Lecture 9
The coniveau filtration and algebraic cycles

From now on, all rings will be implicitly assumed noetherian.

9.1. The coniveau filtration.

Construction 1. Let A be a (noetherian) ring. For each n € N, let Go(A)>"
denote the subgroup of Go(A) generated by classes [M] where M € Mod™® has
codim(Supp, (M)) > n.

Proposition 2. The subgroup Go(A)?" is generated by classes [A/p], where p is
a prime ideal such that V(p) is of codimension = n.

Proof. Let M € Mod'® such that codim(Supp,(M)) > n. Let 0 = My € M; C
-+~ C M,, = M be a filtration whose successive quotients are of the form A/p;,
with p; C A prime ideals. Then we have seen that Supp, (M) = J, V(p;). Thus

codim(V(p;)) = codim(Supp,(M)) > n.

As we have

[M] = Z[Mi/Mifl] = Z[A/Pz]
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in Go(A), the claim follows. O

Proposition 3. Let A be an irreducible ring. Then we have
GU(A)>O/ Go(A)21 ~ 7.

Proof. Note that Go(A)?° = Gg(A). To define a map from left to right we proceed
as usual: given M € Mod%, choose a filtration where the successive quotients are
of the form A/p with p prime. On classes [A/p], the map is defined as follows.
If p is the (unique) minimal prime ideal, then we send it to 1. Otherwise it is
of codimension > 1 so we are forced to send it to 0. Arguing with the butterfly
lemma again we see that this construction is independent of the choice of filtration
and gives a well-defined map from left to right. An inverse map is given by sending
1 € Z to [A/p], where p is the minimal prime ideal. O

Remark 4. If A is not irreducible, then a straightforward adaptation of this
argument shows that the quotient Go(A)?°/ Go(A)?! is isomorphic to a direct
sum of copies of Z indexed by the irreducible components.

9.2. Multiplicities of modules.

Notation 5. Let A be a ring and z € |Spec(A)| a point. We let p(z) denote the
corresponding prime ideal, i.e.,

p(x) = Kerl(A — K(x)).
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Lemma 6. Let A be a ring and M a f.g. A-module. Let n be a generic point of
Supp, (M) and let p(n). Then the Ayy,)-module My, is of finite length.

Proof. Let p = p(n). For every non-maximal prime ideal q C A,, we have
(M,)q = 0. By Sheet 2, Exercise 4 it follows then that M, is of finite length. [

Definition 7. Let A be a ring and M a f.g. A-module. Let n be a generic point
of Supp, (M). The multiplicity of M at 7 is the integer

multy ,(M) := Cay (M)

Remark 8. Choose any filtration of M where the successive quotients are of the
form A/p with p prime. The number of times the prime ideal p(n) appears in this
way is exactly the multiplicity multy ,(M).

9.3. Algebraic cycles. Algebraic cycles are a convenient way to record multi-
plicities.
Definition 9. Let A be a ring. The dimension of A is the maximal length n of a
chain

GCYoC Y1 G S Y, C [Spec(A)|
of irreducible closed subsets of |Spec(A)|. (The zero ring is of dimension —1
by convention.) For a closed subset Y = V(I) C |Spec(A)|, the dimension of
Y is the dimension of A/I. (This is well-defined since if V(I) = V(J) then
|Spec(A/I)‘ ~ ‘Spec(A/J)‘.) We say Y is of pure dimension d if all its irreducible
components are of dimension d.

Example 10. Any field & is of dimension 0. More generally, any nonzero artinian
ring is of dimension 0.

Example 11. For a field k, the ring k[T, ..., T,] is of dimension n.

Definition 12. Let A be a ring. An algebraic cycle of dimension k on A (or
k-cycle for short) is a formal linear combination

Q= Znn - [V(p)]

where p ranges over a set of prime ideals of A, such that each V(p) is a k-
dimensional subset of ’Spec(A)’, and n, are integers. For each p, the integer nj is
called the multiplicity of the cycle a at p. We let Z;(A) denote the set of algebraic
cycles of dimension k, which is thus a free abelian group. By Z.(A) we denote the
graded abelian group €,  Zx(A).

Construction 13 (Cycle associated to a module). Let M be an A-module with
support of dimension d. For any integer k < d, we define a k-cycle [M] € Z(A)
as follows. Let 7, be the generic points of Supp, (M) for which the integral subset
V(p(na)) is of dimension k. Set

My := Y multa g, (M) - [V(p(1)]-



If k> d, we set [M];, = 0.

Remark 14. The noetherian hypothesis implies that there are only finitely many
generic points 7,. In particular, the sum appearing in the previous construction
is finite.

Example 15. Let p be a prime ideal and take M = A/p. Let d be the dimension
of the support Supp, (M) = V(p). Then the associated d-cycle [A/p]q is the same
as the cycle [V(p)] € Z4(A). Indeed we have

multa, (A/p) = Ca, (A/p)y) = la, (r(p)) = 1,
where 7 = [A — k(p)] is the generic point of V(p).

9.4. Rational equivalence.

Exercise 16. Let A be an integral domain of dimension d. For any nonzero
clement f € A, the quotient ring A/(f) is of dimension d — 1.

Construction 17. Let A be a ring and V(p) a (k + 1)-dimensional integral
subset of [Spec(A)| (where k > 0). If f € A is an element such that f ¢ p, then

(A/p)/f(A/p) ~A/(p+ (f)) is of dimension k. Regarding (A/p)/f(A/p) as an
A-module, there is an associated k-cycle. This is the principal divisor defined by

fin V(p):
divy) (f) = [(A/p)/f(A/p)]k € Zi(A).

Definition 18. Let Ry (A) denote the subgroup of Z;(A) generated by elements of
the form divy,)(f) for all (k + 1)-dimensional integral subsets V(p) and elements
f & p. We say that two k-cycles «, 5 € Zi(A) are rationally equivalent if their
difference belongs to Rg(A).

Construction 19. The Chow group of k-cycles on A is the quotient
CHy(A) := Zi(A)/Ri(A),

for every integer k > 0.

9.5. Direct images.

Construction 20. Let ¢ : A — A/I be a surjective ring homomorphism. Any
closed integral subset Va/1(p) € [Spec(A/I)| can be regarded, via the inclusion
|Spec(A/I)| ~ Va(I) C [Spec(A)|, as a subset of |Spec(A)|. As a subset of
|Spec(A) , it is the closed integral subset defined by the prime ideal q = ¢~!(p).
Thus there is for each k£ > 0 a group homomorphism

b Zi(AJT) — Zi(A)
given by [Vai(p)] = [Va(¢™" (p))].
Lemma 21. With ¢ : A — A/I as above, we have
¢+(Re(A/1)) € Ri(A)

for every k.
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Proof. 1t suffices to show that for every closed integral subset V(p) of dimension
k+1 and every element f € A/Inot contained in p, the cycle ¢, (divy)(f)) € Zk(A)
is rationally equivalent to 0. The contraction q = ¢~ !(p) is a prime ideal of
A. If f € A is an element lifting f, then f ¢ q since f ¢ p. Then since
(A/q)/f(A/q) ~ ((A/T)/p)/f((A/1)/p), it follows from the definitions that

G« (divy( (f)) = divy (f),

whence the claim. O

Construction 22. Let ¢ : A - A/I be a surjective ring homomorphism. By
the lemma, the homomorphism ¢, : Zi(A/I) — Zx(A) descends to a canonical
homomorphism

¢« - CHL(A/T) — CHg(A)

for every k. We call this the homomorphism of direct image along ¢.

9.6. Inverse images.

Definition 23. Let ¢ : A — B be a flat ring homomorphism. We say that ¢ is of
relative dimension d > 0 if, for every closed integral subset V(p) C |Spec(A)‘ of

dimension n, the closed subset V(pB) C ’Spec(B)} is of pure dimension n + d.
Remark 24. Note that ¢ : A — B induces a canonical map
[+ |Spec(B)| — [Spec(A)]

sending a point z = [B — k| to f(z) = [A - B — k|. For a closed integral
subset V(p) C |Spec(A)| we have f~*(V(p)) = V(pB) C |Spec(B)|. Thus we can
interpret the previous definition in terms of the fibres of the morphism f.

Example 25. For any element f € A, the localization homomorphism ¢ : A —
A[f7!] is flat of relative dimension 0.

Example 26. For every ring A and every n > 0, the homomorphism A —
A[Ty,...,T,] is flat of relative dimension n.

Construction 27. Let ¢ : A — B be a flat ring homomorphism of relative
dimension d. Then there are canonical homomorphisms

¢ Zu(A) = Zy4a(B)
sending [V(p)] = [B/pBlj+a-
Theorem 28. Let ¢ : A — B be as above. Then we have
¢"(Ri(A)) € Rira(B)
for every k.

Lemma 29. Let A be a ring and M a f.q. A-module whose support is of dimension
< k+ 1. Denote by A the set of irreducible components V(p) C Supp, (M) of
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dimension k + 1, and let f € A be an element with f & p for every V(p) € A.
Then we have

M/ M = Mg = > L, (M) divyy(f)
V(p)eA

in Zx(A), where {M C M is the submodule of f-torsion elements. In particular if
[ is a non-zero-divisor on M, then [M/fM], € Zx(A) is rationally equivalent to
zero.

Proof. Note that f ¢ p implies that M/ fM and ;M both have support of dimension
< k.

Assume first that M = A/q where q is a prime ideal. If its support V(q) is
(k4 1)-dimensional, then it has only one irreducible component of dimension &+ 1
(namely, V(q) itself). The assumption is then that f ¢ g, so in particular the
image of f in the integral domain A/q is a non-zero-divisor and ;M = 0. Thus
the left-hand side is [(A/q)/f(A/q)]x. Since My = A;/qA; = k(q) is of length 1,
the right-hand side is divy(q)(f). Hence the desired equality holds by definition.

Otherwise, V(q) is of dimension < k. In that case A is empty and the right-hand
side vanishes trivially. If f € q, then M/fM = (A/q)/f(A/q) = A/q and similarly
M = ;(A/q) = A/q, so the left-hand side also vanishes. If f ¢ q, then since V(q)
is of dimension < k, both M/fM and ;M have supports of dimension < k — 1,
hence again the left-hand side vanishes.

This shows the case where M = A/q. In general, one reduces to this case
as follows. Fix an element f € A and say a f.g. A-module M is f-good if its
support is of dimension < k + 1 and f ¢ p for every prime p corresponding to an
(k 4+ 1)-dimensional irreducible component of Supp, (M). One shows that both
sides of the formula are additive in short exact sequences of f-good modules
(details omitted). Then the claim follows for any f-good M by choosing a filtration
of M whose successive quotients are of the form A/q with q prime. OJ

Proof of Theorem. 1t suffices to show that, for every (k + 1)-dimensional V(p) C
|Spec(A)’, we have

¢ (divy(p)(f)) € Rita(B).

By definition, divyy)(f) = [M]iy where M = (A/p)/f(A/p). We first show
that ¢*(divy)(f)) = [N]kta, where N = (B/pB)/f(B/pB). Choose a filtration
of M where the successive quotients are A/q; for prime ideals q; C A. Then
M],, = > [V(q;)] where the sum is taken over i such that V(q;) is n-dimensional.
Tensoring with the flat A-module B produces a filtration of N where the successive
quotients are B/q;B. By definition, ¢*[V(q;)] = [B/q:B|k+a for each i. When V(g;)
is of dimension < k then the irreducible components of V(g;B) have dimension
< k + d (since ¢ is flat of relative dimension d). Therefore we get

Nlira = > _[B/aiBlira = Y _ 6" V()] = ¢"[Ms

where the sums are taken over ¢ such that V(q;) is k-dimensional.



Since V(p) is of dimension k+ 1 and ¢ is flat of relative dimension d, V(pB) is of
pure dimension k +d + 1. Since A/p is an integral domain, f is a non-zero-divisor
(as it is nonzero). Since ¢ : A — B is flat, its image in B is still a non-zero-divisor
(e.g., Koszp(f) ~ Kosza(f) ®a B is still acyclic in positive degrees). Thus the
previous lemma shows that [N]z. s = [(B/pB)/f(B/pB)] is rationally equivalent
to zero. UJ

Construction 30. Let ¢ : A — B be a flat ring homomorphism of relative
dimension d. Then for every k, the homomorphism ¢* : Zx(A) — Zg.q(B)
descends to a canonical homomorphism

which we call the homomorphism of inverse image along f.
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