
Lecture 14
Comparing K-theory and the Chow groups

14.1. From algebraic cycles to K-theory.

Construction 1. Let X be a smooth k-scheme. Recall that for a closed subscheme
Y, the structure sheaf OY defines a coherent sheaf on X. Therefore we have a
canonical homomorphism

γX : Z∗(X)→ G0(X)

given by [Y] 7→ [OY].

Remark 2. Recall the coniveau filtration on G0(X): for each p, G0(X)>p is the
subgroup generated by classes [F] such that codim(Supp(F)) > p. Note that γX

sends Zp(X) to G0(X)>p. In particular, there is an induced homomorphism

γX : Zp(X)→ G0(X)>p.

Remark 3. We proved (§9.1) that the restriction

γX :
d⊕
c=p

Zc(X)→ G0(X)>p

is surjective, where d = dim(X). This induces a surjection

γX : Zp(X)→ G0(X)>p/G0(X)>p+1

for each p.

Proposition 4. Let X be a smooth k-scheme of dimension d. Let F be a coherent
sheaf on X whose support is of codimension > p. Then we have∑

p6i6d

γ([F]d−i) = [F]

in G0(X)>p/G0(X)>p+1. In particular if Supp(F) is of pure codimension p, then

γ([F]d−p) = [F]

in G0(X)>p/G0(X)>p+1.

Proof. The second part of the claim was proven (in the case where X is affine) in
Exercise 4 on Sheet 12. A straightforward adaption of that proof also gives our
more general claim. �
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14.2. Intersection products. Let X be a smooth k-scheme. Since smooth
k-schemes are regular, we have a canonical isomorphism G0(X) ' K0(X), and in
particular an intersection product coming from derived tensor product. We want
to compare this with the intersection product in Z∗(X).

We first consider the case of transverse intersection.

Definition 5. Let i1 : Z1 → X and i2 : Z2 → X be closed immersions of k-schemes.
We say that Z1 and Z2 intersect transversely in X, or more precisely that the
square

Z1×X Z2 Z2

Z1 X

i2

i1

is Tor-independent, if there exists a covering X =
⋃
α Uα by affine Zariski opens

Uα such that for every α, the induced square of commutative rings

Γ(U,OU) Γ(Z1 ∩ U,OZ1∩U)

Γ(Z2 ∩ U,OZ2∩U) Γ(Z1 ∩ U,OZ1∩U)⊗Γ(U,OU) Γ(Z2 ∩ U,OZ2∩U)

is Tor-independent.

Proposition 6. Suppose that Y and Z intersect transversally in X. Then

γ[Y] ∪ γ[Z] = γ([Y] ∪ [Z])

in G0(X).

Proof. Exercise. Use the Tor formula to compute the right-hand side, and note
that all the higher Tors vanish by the transversity assumption. �

In the more general case of proper intersection, we don’t typically have this
equality anymore. However, it still holds modulo the coniveau filtration.

Theorem 7. Let X be a smooth quasi-projective k-scheme. Let Y and Z be integral
closed subschemes. Suppose that Y and Z intersect properly, i.e., without excess
component (§13.6), and are of codimension p and q, respectively. Then

γ[Y] ∪ γ[Z] = γ([Y] ∪ [Z])

holds modulo the coniveau filtration, i.e., in the quotient G0(X)>p+q/G0(X)>p+q+1.

Proof. We only consider the affine case X = Spec(A) for simplicity. We can write
Y = Spec(A/p) and Z = Spec(A/q) for prime ideals p and q.
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The left-hand side is

γ[Y] ∪ γ[Z] = [A/p] ∪ [A/q]

= [A/p⊗L
A A/q]

=
∑
i

(−1)i[Hi(A/p⊗L
A A/q)]

=
∑
i

(−1)i[TorA
i (A/p,A/q)].

Let’s compute the right-hand side. Since we are in the case of proper intersection,
the product [Y] ∪ [Z] ∈ Zp+q(X) is defined by the Tor formula (§10.6):

[Y] ∪ [Z] =
∑
i

(−1)i[TorA
i (A/p,A/q)]d−p−q.

If each TorA
i (A/p,A/q) had support of pure codimension p+ q, then we would be

done by the proposition in §14.1. But we only know this for i = 0: TorA
0 (A/p,A/q) =

A/(p + q) has support V(p) ∩ V(q) of pure codimension p+ q by the assumption
that the intersection is proper. We also know that A/p ⊗L

A A/q has support
contained inside V(p) ∩ V(q) by §8.5, so in particular we at least have

codim(Supp(TorA
i (A/p,A/q))) > p+ q

for all i. It follows from §14.1 that the difference between the right- and left-hand
sides is ∑

p+q<c6d

∑
i>0

(−1)iγ[TorA
i (A/p,A/q)]d−c.

But each [TorA
i (A/p,A/q)]d−c lives in Zc(X) and is sent by γ to G0(X)>c ⊆

G0(X)>p+q+1 (since c > p + q). So, the difference between the two sides of the
formula lives in G0(X)>p+q+1. �

14.3. Flat inverse image.

Proposition 8. Let f : X→ Y be a flat morphism of k-schemes. Then the square

Zp(Y) G0(Y)>p

Zp(X) G0(X)>p

γY

f∗ f∗

γX

commutes. That is, f ∗(γY[Z]) = γX(f ∗[Z]) for every integral closed subscheme
Z ⊂ Y.

Proof. Exercise. Similar to the analogue for intersection products (§14.2). Since
the morphism is flat, we don’t need to pass to the quotient by G0(Y)>p+1. �
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14.4. Rational equivalence. We would now like to understand whether the
homomorphism

γX : Z∗(X)→ G0(X)

respects rational equivalence, i.e., whether it descends to a homomorphism from
the Chow group CH∗(X).

Recall the description of rational equivalence from last lecture (§13.6).

Construction 9. Let Z be an integral closed subscheme of X×A1
k of codimension

p− 1. We set

∂0[Z] := [Z] ∪ [X× {0}] ∈ Zp(X).

and similarly ∂1[Z] = [Z] ∪ [X× {1}]. We extend ∂0 and ∂1 to cycles by linearity.
Then CHp(X) is the cokernel

Zp−1(X×A1
k)

∂0−∂1−−−→ Zp(X)� CHp(X)→ 0.

Remark 10. Let [Z] ∈ Zp−1(X × A1
k). Our question amounts to whether the

equality

γ(∂0[Z]) = γ(∂1[Z])

holds in G0(X).

Let’s note the following consequence of A1-invariance for G-theory:

Proposition 11. Let X be a noetherian k-scheme. Let i0 and i1 be the inclusions
of the closed subschemes X × {0} and X × {1} in X × A1

k. Then we have the
equality of homomorphisms

i∗0 = i∗1 : G0(X×A1)→ G0(X).

Proof. Let p : X×A1
k → X be the projection and consider the diagram

G0(X×A1) G0(X)

G0(X)

p∗

where the two horizontal arrows are i∗0 and i∗1. By A1-homotopy invariance, the
vertical arrow p∗ is an isomorphism. Therefore, it will suffice to show i∗0p

∗ = i∗1p
∗

(i.e., that the diagonal composites are the same). Since p ◦ i0 = id = p ◦ i1, both
of these maps are the identity. �

Remark 12. Another formulation is

α ∪ [OX×{0}] = α ∪ [OX×{1}] ∈ G0(X×A1
k)

for every α ∈ G0(X×A1
k). After all, i∗0[F] = [F ⊗L

OX
OX×{0}] = [F] ∪ [OX×{0}] by

definition, and similarly for i1.
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Theorem 13. The homomorphism

γX : Zp(X)→ G0(X)>p

sends Rp(X) to G0(X)>p+1, and induces a homomorphism

γX : CHp(X)→ G0(X)>p/G0(X)>p+1

for every p.

Proof. As discussed, we need to show

γ(∂0[Z]) = γ(∂1[Z])

whenever Z ⊂ X×A1 is an integral closed subscheme of codimension p− 1. In
other words, we want

γ([Z] ∪ [X× {0}]) = γ([Z] ∪ [X× {1}])

modulo the coniveau filtration. But by §14.2 we have

γ([Z] ∪ [X× {0}]) = γ[Z] ∪ γ[X× {0}] = [OZ] ∪ [OX×{0}]

and similarly for the right-hand side. Hence the claim follows from the equality

[OZ] ∪ [OX×{0}] = [OZ] ∪ [OX×{1}]

which is the previous remark with α = [OZ]. �

14.5. Multiplicity of the coniveau filtration. The following theorem was
proven by Grothendieck using Chow’s moving lemma:

Theorem 14. Let X be a smooth quasi-projective k-scheme. Then the coniveau
filtration on G0(X) is multiplicative, i.e.,

x ∈ G0(X)>p, y ∈ G0(X)>q =⇒ x ∪ y ∈ G0(X)>p+q.

Remark 15. Recall from §8.5 that

Supp(F ⊗L G) ⊆ Supp(F) ∩ Supp(G)

for perfect complexes F and G. However, since Supp(F) and Supp(G) need not
intersect properly, their intersection may have excess components. So [F] ∈
G0(X)>p and [G] ∈ G0(X)>q does not obviously imply that [F] ∪ [G] ∈ G0(X)>p+q.
One has to use Chow’s moving lemma to be able to reduce to the case of proper
intersection.

14.6. The comparison.

Definition 16. Denote the graded pieces of the coniveau filtration by

Grp G0(X) = G0(X)>p/G0(X)>p+1

for every p.
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Remark 17. As we saw in §14.1, we have surjections

γX : Zp(X)→ Grp G0(X).

for all p. In §14.4, we saw that these induce surjections

γX : CHp(X)→ Grp G0(X).

These are compatible with flat inverse images (§14.3). By §14.5, the graded
abelian group

Gr∗G0(X) :=
⊕
p

Grp G0(X)

inherits a ring structure from G0(X). The induced map

γX : CH∗(X)→ Gr∗G0(X)

is a homomorphism of graded rings (essentially follows from §14.2).

In particular we see that the graded ring Gr∗G0(X) is a quotient of CH∗(X)
by some subgroup. It turns out that this subgroup is always torsion (but can be
nonzero):

Theorem 18. Let X be a smooth quasi-projective k-scheme. The homomorphism
γX induces an isomorphism

CH∗(X)⊗Q→ Gr∗G0(X)⊗Q.

There is a “Chern character” map from K-theory to Chow. The Grothendieck–
Riemann–Roch theorem implies that it becomes an inverse after tensoring with
Q.
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