
Lecture 2
Descent for quasi-coherent sheaves

In this lecture we will continue our study of quasi-coherent sheaves by proving a descent
theorem and looking at some of its basic consequences.

1. Fpqc descent.

1.1. We begin with the derived analogue of the “mother of all descent theorems”, which is
Grothendieck’s faithfully flat descent:

Theorem 1.2. The presheaf of ∞-categories on the site of affine derived schemes

S 7→ Qcoh(S)

satisfies fpqc descent.

We can replace Qcoh(−) by Qcoh(−)>0: one recovers Qcoh(−) by stabilizing, which commutes
with limits when the transition functors in the diagram are left-exact. Let (fα : Sα → S)α be an

fpqc-covering family and let f : S̃→ S where S̃ =
∐
α Sα. We want to show that the canonical

functor

Qcoh(S)>0 → Tot(Qcoh(Č(S̃/S)•)>0)

is an equivalence, where we have adopted the notation Tot(A•) := lim←−n∈∆
An for the totalization

or limit of a cosimplicial diagram A•. This totalization can be identified with the ∞-category
of co-algebras in Qcoh(S̃)>0 over the comonad associated to the adjunction f∗ : Qcoh(S)>0 �
Qcoh(S̃)>0 : f∗ [3, Lem. D.3.5.7]. Thus it suffices to show that this adjunction is comonadic, for
which we can apply the Barr–Beck–Lurie theorem to check two conditions:

(i) The functor f∗ is conservative.

(ii) The functor f∗f
∗ preserves limits of cosimplicial diagrams that admit a splitting after

applying f∗.

The first holds by definition of faithfully flat morphism. The second is a more involved
Bousfield–Kan type argument which we briefly sketch here (see [3, Prop. D.6.4.6] for details). Let
G• be a cosimplicial diagram in Qcoh(S)>0 which is f∗-split; the claim is that the canonical map
f∗f
∗(Tot(G•))→ Tot(f∗f

∗(G•)) is invertible. It suffices to show that it induces isomorphisms
on homotopy groups

(1.1) πif∗f
∗(Tot(G•))→ πi Tot(f∗f

∗(G•))

for i > 0.

The fact that f is faithfully flat has the following consequences. First, the functor f∗f
∗

restricts to an exact functor between discrete objects, and πif∗f
∗(F) = f∗f

∗(πiF) for each
F ∈ Qcoh(S)>0 and i > 0. Second, a discrete object F ∈ Qcoh(S) is zero iff f∗f

∗(F) is zero.

To compute the homotopy groups appearing in (1.1) we make use of the the Bousfield–Kan
spectral sequence, in the form of the following lemma [2, Cor. 1.2.4.12]:

Lemma 1.3. Let E• be a cosimplicial spectrum. Suppose that for each i > 0, the associated
(unnormalized) cochain complex

πi(E
0)

ϑi−→ πi(E
1)→ πi(E

2)→ · · ·

is an acyclic resolution of the kernel Ki = Ker(ϑi). Then for each i > 0, the map πi(Tot(E•))→
πi(E0) induces an isomorphism πi(Tot(E•))

∼−→ Ki.
1
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To apply this, let

(1.2) πi(G
0)

ϑi−→ πi(G
1)→ πi(G

2)→ · · ·

denote the unnormalized cochain complex associated to πi(G
•), for each i. Since f∗(G•) is split,

πi(f∗f
∗G•) = f∗f

∗πi(G
•) is a split cosimplicial object for each i. This implies that the image of

(1.2) by the functor f∗f
∗ is split exact, so in particular the sequence

0→ f∗f
∗(Ki)→ πi(f∗f

∗G0)
ϑi−→ πi(f∗f

∗G1)→ πi(f∗f
∗G2)→ · · ·

is exact, where Ki = Ker(ϑi). By the properties of f∗f
∗ discussed above, this implies that the

sequence

0→ Ki → πi(G
0)

ϑi−→ πi(G
1)→ πi(G

2)→ · · ·
is also exact. Applying the Lemma twice, we see that the map (1.1) is canonically identified
with the identity of f∗f

∗Ki.

1.4. Restriction along the inclusion DSchaff ↪→ DSch preserves fpqc sheaves and defines, for
any presentable ∞-category V, a functor

(1.3) ShV(DSch)→ ShV(DSchaff)

from V-valued fpqc sheaves on DSch to V-valued fpqc sheaves on DSchaff .

As in classical algebraic geometry, the fact that any derived scheme admits a Zariski cover by
affine schemes implies:

Proposition 1.5.

(i) The canonical functor (1.3) is an equivalence.

(ii) Let F be an fpqc sheaf on DSchaff . Then its right Kan extension to DSch is an fpqc sheaf.

The first claim follows by applying an ∞-categorical version of the “comparison lemma”,
see e.g. [1, Lem. C.3]. The second follows from the fact that the inclusion DSchaff ↪→ DSch is

topologically cocontinuous, i.e. every cover of X ∈ DSchaff by derived schemes can be refined to
a cover by affine derived schemes.

1.6. By Theorem 1.2 and Proposition 1.5 we deduce:

Corollary 1.7. The presheaf of ∞-categories

Qcoh : (DSch)op →∞-Cat

satisfies fpqc descent.

1.8. Let X be a derived scheme and let (jα : Uα ↪→ X)α be a Zariski-covering family. Then
since the augmented cosimplicial diagram

Qcoh(X)→
∏
α

Qcoh(Uα)⇒
∏
α,β

Qcoh(Uα ∩Uβ)⇒ · · ·

is a limit diagram (Corollary 1.7), we immediately see:

Corollary 1.9. The family of functors (j∗α)α : Qcoh(X)→
∏
α Qcoh(Uα) is conservative.

2. The direct image functor. Let f : X → Y be a morphism of derived schemes. Recall
that the functor f∗, right adjoint to f∗, was constructed by abstract nonsense. Under a mild
assumption on f we can give a more concrete description of it.
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2.1. Let F be a quasi-coherent sheaf on X, which is by definition a collection (s∗F)s for each
affine derived scheme S and each morphism s : S→ X. We would like to define a quasi-coherent
sheaf f∗F on Y such that for each affine derived scheme T and each morphism t : T→ Y, we
have

t∗(f∗F) := g∗s
∗(F)

where we have a cartesian square

S T

X Y.

g

s t

f

In order for this to be a well-defined element of Qcoh(Y), we need the following. If T′ is another
affine derived scheme with morphisms t′ : T′ → Y and h : T′ → T such that t = t′ ◦ h, then
we want to have a canonical isomorphism h∗g∗s

∗(F) = (g′)∗(s
′)∗F, where S′ = T′×Y X and

g′ : S′ → T′ and s′ : S′ → X. This would follow from a base change formula for the square

(2.1)
S′ T′

S T.

g′

h′ h

g

There is always a canonical natural transformation (exercise: write it down using the (co)units
of the adjunctions)

(2.2) h∗g∗ → (g′)∗(h
′)∗

and we want to say that it is invertible.

In case the morphism f is affine (which means that for any affine scheme mapping into the
target, the base change is also an affine scheme), then S and S′ are affine. In this case the
base change property is easy to check. Indeed, in the affine case it is clear that the functor g∗
preserves colimits (it is left adjoint to the functor of “coextension of scalars”) and that every
quasi-coherent sheaf on S is built from OS using colimits. Therefore it suffices to check that
(2.2) is an isomorphism for the quasi-coherent sheaf OS, which is obvious.

More generally, one can prove:

Proposition 2.2. Let g : S→ T be a quasi-compact morphism of derived schemes. Then we
have:

(i) For any cartesian square of derived schemes (2.1), the base change transformation (2.2) is
invertible.

(ii) The functor g∗ preserves colimits.

By Zariski descent one reduces to the case where S is affine, and therefore the base change S′

is quasi-compact. A cofinality argument allows a further reduction to the case where T and T′

are quasi-compact. A quasi-compact scheme admits a finite affine Zariski cover, so one finally
reduces to the affine case by an argument involving induction on the size of the cover. We omit
the details but we will give a similar style of argument in the next lecture.

2.3. Let j : U ↪→ X be a quasi-compact open immersion of derived schemes. Then we have:

Corollary 2.4. The functor j∗ : Qcoh(U)→ Qcoh(X) is fully faithful.
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It suffices to show that the co-unit j∗j∗(F)→ F is invertible for every F ∈ Qcoh(U). This
follows from the base change property (Proposition 2.2) applied to the square

U U

U X

which is cartesian because j is a monomorphism.

3. Zariski excision. Let X be a derived scheme. By fpqc descent, the ∞-category Qcoh(X)
can be computed as the totalization

Qcoh(X) = Tot(Qcoh(Č(X̃/X)•)),

where X̃→ X is an fpqc cover. In many situations it is extremely useful to be able to express
Qcoh(X) as a finite limit. We now explain how to do this at least for the Zariski topology.

3.1. Let X be a derived scheme and suppose we have a cartesian square

U ∩V V

U X

j′U

j′V jV

jU

where jU and jV are open immersions of derived schemes, and X = U∪V, i.e. the family (jU, jV)
is Zariski-covering. As usual U ∩V denotes the fibred product U×X V.

Theorem 3.2. The induced square of ∞-categories

Qcoh(X) Qcoh(U)

Qcoh(V) Qcoh(U ∩V)

j∗U

j∗V (j′V)∗

(j′U)∗

is cartesian.

It suffices to show that the canonical functor

(3.1) u : Qcoh(X)→ Qcoh(U) ×
Qcoh(U∩V)

Qcoh(V)

is an equivalence. An object in the target consists of quasi-coherent sheaves FU ∈ Qcoh(U),
FV ∈ Qcoh(V), and FU∩V ∈ Qcoh(U ∩ V), together with isomorphisms α : (j′V)∗FU → FU∩V

and β : (j′U)∗FV → FU∩V.

For formal reasons (the limit can be computed in the subcategory of presentable∞-categories
and left-adjoint functors), (3.1) has a right adjoint v which can be described explicitly as the
functor

(3.2) (FU,FV,FU∩V, α, β) 7→ Cofib((jU)∗FU ⊕ (jV)∗FV → (jU∩V)∗FU∩V).

It suffices to check that the unit and co-units of the adjunction are invertible, which is easy
using Corollary 1.9.

Remark 3.3. Note that the argument only used the fact that Qcoh(−) is a Zariski sheaf. More
generally, it is true that any Zariski sheaf on DSch satisfies Zariski excision. In fact, one can
show that the property of Zariski excision is equivalent to Zariski descent, at least when we
restrict to quasi-coherent quasi-separated derived schemes. This is one of the nice features of
the Zariski topology, which is shared by the Nisnevich but not by the étale or fpqc topologies.
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