Lecture 9 The coniveau filtration and algebraic cycles

From now on, all rings will be implicitly assumed noetherian.

9.1. The coniveau filtration.

Construction 1. Let A be a (noetherian) ring. For each $n \in \mathbf{N}$, let $G_0(A)^{\geq n}$ denote the subgroup of $G_0(A)$ generated by classes [M] where $M \in Mod_A^{fg}$ has $codim(Supp_A(M)) \geq n$.

Proposition 2. The subgroup $G_0(A)^{\geq n}$ is generated by classes $[A/\mathfrak{p}]$, where \mathfrak{p} is a prime ideal such that $V(\mathfrak{p})$ is of codimension $\geq n$.

Proof. Let $M \in Mod_A^{fg}$ such that $codim(Supp_A(M)) \ge n$. Let $0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$ be a filtration whose successive quotients are of the form A/\mathfrak{p}_i , with $\mathfrak{p}_i \subset A$ prime ideals. Then we have seen that $Supp_A(M) = \bigcup_i V(\mathfrak{p}_i)$. Thus

$$\operatorname{codim}(V(\mathfrak{p}_i)) \ge \operatorname{codim}(\operatorname{Supp}_A(M)) \ge n.$$

As we have

$$[\mathbf{M}] = \sum_{i} [\mathbf{M}_{i}/\mathbf{M}_{i-1}] = \sum_{i} [\mathbf{A}/\mathbf{p}_{i}]$$

in $G_0(A)$, the claim follows.

Proposition 3. Let A be an irreducible ring. Then we have

$$\operatorname{G}_0(A)^{\geq 0} / \operatorname{G}_0(A)^{\geq 1} \simeq \mathbf{Z}.$$

Proof. Note that $G_0(A)^{\geq 0} = G_0(A)$. To define a map from left to right we proceed as usual: given $M \in Mod_A^{fg}$, choose a filtration where the successive quotients are of the form A/\mathfrak{p} with \mathfrak{p} prime. On classes $[A/\mathfrak{p}]$, the map is defined as follows. If \mathfrak{p} is the (unique) minimal prime ideal, then we send it to 1. Otherwise it is of codimension ≥ 1 so we are forced to send it to 0. Arguing with the butterfly lemma again we see that this construction is independent of the choice of filtration and gives a well-defined map from left to right. An inverse map is given by sending $1 \in \mathbb{Z}$ to $[A/\mathfrak{p}]$, where \mathfrak{p} is the minimal prime ideal. \Box

Remark 4. If A is not irreducible, then a straightforward adaptation of this argument shows that the quotient $G_0(A)^{\geq 0}/G_0(A)^{\geq 1}$ is isomorphic to a direct sum of copies of **Z** indexed by the irreducible components.

9.2. Multiplicities of modules.

Notation 5. Let A be a ring and $x \in |\text{Spec}(A)|$ a point. We let $\mathfrak{p}(x)$ denote the corresponding prime ideal, i.e.,

$$\mathfrak{p}(x) := \operatorname{Ker}(\mathbf{A} \to \kappa(x)).$$

Lemma 6. Let A be a ring and M a f.g. A-module. Let η be a generic point of $\operatorname{Supp}_{A}(M)$ and let $\mathfrak{p}(\eta)$. Then the $A_{\mathfrak{p}(\eta)}$ -module $M_{\mathfrak{p}(\eta)}$ is of finite length.

Proof. Let $\mathfrak{p} = \mathfrak{p}(\eta)$. For every non-maximal prime ideal $\mathfrak{q} \subset A_{\mathfrak{p}}$, we have $(M_{\mathfrak{p}})_{\mathfrak{q}} = 0$. By Sheet 2, Exercise 4 it follows then that $M_{\mathfrak{p}}$ is of finite length. \Box

Definition 7. Let A be a ring and M a f.g. A-module. Let η be a generic point of Supp_A(M). The *multiplicity* of M at η is the integer

$$\operatorname{mult}_{\mathcal{A},\eta}(\mathcal{M}) := \ell_{\mathcal{A}_{\mathfrak{p}(\eta)}}(\mathcal{M}_{\mathfrak{p}(\eta)}).$$

Remark 8. Choose any filtration of M where the successive quotients are of the form A/\mathfrak{p} with \mathfrak{p} prime. The number of times the prime ideal $\mathfrak{p}(\eta)$ appears in this way is exactly the multiplicity $\operatorname{mult}_{A,\eta}(M)$.

9.3. Algebraic cycles. Algebraic cycles are a convenient way to record multiplicities.

Definition 9. Let A be a ring. The *dimension* of A is the maximal length n of a chain

$$\emptyset \subsetneq \mathbf{Y}_0 \subsetneq \mathbf{Y}_1 \subsetneq \cdots \subsetneq \mathbf{Y}_n \subseteq \left| \operatorname{Spec}(\mathbf{A}) \right|$$

of irreducible closed subsets of $|\operatorname{Spec}(A)|$. (The zero ring is of dimension -1 by convention.) For a closed subset $Y = V(I) \subseteq |\operatorname{Spec}(A)|$, the dimension of Y is the dimension of A/I. (This is well-defined since if V(I) = V(J) then $|\operatorname{Spec}(A/I)| \simeq |\operatorname{Spec}(A/J)|$.) We say Y is of *pure dimension d* if all its irreducible components are of dimension *d*.

Example 10. Any field k is of dimension 0. More generally, any nonzero artinian ring is of dimension 0.

Example 11. For a field k, the ring $k[T_1, \ldots, T_n]$ is of dimension n.

Definition 12. Let A be a ring. An algebraic cycle of dimension k on A (or k-cycle for short) is a formal linear combination

$$\alpha = \sum_{\mathfrak{p}} n_{\mathfrak{p}} \cdot [\mathcal{V}(\mathfrak{p})]$$

where \mathfrak{p} ranges over a set of prime ideals of A, such that each $V(\mathfrak{p})$ is a kdimensional subset of |Spec(A)|, and $n_{\mathfrak{p}}$ are integers. For each \mathfrak{p} , the integer $n_{\mathfrak{p}}$ is called the *multiplicity* of the cycle α at \mathfrak{p} . We let $Z_k(A)$ denote the set of algebraic cycles of dimension k, which is thus a free abelian group. By $Z_*(A)$ we denote the graded abelian group $\bigoplus_{k\geq 0} Z_k(A)$.

Construction 13 (Cycle associated to a module). Let M be an A-module with support of dimension d. For any integer $k \leq d$, we define a k-cycle $[M]_k \in Z_k(A)$ as follows. Let η_{α} be the generic points of $\text{Supp}_A(M)$ for which the integral subset $V(\mathfrak{p}(\eta_{\alpha}))$ is of dimension k. Set

$$[\mathbf{M}]_k := \sum_{\alpha} \operatorname{mult}_{\mathbf{A},\eta_{\alpha}}(\mathbf{M}) \cdot [\mathbf{V}(\mathfrak{p}(\eta_{\alpha}))].$$

If k > d, we set $[M]_k = 0$.

Remark 14. The noetherian hypothesis implies that there are only finitely many generic points η_{α} . In particular, the sum appearing in the previous construction is finite.

Example 15. Let \mathfrak{p} be a prime ideal and take $M = A/\mathfrak{p}$. Let d be the dimension of the support $\operatorname{Supp}_A(M) = V(\mathfrak{p})$. Then the associated d-cycle $[A/\mathfrak{p}]_d$ is the same as the cycle $[V(\mathfrak{p})] \in Z_d(A)$. Indeed we have

$$\operatorname{nult}_{\mathcal{A},\eta}(\mathcal{A}/\mathfrak{p}) = \ell_{\mathcal{A}_{\mathfrak{p}}}((\mathcal{A}/\mathfrak{p})_{\mathfrak{p}}) = \ell_{\mathcal{A}_{\mathfrak{p}}}(\kappa(\mathfrak{p})) = 1,$$

where $\eta = [A \to \kappa(\mathfrak{p})]$ is the generic point of $V(\mathfrak{p})$.

9.4. Rational equivalence.

Exercise 16. Let A be an integral domain of dimension d. For any nonzero element $f \in A$, the quotient ring $A/\langle f \rangle$ is of dimension d-1.

Construction 17. Let A be a ring and $V(\mathfrak{p})$ a (k + 1)-dimensional integral subset of |Spec(A)| (where $k \ge 0$). If $f \in A$ is an element such that $f \notin \mathfrak{p}$, then $(A/\mathfrak{p})/f(A/\mathfrak{p}) \simeq A/(\mathfrak{p} + \langle f \rangle)$ is of dimension k. Regarding $(A/\mathfrak{p})/f(A/\mathfrak{p})$ as an A-module, there is an associated k-cycle. This is the *principal divisor* defined by f in $V(\mathfrak{p})$:

$$\operatorname{div}_{\mathcal{V}(\mathfrak{p})}(f) := [(\mathcal{A}/\mathfrak{p})/f(\mathcal{A}/\mathfrak{p})]_k \in \mathcal{Z}_k(\mathcal{A}).$$

Definition 18. Let $R_k(A)$ denote the subgroup of $Z_k(A)$ generated by elements of the form $\operatorname{div}_{V(\mathfrak{p})}(f)$ for all (k + 1)-dimensional integral subsets $V(\mathfrak{p})$ and elements $f \notin \mathfrak{p}$. We say that two k-cycles $\alpha, \beta \in Z_k(A)$ are rationally equivalent if their difference belongs to $R_k(A)$.

Construction 19. The *Chow group* of k-cycles on A is the quotient

$$CH_k(A) := Z_k(A) / R_k(A),$$

for every integer $k \ge 0$.

9.5. Direct images.

Construction 20. Let $\phi : A \to A/I$ be a surjective ring homomorphism. Any closed integral subset $V_{A/I}(\mathfrak{p}) \subseteq |\operatorname{Spec}(A/I)|$ can be regarded, via the inclusion $|\operatorname{Spec}(A/I)| \simeq V_A(I) \subseteq |\operatorname{Spec}(A)|$, as a subset of $|\operatorname{Spec}(A)|$. As a subset of $|\operatorname{Spec}(A)|$, it is the closed integral subset defined by the prime ideal $\mathfrak{q} = \phi^{-1}(\mathfrak{p})$. Thus there is for each $k \ge 0$ a group homomorphism

$$\phi_* : \mathbf{Z}_k(\mathbf{A}/\mathbf{I}) \to \mathbf{Z}_k(\mathbf{A})$$

given by $[V_{A/I}(\mathfrak{p})] \mapsto [V_A(\phi^{-1}(\mathfrak{p}))].$

Lemma 21. With $\phi : A \rightarrow A/I$ as above, we have

$$\phi_*(\mathbf{R}_k(\mathbf{A}/\mathbf{I})) \subseteq \mathbf{R}_k(\mathbf{A})$$

for every k.

Proof. It suffices to show that for every closed integral subset $V(\mathfrak{p})$ of dimension k+1 and every element $f \in A/I$ not contained in \mathfrak{p} , the cycle $\phi_*(\operatorname{div}_{V(\mathfrak{p})}(f)) \in Z_k(A)$ is rationally equivalent to 0. The contraction $\mathfrak{q} = \phi^{-1}(\mathfrak{p})$ is a prime ideal of

k+1 and every element $f \in A/I$ not contained in \mathfrak{p} , the cycle $\phi_*(\operatorname{div}_{V(\mathfrak{p})}(f)) \in Z_k(A)$ is rationally equivalent to 0. The contraction $\mathfrak{q} = \phi^{-1}(\mathfrak{p})$ is a prime ideal of A. If $\tilde{f} \in A$ is an element lifting f, then $\tilde{f} \notin \mathfrak{q}$ since $f \notin \mathfrak{p}$. Then since $(A/\mathfrak{q})/\tilde{f}(A/\mathfrak{q}) \simeq ((A/I)/\mathfrak{p})/f((A/I)/\mathfrak{p})$, it follows from the definitions that

$$\phi_*(\operatorname{div}_{\mathcal{V}(\mathfrak{p})}(f)) = \operatorname{div}_{\mathcal{V}(\mathfrak{q})}(\tilde{f}),$$

whence the claim.

Construction 22. Let $\phi : A \twoheadrightarrow A/I$ be a surjective ring homomorphism. By the lemma, the homomorphism $\phi_* : Z_k(A/I) \to Z_k(A)$ descends to a canonical homomorphism

$$\phi_* : \operatorname{CH}_k(A/I) \to \operatorname{CH}_k(A)$$

for every k. We call this the homomorphism of *direct image* along ϕ .

9.6. Inverse images.

Definition 23. Let $\phi : A \to B$ be a flat ring homomorphism. We say that ϕ is of relative dimension $d \ge 0$ if, for every closed integral subset $V(\mathfrak{p}) \subseteq |Spec(A)|$ of dimension n, the closed subset $V(\mathfrak{p}B) \subseteq |Spec(B)|$ is of pure dimension n + d.

Remark 24. Note that $\phi : A \to B$ induces a canonical map

 $f: |\operatorname{Spec}(B)| \to |\operatorname{Spec}(A)|$

sending a point $x = [B \to \kappa]$ to $f(x) = [A \to B \to \kappa]$. For a closed integral subset $V(\mathfrak{p}) \subseteq |\text{Spec}(A)|$ we have $f^{-1}(V(\mathfrak{p})) = V(\mathfrak{p}B) \subseteq |\text{Spec}(B)|$. Thus we can interpret the previous definition in terms of the fibres of the morphism f.

Example 25. For any element $f \in A$, the localization homomorphism $\phi : A \to A[f^{-1}]$ is flat of relative dimension 0.

Example 26. For every ring A and every $n \ge 0$, the homomorphism $A \to A[T_1, \ldots, T_n]$ is flat of relative dimension n.

Construction 27. Let $\phi : A \to B$ be a flat ring homomorphism of relative dimension *d*. Then there are canonical homomorphisms

$$\phi^* : \mathbf{Z}_k(\mathbf{A}) \to \mathbf{Z}_{k+d}(\mathbf{B})$$

sending $[V(\mathfrak{p})] \mapsto [B/\mathfrak{p}B]_{k+d}$.

Theorem 28. Let $\phi : A \to B$ be as above. Then we have

$$\phi^*(\mathbf{R}_k(\mathbf{A})) \subseteq \mathbf{R}_{k+d}(\mathbf{B})$$

for every k.

Lemma 29. Let A be a ring and M a f.g. A-module whose support is of dimension $\leq k + 1$. Denote by Λ the set of irreducible components $V(\mathfrak{p}) \subseteq \text{Supp}_A(M)$ of

dimension k + 1, and let $f \in A$ be an element with $f \notin \mathfrak{p}$ for every $V(\mathfrak{p}) \in \Lambda$. Then we have

$$[\mathbf{M}/f\mathbf{M}]_{k} - [f\mathbf{M}]_{k} = \sum_{\mathbf{V}(\mathbf{p}) \in \Lambda} \ell_{\mathbf{A}_{\mathbf{p}}}(\mathbf{M}_{\mathbf{p}}) \operatorname{div}_{\mathbf{V}(\mathbf{p})}(f)$$

in $Z_k(A)$, where ${}_fM \subseteq M$ is the submodule of f-torsion elements. In particular if f is a non-zero-divisor on M, then $[M/fM]_k \in Z_k(A)$ is rationally equivalent to zero.

Proof. Note that $f \notin \mathfrak{p}$ implies that M/fM and $_fM$ both have support of dimension $\leq k$.

Assume first that $M = A/\mathfrak{q}$ where \mathfrak{q} is a prime ideal. If its support $V(\mathfrak{q})$ is (k+1)-dimensional, then it has only one irreducible component of dimension k+1 (namely, $V(\mathfrak{q})$ itself). The assumption is then that $f \notin \mathfrak{q}$, so in particular the image of f in the integral domain A/\mathfrak{q} is a non-zero-divisor and ${}_{f}M = 0$. Thus the left-hand side is $[(A/\mathfrak{q})/f(A/\mathfrak{q})]_{k}$. Since $M_{\mathfrak{q}} = A_{\mathfrak{q}}/\mathfrak{q}A_{\mathfrak{q}} = \kappa(\mathfrak{q})$ is of length 1, the right-hand side is $\operatorname{div}_{V(\mathfrak{q})}(f)$. Hence the desired equality holds by definition.

Otherwise, $V(\mathfrak{q})$ is of dimension $\leq k$. In that case Λ is empty and the right-hand side vanishes trivially. If $f \in \mathfrak{q}$, then $M/fM = (A/\mathfrak{q})/f(A/\mathfrak{q}) = A/\mathfrak{q}$ and similarly ${}_{f}M = {}_{f}(A/\mathfrak{q}) = A/\mathfrak{q}$, so the left-hand side also vanishes. If $f \notin \mathfrak{q}$, then since $V(\mathfrak{q})$ is of dimension $\leq k$, both M/fM and ${}_{f}M$ have supports of dimension $\leq k - 1$, hence again the left-hand side vanishes.

This shows the case where $M = A/\mathfrak{q}$. In general, one reduces to this case as follows. Fix an element $f \in A$ and say a f.g. A-module M is f-good if its support is of dimension $\leq k + 1$ and $f \notin \mathfrak{p}$ for every prime \mathfrak{p} corresponding to an (k + 1)-dimensional irreducible component of $\operatorname{Supp}_A(M)$. One shows that both sides of the formula are additive in short exact sequences of f-good modules (details omitted). Then the claim follows for any f-good M by choosing a filtration of M whose successive quotients are of the form A/\mathfrak{q} with \mathfrak{q} prime. \Box

Proof of Theorem. It suffices to show that, for every (k + 1)-dimensional $V(\mathfrak{p}) \subseteq |\text{Spec}(A)|$, we have

$$\phi^*(\operatorname{div}_{\mathcal{V}(\mathfrak{p})}(f)) \in \mathcal{R}_{k+d}(\mathcal{B}).$$

By definition, $\operatorname{div}_{V(\mathfrak{p})}(f) = [M]_k$ where $M = (A/\mathfrak{p})/f(A/\mathfrak{p})$. We first show that $\phi^*(\operatorname{div}_{V(\mathfrak{p})}(f)) = [N]_{k+d}$, where $N = (B/\mathfrak{p}B)/f(B/\mathfrak{p}B)$. Choose a filtration of M where the successive quotients are A/\mathfrak{q}_i for prime ideals $\mathfrak{q}_i \subset A$. Then $[M]_n = \sum [V(\mathfrak{q}_i)]$ where the sum is taken over *i* such that $V(\mathfrak{q}_i)$ is *n*-dimensional. Tensoring with the flat A-module B produces a filtration of N where the successive quotients are $B/\mathfrak{q}_i B$. By definition, $\phi^*[V(\mathfrak{q}_i)] = [B/\mathfrak{q}_i B]_{k+d}$ for each *i*. When $V(\mathfrak{q}_i)$ is of dimension < k then the irreducible components of $V(\mathfrak{q}_i B)$ have dimension < k + d (since ϕ is flat of relative dimension *d*). Therefore we get

$$[\mathbf{N}]_{k+d} = \sum [\mathbf{B}/\mathbf{q}_i \mathbf{B}]_{k+d} = \sum \phi^* [\mathbf{V}(\mathbf{q}_i)] = \phi^* [\mathbf{M}]_k$$

where the sums are taken over i such that $V(q_i)$ is k-dimensional.

Since $V(\mathfrak{p})$ is of dimension k+1 and ϕ is flat of relative dimension d, $V(\mathfrak{p}B)$ is of pure dimension k+d+1. Since A/\mathfrak{p} is an integral domain, f is a non-zero-divisor (as it is nonzero). Since $\phi : A \to B$ is flat, its image in B is still a non-zero-divisor (e.g., $\operatorname{Kosz}_B(f) \simeq \operatorname{Kosz}_A(f) \otimes_A B$ is still acyclic in positive degrees). Thus the previous lemma shows that $[N]_{k+d} = [(B/\mathfrak{p}B)/f(B/\mathfrak{p}B)]$ is rationally equivalent to zero.

Construction 30. Let $\phi : A \to B$ be a flat ring homomorphism of relative dimension d. Then for every k, the homomorphism $\phi^* : Z_k(A) \to Z_{k+d}(B)$ descends to a canonical homomorphism

$$\phi^* : CH_k(A) \to CH_{k+d}(B)$$

which we call the homomorphism of *inverse image* along f.

6