
Lecture 0
Overview

1. . Let X be a quasi-compact quasi-separated scheme and let K(X) denote the (nonconnective)
algebraic K-theory of perfect complexes on X. This is a spectrum such that π0K(X) = K0(X) is
the Grothendieck group of perfect complexes, as defined in SGA 6.

Our goal in this course is to study various properties of the assignment

(1.1) X 7→ K(X).

1.1. A first observation is that it has contravariant functoriality: given a morphism of qcqs
schemes f : Y → X, there is a canonical map f∗ : K(X)→ K(Y) induced by the derived inverse
image of perfect complexes. In fact, (1.1) defines a presheaf of spectra.

We would therefore like to think of it as a cohomology theory for schemes. Recall that in
topology, a generalized cohomology theory on smooth manifolds is roughly a presheaf of spectra
satisfying an excision or Mayer–Vietoris property and homotopy invariance (with respect to the
real line). We could define a generalized motivic cohomology theory on smooth schemes (over a
fixed base S) as a presheaf of spectra satisfying Mayer–Vietoris for Zariski or Nisnevich squares,
and homotopy invariance with respect to the affine line A1.

Is X 7→ K(X) as a generalized cohomology theory in this sense? An important theorem of
Thomason says that the Mayer–Vietoris condition holds:

Theorem 1.2 (Thomason). Let X be a quasi-compact quasi-separated scheme and let U ⊂ X
and V ⊂ X be quasi-compact open subsets such that X = U ∪V. Then the presheaf X 7→ K(X)
sends the square

U ∩V V

U X

to a homotopy cartesian square of spectra

K(X) K(U)

K(V) K(U ∩V).

In fact, this holds more generally for Nisnevich squares, where V → X is an étale morphism
which induces an isomorphism p−1(X−U)red → (X−U)red on underlying topological spaces.

Unfortunately, algebraic K-theory fails to be A1-invariant, but the situation is not that bad;
if we restrict to nonsingular schemes, then we have:

Theorem 1.3 (Quillen). Let X be a regular noetherian scheme. Then the canonical map
K(X)→ K(X×A1) is invertible.

Thus K-theory defines a generalized motivic cohomology theory in the above sense, at least
when the base S is regular (for example S = Spec(k) with k a field, or S = Spec(Z)).

2. .
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2.1. Theorem 1.3 comes from an identification

(2.1) K(X)
∼−→ G(X)

for X regular and noetherian. Here G(X) denotes the G-theory of X, defined as K(Coh(X)), the
algebraic K-theory of coherent sheaves on X. If X is not regular, we can still make sense of
G(X), and the isomorphism

G(X)
∼−→ G(X×A1)

holds for any noetherian X.

However, G-theory does not behave quite like a cohomology theory, but rather as a Borel–
Moore homology theory. Indeed, it does not have contravariant functoriality for arbitrary
morphisms; instead it has covariance with respect to proper morphisms, since (higher) direct
image along proper morphisms preserves coherence. From this perspective the isomorphism
(2.1) can be viewed as an instance of Poincaré duality.

2.2. Given a presheaf of spectra F on the category of smooth S-schemes, there is a general

construction that imposes A1-homotopy invariance in a universal way:

F 7→ LA1(F).

This is a certain localization of the ∞-category of presheaves of spectra.

Let KH = LA1(K) be the A1-localization of K-theory.

Theorem 2.3 (Thomason–Weibel).

(i) KH satisfies Mayer–Vietoris for Nisnevich squares.

(ii) KH satisfies A1-homotopy invariance.

(iii) If X is regular, then the canonical map of spectra K(X)→ KH(X) is invertible.

Therefore KH defines a generalized motivic cohomology theory over arbitrary (qcqs) base
schemes.

Remark 2.4. We warn the reader that it is important in this definition to consider nonconnective
K-theory as opposed to its connective cover Kcn. The presheaf LA1(Kcn) is not at all well-
behaved.

2.5. To sum up, we have a commutative triangle

K KH

G

of presheaves1 of spectra on smooth S-schemes, when S is noetherian.

The right-hand vertical arrow comes from the fact that G-theory satisfies A1-homotopy
invariance. When S is regular, all three arrows are invertible. In particular, in this case K
actually takes values in connective spectra.

3. . A main theme of these lectures will be trying to understand the spectrum K(X) when X is
singular.

1Any morphism of smooth S-schemes is of finite tor-amplitude and G-theory admits contravariant functoriality
along such morphisms.
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3.1. Using Mayer–Vietoris we can reduce the question to studying the K-theory of affine singular
schemes.

Let Kcn(X) := K(X)>0 denote the connective cover of nonconnective K-theory. It turns out
that the connective part can actually be built out of colimits from the K-theory spectra of
regular schemes.

Theorem 3.2 (Bhatt–Lurie). Consider the commutative diagram

(Smaff
/Z)op Spt

(Schaff
/Z)op

Kcn

Kcn

where Schaff
/Z denotes the category of affine schemes over Spec(Z) and Smaff

/Z denotes the full

subcategory of affine schemes which are smooth over Spec(Z). This diagram is a left Kan
extension, i.e. the diagonal arrow is the left Kan extension of the horizontal arrow.

3.3. The nonconnective part K(X)<0 is difficult to get a handle on. The following result, which
resolves a conjecture made by Weibel in 1980, represents a significant breakthrough.

Theorem 3.4 (Kerz–Strunk–Tamme). Let X be a noetherian scheme of finite dimension d. Then
we have Ki(X) := πiK(X) = 0 for i < −d. Further, the canonical map K−d(X)→ K−d(X×A1)
is invertible.

This is the ultimate goal of these lectures.

4. . Much of the proof of Theorem 3.4 resolves around understanding the extent to which
K-theory satisfies descent by blow-ups.

4.1. One of the main tools is the following, originally proved by Thomason for classical schemes:

Theorem 4.2 (KST). Let i : Z ↪→ X be a regular immersion of derived schemes. Let X̃ be
the derived blow-up of X in Z and let E = P(NZ/X) be the virtual exceptional divisor. Then
K-theory sends the square

E X̃

Z X

to a homotopy cartesian square of spectra

K(X) K(Z)

K(X̃) K(E).

The derived blow-up is a construction that agrees with the classical blow-up when X and Z
are classical, but has the feature of being stable under arbitrary derived base change.

4.3. Define an abstract blow-up square to be a cartesian square

E X̃

Z X

p

i
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where i is a closed immersion, p is proper, and the induced morphism (X̃− E)red → (X− Z)red

induces an isomorphism on underlying topological spaces.

K-theory does not satisfy descent with respect to abstract blow-up squares (or even with
respect to blow-ups of arbitrary closed immersions). Forcing homotopy invariance somehow
“corrects” this:

Theorem 4.4 (Cisinski). The presheaf KH satisfies descent with respect to arbitrary abstract
blow-up squares.

In fact, we even have the following striking statement:

Theorem 4.5 (KST). The map Kcn → KH is a cdh-sheafification when restricted to noetherian
(derived) schemes of finite dimension.

The cdh topology is generated by Nisnevich squares and abstract blow-up squares, so this
statement means roughly that KH is obtained from connective K-theory by universally imposing
descent with respect to abstract blow-ups.

Remark 4.6. When restricted to schemes over a field of characteristic zero, this result was proven
by Haesemeyer using resolution of singularities. One of the main innovations of Kerz–Strunk–
Tamme is the use of the Zariski–Riemann space to avoid resolution of singularities.
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