, the direct image of the structure sheaf is a coherent sheaf i∗(OZ) on
X. It corresponds to the Γ(X,OX)-module

Γ(X, i∗(OZ)) ' Γ(Z,OZ).

For example, for i : Spec(A/I) → Spec(A), i∗(OZ) is the coherent sheaf corre-
sponding to A/I viewed as an A-module. Sometimes we may abuse notation and
write simply OZ instead of i∗(OZ).

13.5. K-theory.

Construction 18. Let X be a k-scheme. Its algebraic K-theory K0(X) is de-
fined as the abelian group freely generated by quasi-isomorphism classes of per-
fect complexes, modulo relations coming from exact triangles. By construction,
K0(X) = K0(PerfΓ(X,OX)) ' K0(Γ(X,OX)). If X is noetherian, then the alge-
braic G-theory G0(X) is constructed as the abelian group freely generated by iso.
classes of coherent sheaves on X, modulo relations coming from exact sequences
of coherent sheaves.

Recall that K0(PerfA) ' K0(A) for any ring A. This generalizes as follows.

Theorem 19. Let X be a quasi-projective k-scheme (e.g. affine schemes are
quasi-projective). Then K0(X) is canonically isomorphic to the group completion
of the monoid of iso. classes of locally free sheaves on X.

Remark 20. Let f : X→ Y be a morphism of affine algebraic k-schemes. The
functorialities on locally free sheaves induce an inverse image homomorphism
f ∗ : K0(Y)→ K0(X) and, if f is finite and of finite Tor-amplitude (e.g. finite and
flat), a direct image homomorphism f∗ : K0(X)→ K0(Y). Similarly on G-theory
we get an inverse image f ∗ : G0(Y)→ G0(X) if f is of finite Tor-amplitude (e.g.
flat), and a direct image f∗ : G0(X)→ G0(Y) if f is finite. These satisfy the base
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change and projection formulas we proved in Lecture 6. For example, if there is a
cartesian square of affine algebraic k-schemes

X′ Y′

X Y

g

q p

f

with p finite and of finite Tor-amplitude, then there is a base change formula

f ∗p∗ = q∗g
∗ : K0(Y′)→ K0(X).

Definition 21. A k-scheme X is called regular if every coherent sheaf on X is
quasi-isomorphic to a perfect complex. It is smooth over k iff X×Spec(k) Spec(k)
is regular.

Theorem 22. If X is a regular k-scheme, there is a canonical isomorphism

K0(X)→ G0(X).

In particular if X is smooth over k, then this holds. This is a K-theoretic
analogue of Poincaré duality for singular co/homology of smooth manifolds.

Theorem 23. Consider the flat morphism f : An
k → Spec(k). For every n > 0,

inverse image induces an isomorphism

f ∗ : G0(Spec(k))→ G0(An
k).

More generally, for any noetherian k-scheme X, inverse image along fX : X×An
k →

X induces an isomorphism

f ∗X : G0(X)→ G0(X×An
k).

In the affine case, this is a restatement of Sheet 10, Exercise 1. If X is smooth
over k (or just regular), then the same holds for K-theory. This property is called
A1-homotopy invariance and is analogous to homotopy invariance for singular
cohomology of smooth manifolds (where the affine line A1

k is replaced by the real
line).

13.6. Chow groups.

Construction 24. Let X be a k-scheme.

(i) We let Zn(X) be the free abelian group on integral closed subschemes of dimension
n.

(ii) Given an integral closed subscheme Z ⊂ X of dimension n+1 and a nonzero regular
function f ∈ Γ(Z,OZ), consider the zero locus W := Z(f), which is equipped with
a closed immersion i : W→ X. We define the principal divisor of f as the n-cycle
associated to the coherent sheaf i∗(OW):

divZ(f) = [i∗(OW)]n ∈ Zn(X).

Here the construction [−]n is the n-cycle associated to a coherent sheaf, defined
just like the n-cycle associated to a module (§9.3).
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(iii) As Z and f vary, the subgroup of Zn(X) generated by the classes divZ(f) is denoted
Rn(X). Elements of Rn(X) are the n-cycles that are rationally equivalent to zero.

(iv) The Chow groups of X, denoted CHn(X), are the quotients Zn(X)/Rn(X), for each
n > 0. We set CHn(X) = 0 for n < 0.

Remark 25. Let f : X → Y be a morphism of algebraic k-schemes. If f
is flat of relative dimension d, there are inverse image homomorphisms f ∗ :
CHn(Y) → CHn+d(X). If f is proper, there are direct image homomorphisms
f∗ : CHn(X)→ CHn(Y).

Remark 26. If X is a smooth algebraic k-scheme, then we similarly define Zn(X),
Rn(X), and CHn(X), graded by codimension, so that Zn(X) = Zd−n(X) and
CHn(X) ' CHd−n(X) if X is of pure dimension d. This way we impose “Poincaré
duality” for Chow co/homology.

Theorem 27. Let X be an algebraic k-scheme. Then for every integer n > 0,
inverse image along the flat morphism f : X×An

k → X induces isomorphisms

f ∗ : CHm(X)→ CHm+n(X×An
k)

for all m ∈ Z, and in particular CH∗(X) ' CH∗(X×An
k).

Remark 28. Let X be a smooth affine algebraic k-scheme. Two integral closed
subschemes Y and Z intersect properly or without excess if its irreducible compo-
nents are all of dimension 6 dim(Y)+dim(Z)−dim(X). We have seen that there is
an intersection product turning CH∗(X) into a graded ring, which is computed by
Serre’s Tor formula in case of proper intersections. This is true also for non-affine
schemes, at least under the very mild hypothesis of quasi-projectivity.

Remark 29. An alternative description of rational equivalence is as follows. Let
X be an algebraic k-variety. Let Z ⊂ X×A1

k be an integral closed subscheme of
dimension n + 1. Form the diagram of cartesian squares

Z0 Z Z1

X× {0} X×A1
k X× {1}

Assume that Z intersects both X× {0} and X× {1} properly (inside X×A1
k), so

that Z0 and Z1 are of dimension 6 n. Identifying X× {0} ' X ' X× {1}, one
may think of Z0 and Z1 as closed subschemes of X. One can show then that the
two n-cycles [OZ0 ]n and [OZ1 ]n in Zn(X) are rationally equivalent. Moreover, the
whole subgroup Rn(X) ⊂ Zn(X) consists of cycles of the following more general
form: for any (n + 1)-cycle

∑
i ni[Zi] ∈ Zn+1(X×A1

k) for which each Zi intersects
both X× {0} and X× {1} properly,∑

i

ni

(
[OZ0

i
]n − [OZ1

i
]n

)
∈ Rn(X).

Roughly speaking, we may think of rational equivalence as a relation which
identifies two algebraic cycles if there is an A1-family of algebraic cycles, i.e. a
family of cycles parametrized by the affine line, which deforms one to the other.
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