#### Lecture 3

## Compact generation of quasi-coherent sheaves

Let  $\mathcal{X}$  be a derived stack. In Lecture 1 we discussed various finiteness properties for quasicoherent sheaves: perfectness, dualizability, and compactness; we saw that all these notions agree when  $\mathcal{X}$  is affine, and that the first two agree in general. The goal of this lecture is to prove that perfectness and compactness also agree for a very general class of derived *schemes*.

# 1. Semi-orthogonal decompositions.

**Definition 1.1.** Let **C** be a stable presentable  $\infty$ -category. Let  $\mathbf{C}_+$  and  $\mathbf{C}_-$  be stable full subcategories. We say that  $\langle \mathbf{C}_+, \mathbf{C}_- \rangle$  form a semi-orthogonal decomposition of **C** if the following hold:

(i) For any objects  $c_+ \in \mathbf{C}_+$  and  $c_- \in \mathbf{C}_-$ , the mapping space  $\operatorname{Maps}(c_+, c_-)$  is contractible.

(ii) There exists a right adjoint (resp. left adjoint) to the inclusion  $\mathbf{C}_+ \hookrightarrow \mathbf{C}$  (resp. to the inclusion  $\mathbf{C}_- \hookrightarrow \mathbf{C}$ ).

1.2. It is relatively easy to construct semi-orthogonal decompositions using the following procedure.

Given a stable subcategory  $\mathbf{D} \subset \mathbf{C}$ , we define the *right orthogonal* of  $\mathbf{D}$  to be the full subcategory of objects  $c \in \mathbf{C}$  such that the mapping space  $\operatorname{Maps}(d, c)$  is contractible for all  $d \in \mathbf{D}$ . We define the *left orthogonal* in a dual way.

We have (see [2, Prop. 7.2.1.4]):

**Proposition 1.3.** Let  $\mathbf{C}$  be a stable presentable  $\infty$ -category and  $\mathbf{D} \subset \mathbf{C}$  a stable full subcategory. Then  $\mathbf{C}$  admits a semi-orthogonal decomposition  $\langle \mathbf{C}_+, \mathbf{C}_- \rangle$  with  $\mathbf{C}_+ = \mathbf{D}$  iff the inclusion  $\mathbf{D} \hookrightarrow \mathbf{C}$  admits a right adjoint. In this case,  $\mathbf{C}_-$  is the right orthogonal of  $\mathbf{D}$ .

Dually, it admits a semi-orthogonal decomposition  $\langle \mathbf{C}_+, \mathbf{C}_- \rangle$  with  $\mathbf{C}_- = \mathbf{D}$  iff the inclusion  $\mathbf{D} \hookrightarrow \mathbf{C}$  admits a left adjoint. In this case,  $\mathbf{C}_+$  is the left orthogonal of  $\mathbf{D}$ .

1.4. Note that any semi-orthogonal decomposition  $\langle \mathbf{C}_+, \mathbf{C}_- \rangle$  gives rise to an exact sequence of stable presentable  $\infty$ -categories

$$\mathbf{C}_+ \hookrightarrow \mathbf{C} \to \mathbf{C}_+$$

where the second arrow is a left localization (i.e. its right adjoint is fully faithful).

# 2. The Thomason–Neeman localization theorem.

2.1. Let  $u : \mathbf{C} \to \mathbf{D}$  fully faithful colimit-preserving functor of stable presentable  $\infty$ -categories. Let  $\mathbf{D} \to \mathbf{D}/\mathbf{C}$  denote the cofibre of u (in the  $\infty$ -category of stable presentable  $\infty$ -categories and colimit-preserving functors). Equivalently,  $\mathbf{D} \to \mathbf{D}/\mathbf{C}$  is the left localization of  $\mathbf{D}$  with respect to the class of morphisms whose cofibre belongs to (the essential image of)  $\mathbf{C}$ .

Definition 2.2. Let

(2.1)

be a diagram of stable presentable  $\infty$ -categories and colimit-preserving functors. We say that it is an exact sequence if it satisfies the following conditions:

 $\mathbf{C}' \xrightarrow{u} \mathbf{C} \xrightarrow{v} \mathbf{C}''$ 

(i) The composite vu is zero.

(ii) The functor u is fully faithful.

(iii) The canonical functor  $\mathbf{C}/\mathbf{C}' \to \mathbf{C}''$  is an equivalence.

**Definition 2.3.** We say that  $\mathbf{C}$  is compactly generated if there exists an essentially small set of objects which are compact and generate  $\mathbf{C}$  under colimits.

In the stable setting, this is equivalent to the following property. The right orthogonal of a set of objects  $(c_i)_i$  in **C** is the full subcategory of objects  $d \in \mathbf{C}$  such that each mapping space  $\operatorname{Maps}(c_i[-n], d)$  is contractible for each i and all  $n \ge 0$ . Then a set of compact objects  $(c_i)_i$  forms a set of compact generators iff their right orthogonal vanishes.

In the compactly generated case, we can characterize exact sequences in terms of the full subcategories of compact objects:

**Proposition 2.4.** Suppose we have a diagram (2.1), and assume that the categories  $\mathbf{C}$ ,  $\mathbf{C}'$  and  $\mathbf{C}''$  are compactly generated. Suppose also that u and v preserve compact objects (equivalently, their right adjoints preserve colimits) and consider the induced diagram

$$(\mathbf{C}')^{\operatorname{comp}} \xrightarrow{u^{\operatorname{comp}}} (\mathbf{C})^{\operatorname{comp}} \xrightarrow{v^{\operatorname{comp}}} (\mathbf{C}'')^{\operatorname{comp}},$$

on the full subcategories of compact objects, of small stable  $\infty$ -categories and finite-colimitpreserving functors. Then (2.1) is exact iff the following conditions are satisfied:

(i) The composite  $v^{\text{comp}} \circ u^{\text{comp}}$  is zero.

(ii) The functor  $u^{\text{comp}}$  is fully faithful.

(iii) The canonical functor  $(\mathbf{C})^{\text{comp}}/(\mathbf{C}')^{\text{comp}} \to (\mathbf{C}'')^{\text{comp}}$  is an equivalence up to idempotent completion, *i.e.* the functor

$$((\mathbf{C})^{\mathrm{comp}}/(\mathbf{C}')^{\mathrm{comp}})^{\mathrm{idem}} \to ((\mathbf{C}'')^{\mathrm{comp}})^{\mathrm{idem}}$$

is an equivalence.

Recall that, if  $\mathbf{C}$  is a small  $\infty$ -category, then its idempotent completion  $\mathbf{C} \to (\mathbf{C})^{\text{idem}}$  is the full subcategory of presheaves on  $\mathbf{C}$  generated by the representables under direct summands. In the stable setting it can also be computed as  $\text{Ind}(\mathbf{C})^{\text{comp}}$ , i.e. the full subcategory of compact objects in the formal completion  $\text{Ind}(\mathbf{C})$  by filtered colimits.

Remark 2.5. The main content of Proposition 2.4 is that if the sequence (2.1) is exact, then any compact object  $c'' \in \mathbf{C}''$  can be lifted to a compact object  $c \in \mathbf{C}$ , such that  $v(c) \approx c''$  at least up to direct summands (i.e. v(c) will have c'' as a direct summand). In fact, Neeman showed [3] (following Thomason) that c can be taken such that  $v(c) \approx c'' \oplus c''[1]$ .

2.6. Let **C** be a small stable  $\infty$ -category. We write  $K_0(\mathbf{C})$  for the free abelian group on isomorphism classes of objects of **C**, modulo the subgroup generated by [c] - [c'] - [c''] for all exact triangles  $c' \to c \to c''$  in **C**.

**Proposition 2.7.** Let  $u : \mathbf{C} \to \mathbf{D}$  be an exact fully faithful functor between stable  $\infty$ -categories. Suppose that every object  $d \in \mathbf{D}$  is a direct summand of an object in the essential image of u. Then we have:

(i) The induced homomorphism of abelian groups

 $is \ injective.$ 

(ii) An object  $d \in \mathbf{D}$  belongs to the essential image of u iff its class  $[d] \in K_0(\mathbf{D})$  belongs to the image of the homomorphism (2.2).

In particular we deduce:

**Corollary 2.8.** Suppose that the condition of Proposition 2.7 holds. Then for any object  $d \in \mathbf{D}$ , the object  $d \oplus d[1]$  belongs to the essential image of u.

To prove Proposition 2.7, it will be convenient to introduce a variant of  $K_0(\mathbf{C})$  for which Proposition 2.7 is trivially true. For this, we modify the definition of  $K_0(\mathbf{C})$  to only consider *split* exact triangles. Thus, let  $K_0^{\oplus}(\mathbf{C})$  denote the free abelian group on isomorphism classes of objects of  $\mathbf{C}$ , modulo the subgroup generated by elements [c] - [c'] - [c''] for all objects satisfying  $c = c' \oplus c''$  in  $\mathbf{C}$ . The following property is easy to check:

**Lemma 2.9.** Let  $c_1$  and  $c_2$  be objects of  $\mathbf{C}$ . Then we have  $[c_1] = [c_2]$  in  $\mathrm{K}_0^{\oplus}(\mathbf{C})$  iff there exists an object  $c_3 \in \mathbf{C}$  such that  $c_1 \oplus c_3 = c_2 \oplus c_3$ .

Using Lemma 2.9 one verifies easily that the analogue of Proposition 2.7 holds for  $K_0^{\oplus}$ . To prove Proposition 2.7, we note that there is a canonical surjection  $K_0^{\oplus}(\mathbf{C}) \to K_0(\mathbf{C})$  for any  $\mathbf{C}$ . We therefore have a diagram of short exact sequences

Proposition 2.7 now immediately follows from the following lemma and some diagram chasing.

Lemma 2.10. Under the assumptions of Proposition 2.7, the left-hand map

$$I(\mathbf{C}) \to I(\mathbf{D})$$

is surjective.

*Proof.* By construction,  $I(\mathbf{D})$  is generated by elements of the form [d] - [d'] - [d''] where  $d' \to d \to d''$  is an exact triangle in  $\mathbf{D}$ . It suffices to construct, for any such triangle, another triangle  $c' \to c \to c''$  which is in the essential image of u and is such that [c] - [c'] - [c''] = [d] - [d'] - [d'']. By assumption, there exist objects  $e', e'' \in \mathbf{D}$  such that  $d' \oplus e'$  and  $d'' \oplus e''$  belong to the essential image of u. Then the desired triangle is

$$d' \oplus e' \to d \oplus e' \oplus e'' \to d'' \oplus e'',$$

where the middle term also belongs to the essential image of u because u is exact.

Putting everything together, we have:

Theorem 2.11 (Thomason–Neeman localization theorem). Let

$$\mathbf{C}' \xrightarrow{u} \mathbf{C} \xrightarrow{v} \mathbf{C}''$$

be an exact sequence of stable presentable  $\infty$ -categories. Suppose that  $\mathbf{C}$ ,  $\mathbf{C}'$  and  $\mathbf{C}''$  are compactly generated, and that u and v preserve colimits and have colimit-preserving right adjoints. Then for any compact object  $x \in \mathbf{C}''$ , the object  $x \oplus x[1]$  belongs to the essential image of v.

**3.** Perfect complexes on qcqs schemes. We begin working towards the compact generation theorem by showing that, under quasi-compact quasi-separated hypotheses, all perfect complexes are compact.

3.1. Let us take a minute to introduce some basic finiteness properties of derived schemes:

# Definition 3.2.

(i) A derived scheme X is quasi-compact if for any Zariski cover  $(j_{\alpha} : U_{\alpha} \to X)_{\alpha \in \Lambda}$ , there exists a finite subset  $\Lambda_0 \subset \Lambda$  such that the family  $(j_{\alpha})_{\alpha \in \Lambda_0}$  is still a Zariski cover.

(ii) A morphism of derived schemes  $f : Y \to X$  is quasi-compact if for any affine derived scheme S and any morphism  $S \to X$ , the spectral scheme  $S \times_X Y$  is quasi-compact.

(iii) A morphism of derived schemes  $f : Y \to X$  is quasi-separated if the diagonal  $Y \to Y \times_X Y$  is quasi-compact.

(iv) A derived scheme X is quasi-separated if it the morphism  $X \to \text{Spec}(\mathbf{Z})$  is quasi-separated.

(v) A morphism of derived schemes  $f : Y \to X$  is separated if the diagonal  $Y \to Y \times_X Y$  is a closed immersion, i.e. it induces a closed immersion on underlying classical schemes. Equivalently,  $f_{cl} : Y_{cl} \to X_{cl}$  is separated.

(vi) A derived scheme X is separated if for any open immersions  $U \hookrightarrow X$  and  $V \hookrightarrow X$ , with U and V affine, the intersection  $U \times_X V$  is quasi-compact.

**Exercise 3.3.** Let X be a derived scheme. Then X is quasi-separated iff for any open immersions  $U \hookrightarrow X$  and  $V \hookrightarrow X$ , with U and V affine, the intersection  $U \times_X V$  is quasi-compact.

3.4. We have:

**Proposition 3.5.** Let X be a quasi-compact derived scheme. If a quasi-coherent sheaf  $\mathcal{F} \in \operatorname{Qcoh}(X)$  is compact, then it is a perfect complex.

*Proof.* By definition, it suffices to show that  $f^*\mathcal{F}$  is perfect for each morphism  $f: S \to X$  where S is affine. We already know that the compact objects of Qcoh(S) are precisely the perfect complexes when S is affine. Therefore it suffices to show that  $f^*$  preserves compact objects, or equivalently that its right adjoint  $f_*$  preserves colimits. We saw that in Lecture 2 that this is true whenever f is quasi-compact, which holds in this case.

3.6. Next we would like to prove a converse to Proposition 3.5.

We begin with a formal observation about compactness and limits. Let  $(\mathbf{C}_{\alpha})_{\alpha}$  be a *finite* diagram of presentable  $\infty$ -categories (and colimit-preserving functors) with limit **C**. Then we have:

**Lemma 3.7.** Let  $c \in \mathbf{C}$  be an object and write  $c_{\alpha} \in \mathbf{C}_{\alpha}$  for its image for each  $\alpha$ . If  $c_{\alpha}$  is compact for each  $\alpha$ , then c is compact.

*Proof.* Recall that c is compact iff the functor  $\text{Maps}_{\mathbf{C}}(c, -)$  commutes with filtered colimits. Thus the claim follows from the fact that the operations of taking mapping spaces and forming limits of  $\infty$ -categories commute, and filtered colimits of spaces commute with finite limits.  $\Box$ 

3.8. Recall that for any derived stack  $\mathcal{X}$  we know (by definition) that  $\operatorname{Qcoh}(\mathcal{X})$  can be written as a limit of  $\infty$ -categories  $\operatorname{Qcoh}(S)$  with S affine. In general, it is not possible however to write it as a *finite* limit (in order to apply Lemma 3.7).

On the other hand, suppose that X is a derived scheme which admits an affine Zariski cover  $X = U \cup V$ . As discussed in Lecture 2, the Zariski excision property says that we have a cartesian square

(3.1)  

$$\begin{array}{ccc}
\operatorname{Qcoh}(X) & \xrightarrow{j_{U}} & \operatorname{Qcoh}(U) \\
& & \downarrow_{j_{V}^{*}} & & \downarrow_{(j_{V}^{\prime})^{*}} \\
\operatorname{Qcoh}(V) & \xrightarrow{(j_{U}^{\prime})^{*}} & \operatorname{Qcoh}(U \cap V)
\end{array}$$

In this case we can apply Lemma 3.7 and conclude that a quasi-coherent sheaf  $\mathcal{F}_X \in \operatorname{Qcoh}(X)$  is compact iff its restrictions to U and V are both compact. Since U and V are affine, this is equivalent to the condition that  $\mathcal{F}_X|_U$  and  $\mathcal{F}_X|_V$  are perfect. For example, this holds if  $\mathcal{F}_X$  is perfect, so we see that any perfect complex on X is a compact object.

3.9. More generally, suppose that X is quasi-compact, so that it admits a *finite* affine Zariski cover; if it is further *quasi-separated*, then we know the pairwise intersections are again quasi-compact. We can therefore argue in this case by induction on the size of the affine cover to reduce to the case  $X = U \cup V$  as in Paragraph 3.8. We get:

**Proposition 3.10.** Let X be a qcqs derived scheme. Then any perfect complex  $\mathcal{F} \in Perf(X)$  is a compact object of Qcoh(X).

4. Interlude: the small Zariski site. We make a brief digression to discuss the basic structure theory of open immersions of derived schemes.

In particular we will show that the small Zariski site of an affine derived scheme S = Spec(R) is equivalent to that of its underlying classical scheme  $S_{cl} = Spec(\pi_0 R)$ . This justifies the idea that elements of the higher homotopy groups  $\pi_i(R)$  should be thought of as "higher order nilpotents": like usual nilpotents, they are invisible to the underlying topological space.

4.1. We begin with the most important example of an open immersion.

Let X = Spec(R) be an affine derived scheme. For any point  $f \in R_{\text{Spc}}$  in the underlying space of R, let

$$\mathbf{R} \to \mathbf{R}[f^{-1}]$$

denote the R-algebra defined by attaching a 1-cell to the polynomial algebra R[x] which identifies  $f \cdot x \simeq 1$ . That is, we have a cocartesian square

in SCRing. In particular we have  $\pi_0(\mathbf{R}[f^{-1}]) = \pi_0(\mathbf{R})[f^{-1}]$ .

**Lemma 4.2.** The morphism  $\operatorname{Spec}(\mathbb{R}[f^{-1}]) \to \operatorname{Spec}(\mathbb{R})$  is an open immersion.

*Proof.* By construction,  $\varphi : \mathbb{R} \to \mathbb{R}[f^{-1}]$  is of finite presentation.

The universal property of the fibred coproduct shows that for any simplicial commutative ring R', the mapping space

$$\operatorname{Maps}_{\operatorname{SCRing}}(\operatorname{R}[f^{-1}], \operatorname{R}')$$

is identified with a direct summand of  $\operatorname{Maps}_{\operatorname{SCRing}}(\mathbf{R}, \mathbf{R}')$ : it is the union of the connected components of homomorphisms  $\varphi : \mathbf{R} \to \mathbf{R}'$  which send f to a unit in  $\pi_0(\mathbf{R}')$ . In particular we see that  $\varphi$  is an epimorphism.

This universal property also shows that  $\pi_*(\mathbf{R}[f^{-1}]) = \pi_*(\mathbf{R})[f^{-1}]$ , which implies that  $\varphi$  is flat.

4.3. Let  $i : \mathbb{Z} \hookrightarrow \mathbb{X}$  be a closed immersion of derived schemes. We define the *complementary* open immersion to i as follows.

Let U be the prestack defined as follows: for an affine derived scheme S = Spec(A), we define U(S) to be the full sub- $\infty$ -groupoid of X(S) spanned by morphisms  $S \to X$  such that the square



is cartesian, where  $\emptyset$  is the empty scheme.

*Remark* 4.4. Note that U only depends on  $Z_{cl}$ . That is,  $Z \hookrightarrow X$  and  $Z_{cl} \hookrightarrow X$  have the same open complement.

We will prove:

**Proposition 4.5.** The prestack U is a derived scheme, and the canonical morphism  $j : U \to X$  is an open immersion.

4.6. We first make an simple observation.

**Lemma 4.7.** Let  $j : U \hookrightarrow X$  be an open immersion of derived schemes. Then there exists a closed immersion  $i : Z \hookrightarrow X$  such that j is the complementary open immersion to i.

Indeed let  $i_0 : \mathbb{Z} \hookrightarrow X_{cl}$  be a closed immersion which is complement to  $j_{cl} : U_{cl} \hookrightarrow X_{cl}$ . Then  $i : \mathbb{Z} \xrightarrow{i_0} X_{cl} \hookrightarrow X$  is a closed immersion which is complement to j.

4.8. We now show that any open subscheme of an affine derived scheme S = Spec(R) is Zariski-locally of the form  $\text{Spec}(R[f^{-1}])$  for some element  $f \in R_{\text{Spc}}$  in the underlying space.

**Proposition 4.9.** Let X = Spec(R) be an affine derived scheme. For any open immersion  $j : U \hookrightarrow X$ , there exists an affine Zariski cover of U of the form  $(\text{Spec}(R[f_{\alpha}^{-1}]) \hookrightarrow U)_{\alpha}$ , for some elements  $f_{\alpha} \in R_{\text{Spc}}$ .

*Proof.* Let  $i: \mathbb{Z} \hookrightarrow \mathbb{X}$  be a complementary closed immersion and take  $f_{\alpha}$  to be (lifts of) generators of the ideal cutting out  $\mathbb{Z}_{cl}$  in  $\mathbb{X}_{cl}$ . Then we have open immersions  $\mathbb{U}_{\alpha} = \operatorname{Spec}(\mathbb{R}[f_{\alpha}^{-1}]) \hookrightarrow \mathbb{X}$ . It is clear that each  $\mathbb{U}_{\alpha} \to \mathbb{X}$  factors through U and will show that the map  $\coprod_{\alpha} \operatorname{Spec}(\mathbb{R}[f_{\alpha}^{-1}]) \to \mathbb{U}$ is an effective epimorphism. It suffices to show that for any  $\mathbb{S} = \operatorname{Spec}(\mathbb{A}) \to \mathbb{U}$  there exists a Zariski-covering family  $(\operatorname{Spec}(\mathbb{A}_{\beta}) \hookrightarrow \mathbb{A})_{\beta}$  such that each  $\operatorname{Spec}(\mathbb{A}_{\beta}) \to \mathbb{U}$  lifts to a morphism  $\operatorname{Spec}(\mathbb{A}_{\beta}) \to \mathbb{U}_{\alpha}$  for some  $\alpha$  (which depends on  $\beta$ ).

Let  $\varphi : \mathbb{R} \to \mathbb{A}$  be the homomorphism corresponding to  $\mathbb{S} \to \mathbb{U} \to \mathbb{X}$ . Since it factors through  $\mathbb{U}$ , the image of the ideal  $\mathbb{I} \subset \pi_0(\mathbb{R})$  generates  $\pi_0(\mathbb{A})$ . We can therefore write  $1 = \sum_{\alpha} a_{\alpha} \cdot \varphi(f_{\alpha})$  for some elements  $a_{\alpha} \in \pi_0(\mathbb{R})$  (only finitely many of which are nonzero). Now consider the family  $(\mathbb{A} \to \mathbb{A}[\varphi(f_{\beta})^{-1}])_j$ , indexed by the *j*'s such that  $a_{\beta} \neq 0$ . Then we have lifts  $\mathbb{A}_{\beta} \to \mathbb{R}[f_{\beta}^{-1}]$  for each  $\beta$ , and it suffices to show that  $\mathbb{A} \to \prod_{\beta} \mathbb{A}_{\beta}$  is faithfully flat, so that  $(\mathbb{A} \to \mathbb{A}[\varphi(f_{\beta})^{-1}])_j$  is indeed Zariski-covering.

Since it is flat, it suffices to show that the induced map  $\pi_0(A) \to \prod_j \pi_0(A_j)$  is faithfully flat (in the usual sense); see Lemma 4.10 below. Let M be a discrete module over  $\pi_0(A)$  such that  $M \otimes_{\pi_0(A)} \pi_0(A_\beta) = 0$  for all  $\beta$  (ordinary tensor product). It suffices to show that  $M_{\mathfrak{m}}$  is zero for all maximal ideals  $\mathfrak{m} \subset \pi_0(A)$ . For a given  $\mathfrak{m}$  we can choose an index  $\gamma$  such that  $\varphi(f_{\gamma}) \notin \mathfrak{m}$ , so that the map  $A \to A_{\mathfrak{m}}$  factors through  $A_{\gamma}$ ; then we have

$$M_{\mathfrak{m}} = M \otimes_{\pi_0(A)} \pi_0(A)_{\mathfrak{m}} = M \otimes_{\pi_0(A)} \pi_0(A_{\gamma}) \otimes_{\pi_0(A_{\gamma})} \pi_0(A)_{\mathfrak{m}} = 0,$$

whence the desired conclusion.

Here we used the following lemma:

**Lemma 4.10.** A morphism of simplicial commutative rings  $A \to B$  is faithfully flat iff it is flat and  $\pi_0(A) \to \pi_0(B)$  is faithfully flat (in the ordinary sense).

*Proof.* We prove the condition is sufficient. Let M be a connective A-module such that  $M \otimes_A B = 0$ . We will show that  $\pi_n(M) = 0$  for all n. Since  $\pi_0(A) \to \pi_0(B)$  is faithfully flat it suffices to show that  $\pi_n(M) \otimes_{\pi_0(A)} \pi_0(B) = 0$  for all n, where the tensor product is the usual tensor product (as opposed to the derived one). But by flatness this is identified with  $\pi_n(M \otimes_A B)$ , so the claim follows. We can now return to the proof of Proposition 4.5:

Proof of Proposition 4.5. It is clear that U is an fpqc sheaf. It suffices to construct an affine Zariski cover. Since the claim is local we can assume that X is affine, and conclude using Proposition 4.9.  $\hfill \Box$ 

4.11. For a derived scheme X, let  $\text{Open}_{/X}$  denote the  $\infty$ -category of derived schemes U equipped with open immersions  $j : U \hookrightarrow X$ .

**Theorem 4.12.** Let X = Spec(R) be an affine derived scheme. Then the base change functor

$$Open_{/X} \rightarrow Open_{/X_{cl}}$$

is an equivalence. In particular,  $Open_{/X}$  is a 1-category (a poset, in fact).

*Proof.* Let us show that the functor is essentially surjective. Given an open immersion  $j^0 : U^0 \hookrightarrow X_{cl}$ , we can find a Zariski cover by open subschemes of the form  $U_{0,\alpha} = \operatorname{Spec}(\pi_0(R)[f_{\alpha}^{-1}]) \hookrightarrow U^0$  with  $f_{\alpha} \in \pi_0(R)$ . Choose lifts of  $f_{\alpha}$  to R arbitrarily and let  $U_{\alpha} = \operatorname{Spec}(R[f_{\alpha}^{-1}]) \hookrightarrow X$ . Then let  $j : U \hookrightarrow X$  be the image of the map

$$\coprod_{\alpha} U_{\alpha} \to X.$$

It is immediate from the construction that this is an open immersion and that  $U \times_X X_{cl} = U_{cl} = U^0$ .

It remains to show that it is fully faithful. Given open immersions  $j_1 : U_1 \hookrightarrow X$  and  $j_2 : U_2 \hookrightarrow X$ , consider the map

$$\operatorname{Maps}_{\operatorname{Open}_{X}}(U_1, U_2) \to \operatorname{Maps}_{\operatorname{Open}_{X_{-1}}}((U_1)_{\operatorname{cl}}, (U_2)_{\operatorname{cl}})$$

Suppose that  $U_1 = \operatorname{Spec}(R[f_1^{-1}) \text{ and } U_2 = \operatorname{Spec}(R[f_2^{-1}])$ . In this case we are looking at

$$Maps_{SCRing_{R}}(R[f_{1}^{-1}], R[f_{2}^{-1}]) \to Maps_{CRing_{\pi_{0}(R)}}(\pi_{0}R[f_{1}^{-1}], \pi_{0}R[f_{2}^{-1}]).$$

By the universal property of the localization  $R[f_1^{-1}]$ , the source is either empty or contractible depending on whether the image of  $f_1$  is invertible in  $R[f_2^{-1}]$ ; the same holds for the target using the universal property of the classical localization  $\pi_0 R[f_1^{-1}]$ .

In general, we reduce to this case using Proposition 4.9.

5. Compact generation of affine schemes. We begin with the affine case. If X = Spec(R), we already know that  $Qcoh(X) = Mod_R$  is compactly generated by the perfect R-module R.

5.1. Given an open immersion  $j : U \hookrightarrow X$ , we will write  $\operatorname{Qcoh}(X)_U$  for the kernel of the restriction functor  $j^* : \operatorname{Qcoh}(X) \to \operatorname{Qcoh}(U)$ . We will show that  $\operatorname{Qcoh}(X)_U$  is compactly generated when j is quasi-compact.

**Proposition 5.2.** Let X = Spec(R) be an affine derived scheme and  $j : U \hookrightarrow X$  be a quasicompact open immersion. Then the following hold:

(i) The  $\infty$ -category  $\operatorname{Qcoh}_{U}(X)$  is compactly generated by a single perfect complex.

(ii) There is a semi-orthogonal decomposition

$$\operatorname{Qcoh}(\mathbf{X}) = \langle \operatorname{Qcoh}(\mathbf{X})_{\mathbf{U}}, j_* \operatorname{Qcoh}(\mathbf{U}) \rangle.$$

8

*Proof.* By Proposition 4.9 there exists an affine Zariski cover  $U = \bigcup_i U_i$  where  $U_i = \text{Spec}(\mathbb{R}[f_i^{-1}])$  and  $f_1, \ldots, f_n$  are points in the underlying space of  $\mathbb{R}$ ; since U is quasi-compact, this cover is finite. Consider the perfect complexes

$$\mathcal{K}_i = \operatorname{Cofib}(\mathcal{O}_{\mathbf{X}} \xrightarrow{f_i} \mathcal{O}_{\mathbf{X}}), \quad \mathcal{K} = \bigotimes_{1 \leqslant i \leqslant n} \mathcal{K}_i$$

Note that we have  $j^*\mathcal{K} = 0$ . To show that  $\mathcal{K}$  is a compact generator, it suffices to show that for any  $\mathcal{F} \in \operatorname{Qcoh}(X)_U$  in the right orthogonal of  $\mathcal{K}$ , i.e. with  $\operatorname{Maps}_{\operatorname{Qcoh}(X)_U}(\mathcal{K}, \mathcal{F}) = \operatorname{pt}$ , we have  $\mathcal{F} = 0$ . Write  $\mathcal{K}_{\neq j} = \bigotimes_{i \neq j} \mathcal{K}_i$  for each j; by adjunction, we have

$$pt = Maps(\mathcal{K}, \mathcal{F}) = Maps(\mathcal{K}_1, \underline{Hom}(\mathcal{K}_{\neq 1}, \mathcal{F}))$$

which means that  $f_1$  acts invertibly on  $\underline{\text{Hom}}(\mathcal{K}_{\neq 1}, \mathcal{F})$ , i.e. that  $\underline{\text{Hom}}(\mathcal{K}_{\neq 1}, \mathcal{F})$  is an  $\mathcal{O}_{\mathbf{X}}[f_1^{-1}]$ -module. We therefore have

$$\underline{\operatorname{Hom}}(\mathcal{K}_{\neq 1}, \mathcal{F}) = \underline{\operatorname{Hom}}(\mathcal{K}_{\neq 1}, \mathcal{F}) \otimes_{\mathcal{O}_{\mathbf{X}}} \mathcal{O}_{\mathbf{X}}[f_{1}^{-1}] = \underline{\operatorname{Hom}}(\mathcal{K}_{\neq 1}, \mathcal{F} \otimes_{\mathcal{O}_{\mathbf{X}}} \mathcal{O}_{\mathbf{X}}[f_{1}^{-1}]) = 0$$

using the fact that  $j^*\mathcal{F}=0$  and  ${\rm Spec}({\bf R}[f_1^{-1}])\subset {\bf U}$  at the end. Arguing inductively we eventually get

$$\operatorname{Hom}(\mathcal{K}_n, \mathcal{F}) = 0.$$

which means that  $f_n$  acts invertibly on  $\mathcal{F}$ , hence  $\mathcal{F} = \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X[f_n^{-1}] = 0$ . Thus  $\operatorname{Qcoh}(X)_U$  is compactly generated by  $\mathcal{K}$ .

We now consider (iii). By Proposition 1.3 and the fact that  $j_*$  is fully faithful and admits a left adjoint  $j^*$ , there exists a semi-orthogonal decomposition

$$\operatorname{Qcoh}(\mathbf{X}) = \langle ^{\perp}(j_* \operatorname{Qcoh}(\mathbf{U})), j_* \operatorname{Qcoh}(\mathbf{U}) \rangle$$

where  $\perp j_* \operatorname{Qcoh}(U)$  is the left orthogonal to  $j_* \operatorname{Qcoh}(U)$ . It suffices to show that  $\perp j_* \operatorname{Qcoh}(U) = \operatorname{Qcoh}(X)_U$ . This follows by adjunction:  $\mathcal{F} \in \operatorname{Qcoh}(X)$  is left orthogonal to  $j_* \operatorname{Qcoh}(U)$  iff

$$Maps(\mathcal{F}, j_*\mathcal{G}) = Maps(j^*\mathcal{F}, \mathcal{G}) = pt$$

for all  $\mathcal{G} \in \operatorname{Qcoh}(U)$ , or equivalently if  $j^* \mathcal{F} = 0$ .

6. Compact generation of qcqs schemes. Let X be a derived scheme and  $j : U \hookrightarrow X$  an open immersion. We will write  $\operatorname{Qcoh}(X)_U$  for the kernel of the restriction functor  $j^* : \operatorname{Qcoh}(X) \to \operatorname{Qcoh}(U)$ , and similarly  $\operatorname{Perf}(X)_U$  for the kernel of  $j^* : \operatorname{Perf}(X) \to \operatorname{Perf}(U)$ .

6.1. We now prove Thomason's compact generation theorem, as generalized to qcqs schemes by Bondal–Van den Bergh, and to the derived setting by Toën.

**Theorem 6.2.** Let X be a qcqs derived scheme and  $j : U \hookrightarrow X$  a quasi-compact open immersion. Then the following hold:

- (i) The  $\infty$ -category  $\operatorname{Qcoh}_{U}(X)$  is compactly generated by a single perfect complex.
- (ii) An object of  $\operatorname{Qcoh}_{U}(X)$  is compact iff it is a perfect complex.
- (iii) There is a semi-orthogonal decomposition

$$\operatorname{Qcoh}(\mathbf{X}) = \langle \operatorname{Qcoh}(\mathbf{X})_{\mathrm{U}}, j_* \operatorname{Qcoh}(\mathrm{U}) \rangle.$$

Of course taking U to be empty, we find that Qcoh(X) is compactly generated for any qcqs derived scheme X. The statement for general U will be needed to get descent for K-theory, but for simplicity of exposition we will only prove the case  $U = \emptyset$  as the general case follows the same idea.

*Proof.* We have already seen (ii) (Proposition 3.5 and Proposition 3.10).

The proof of (iii) is the same as in the affine case (Proposition 5.2). The key point is that  $j_*$  is fully faithful and right adjoint to  $j^*$ .

We now consider statement (i) (in the case  $U = \emptyset$ ). By quasi-compactness, X admits a *finite* affine Zariski cover  $U_1, \ldots, U_n$ . By quasi-separatedness, the pairwise intersections  $U_i \cap U_j$  are again quasi-compact.

We will show that Qcoh(X) is compactly generated by a single object, by using induction to reduce to the affine case. Let  $U = U_1 \cup U_2 \cup \cdots \cup U_{n-1}$  and  $V = U_n$ . We have a cartesian square

$$\begin{array}{ccc} \mathbf{U} \cap \mathbf{V} & \stackrel{j'_U}{\longleftarrow} & \mathbf{V} \\ & & & \int j'_V & & \int j_V \\ & & \mathbf{U} & \stackrel{j_U}{\longleftarrow} & \mathbf{X} \end{array}$$

The claim holds for Qcoh(V) since V is affine, and by induction we can assume that it holds also for Qcoh(U); let  $Q_U \in Qcoh(U)$  be a compact generator. Since V is affine, we have by Proposition 5.2 an exact sequence

(6.1) 
$$\operatorname{Qcoh}(V)_{U \cap V} \to \operatorname{Qcoh}(V) \to \operatorname{Qcoh}(U \cap V)$$

with the Koszul complex  $\mathcal{K}_V \in \operatorname{Qcoh}(V)_{U \cap V}$  a compact generator. The conditions of Theorem 2.11 are satisfied and we find that the compact object  $\mathcal{Q}_U|_{U \cap V} \in \operatorname{Qcoh}(U \cap V)$  lifts to a compact object  $\mathcal{Q}_V \in \operatorname{Qcoh}(V)$  such that  $\mathcal{Q}_V|_{U \cap V} = (\mathcal{Q}_U \oplus \mathcal{Q}_U[1])|_{U \cap V}$ .

By the Zariski excision property (Lecture 2) we have the cartesian square

(6.2)  

$$\begin{array}{cccc}
\operatorname{Qcoh}(X) & \xrightarrow{j_{U}^{*}} & \operatorname{Qcoh}(U) \\
& & \downarrow_{j_{V}^{*}} & & \downarrow_{(j_{V}^{\prime})^{*}} \\
\operatorname{Qcoh}(V) & \xrightarrow{(j_{U}^{\prime})^{*}} & \operatorname{Qcoh}(U \cap V)
\end{array}$$

We can therefore define two quasi-coherent sheaves  $\Omega^1_X$ ,  $\Omega^2_X$  on X as follows. The first  $\Omega^1_X \in Qcoh(X)$  is glued from  $0 \in Qcoh(U)$  and  $\mathcal{K}_V \in Qcoh(V)$  via the canonical isomorphisms

$$0|_{U\cap V} \xrightarrow{\alpha} 0 \xleftarrow{\beta} \mathcal{K}_V|_{U\cap V}.$$

The second  $\Omega_X^2 \in Qcoh(X)$  is glued from  $\Omega_U \oplus \Omega_U[1] \in Qcoh(U)$  and  $\Omega_V \in Qcoh(V)$ , via the canonical isomorphisms

$$(\mathfrak{Q}_{\mathrm{U}} \oplus \mathfrak{Q}_{\mathrm{U}}[1])|_{\mathrm{U} \cap \mathrm{V}} \xrightarrow{\alpha} (\mathfrak{Q}_{\mathrm{U}} \oplus \mathfrak{Q}_{\mathrm{U}}[1])|_{\mathrm{U} \cap \mathrm{V}} \xleftarrow{\rho} (\mathfrak{Q}_{\mathrm{V}})|_{\mathrm{U} \cap \mathrm{V}}.$$

By Lemma 3.7, both  $Q_X^1$  and  $Q_X^2$  are compact in Qcoh(X).

Now we claim that  $\Omega_X := \Omega_X^1 \oplus \Omega_X^2$  is a compact generator of X. Let  $\mathcal{F}_X \in \operatorname{Qcoh}(X)$  be right orthogonal to  $\Omega_X$  (hence to both  $\Omega_X^i$ 's); it suffices to show that  $\mathcal{F}_X = 0$ . Using the square (6.2), it suffices to show that  $\mathcal{F}_X|_U = 0$  and  $\mathcal{F}_X|_V = 0$ .

First we show that  $\mathcal{F}_X|_V$  is in the essential image of the fully faithful functor  $(j'_U)_*$ :  $\operatorname{Qcoh}(U \cap V) \hookrightarrow \operatorname{Qcoh}(V)$ , i.e. that  $\mathcal{F}_X|_V = (j'_U)_*(\mathcal{F}_X|_{U \cap V})$ . This will imply that it suffices to show that  $\mathcal{F}_X|_U = 0$  (as then  $\mathcal{F}_X|_V = 0$  as well). Indeed, by the exact sequence (6.1) (which is a semi-orthogonal decomposition) this claim is equivalent to the assertion that  $\mathcal{F}_X|_V$  is right orthogonal to  $\operatorname{Qcoh}(V)_{U \cap V}$ , or equivalently to its generator  $\mathcal{K}_V$ . Since  $\mathcal{Q}^1_X|_U = 0$ , the cartesian square (6.2) shows that for each  $n \ge 0$ , we have

$$Maps(\mathcal{K}_{V}[-n], \mathcal{F}_{X}|_{V}) = Maps(\mathcal{Q}_{X}^{1}[-n], \mathcal{F}_{X})$$

which is contractible since  $\mathcal{F}_X$  is right orthogonal to  $\mathcal{Q}^1_X$ .

It remains to show that  $\mathcal{F}_X|_U = 0$ . Since  $\mathcal{Q}_U$  is a compact generator of Qcoh(U), it will suffice to show that the mapping spaces  $\operatorname{Maps}(\mathbb{Q}_{U}[-n], \mathcal{F}_{X}|_{U})$  are contractible for  $n \ge 0$ . In fact, we have

$$Maps(\mathcal{Q}_{U}[-n], \mathcal{F}_{X}|_{U}) = Maps(\mathcal{Q}_{X}^{2}[-n], \mathcal{F}_{X})$$

which is contractible since  $\mathcal{F}_{X}$  is right orthogonal to  $\mathcal{Q}_{X}^{2}$ . The isomorphism of mapping spaces follows from the cartesian square (6.2) and the isomorphism  $\mathfrak{F}_X|_V = (j'_U)_*(\mathfrak{F}_X|_{U\cap V}).$ 

# **References.**

- [1] A. Bondal, M. Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry.
- [2] Jacob Lurie, Spectral algebraic geometry, version of 2017-10-13, available at http://www.math.harvard.edu/ ~lurie/papers/SAG-rootfile.pdf.
- [3] Amnon Neeman, The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel.
- [4] R.W. Thomason, T. Trobaugh, Higher algebraic K-theory of schemes and of derived categories.
- [5] B. Toën, Derived Azumaya algebras.