
Lecture 3
Compact generation of quasi-coherent sheaves

Let X be a derived stack. In Lecture 1 we discussed various finiteness properties for quasi-
coherent sheaves: perfectness, dualizability, and compactness; we saw that all these notions
agree when X is affine, and that the first two agree in general. The goal of this lecture is to
prove that perfectness and compactness also agree for a very general class of derived schemes.

1. Semi-orthogonal decompositions.

Definition 1.1. Let C be a stable presentable ∞-category. Let C+ and C− be stable full
subcategories. We say that 〈C+,C−〉 form a semi-orthogonal decomposition of C if the following
hold:

(i) For any objects c+ ∈ C+ and c− ∈ C−, the mapping space Maps(c+, c−) is contractible.

(ii) There exists a right adjoint (resp. left adjoint) to the inclusion C+ ↪→ C (resp. to the
inclusion C− ↪→ C).

1.2. It is relatively easy to construct semi-orthogonal decompositions using the following
procedure.

Given a stable subcategory D ⊂ C, we define the right orthogonal of D to be the full
subcategory of objects c ∈ C such that the mapping space Maps(d, c) is contractible for all
d ∈ D. We define the left orthogonal in a dual way.

We have (see [2, Prop. 7.2.1.4]):

Proposition 1.3. Let C be a stable presentable ∞-category and D ⊂ C a stable full subcategory.
Then C admits a semi-orthogonal decomposition 〈C+,C−〉 with C+ = D iff the inclusion D ↪→ C
admits a right adjoint. In this case, C− is the right orthogonal of D.

Dually, it admits a semi-orthogonal decomposition 〈C+,C−〉 with C− = D iff the inclusion
D ↪→ C admits a left adjoint. In this case, C+ is the left orthogonal of D.

1.4. Note that any semi-orthogonal decomposition 〈C+,C−〉 gives rise to an exact sequence of
stable presentable ∞-categories

C+ ↪→ C→ C−

where the second arrow is a left localization (i.e. its right adjoint is fully faithful).

2. The Thomason–Neeman localization theorem.

2.1. Let u : C→ D fully faithful colimit-preserving functor of stable presentable ∞-categories.
Let D→ D/C denote the cofibre of u (in the ∞-category of stable presentable ∞-categories
and colimit-preserving functors). Equivalently, D → D/C is the left localization of D with
respect to the class of morphisms whose cofibre belongs to (the essential image of) C.

Definition 2.2. Let

(2.1) C′
u−→ C

v−→ C′′

be a diagram of stable presentable ∞-categories and colimit-preserving functors. We say that it
is an exact sequence if it satisfies the following conditions:

(i) The composite vu is zero.

(ii) The functor u is fully faithful.

(iii) The canonical functor C/C′ → C′′ is an equivalence.
1
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Definition 2.3. We say that C is compactly generated if there exists an essentially small set
of objects which are compact and generate C under colimits.

In the stable setting, this is equivalent to the following property. The right orthogonal of a
set of objects (ci)i in C is the full subcategory of objects d ∈ C such that each mapping space
Maps(ci[−n], d) is contractible for each i and all n > 0. Then a set of compact objects (ci)i
forms a set of compact generators iff their right orthogonal vanishes.

In the compactly generated case, we can characterize exact sequences in terms of the full
subcategories of compact objects:

Proposition 2.4. Suppose we have a diagram (2.1), and assume that the categories C, C′ and
C′′ are compactly generated. Suppose also that u and v preserve compact objects (equivalently,
their right adjoints preserve colimits) and consider the induced diagram

(C′)comp ucomp

−−−−→ (C)comp vcomp

−−−−→ (C′′)comp,

on the full subcategories of compact objects, of small stable ∞-categories and finite-colimit-
preserving functors. Then (2.1) is exact iff the following conditions are satisfied:

(i) The composite vcomp ◦ ucomp is zero.

(ii) The functor ucomp is fully faithful.

(iii) The canonical functor (C)comp/(C′)comp → (C′′)comp is an equivalence up to idempotent
completion, i.e. the functor

((C)comp/(C′)comp)idem → ((C′′)comp)idem

is an equivalence.

Recall that, if C is a small ∞-category, then its idempotent completion C→ (C)idem is the
full subcategory of presheaves on C generated by the representables under direct summands. In
the stable setting it can also be computed as Ind(C)comp, i.e. the full subcategory of compact
objects in the formal completion Ind(C) by filtered colimits.

Remark 2.5. The main content of Proposition 2.4 is that if the sequence (2.1) is exact, then any
compact object c′′ ∈ C′′ can be lifted to a compact object c ∈ C, such that v(c) ≈ c′′ at least
up to direct summands (i.e. v(c) will have c′′ as a direct summand). In fact, Neeman showed [3]
(following Thomason) that c can be taken such that v(c) ≈ c′′ ⊕ c′′[1].

2.6. Let C be a small stable ∞-category. We write K0(C) for the free abelian group on
isomorphism classes of objects of C, modulo the subgroup generated by [c]− [c′]− [c′′] for all
exact triangles c′ → c→ c′′ in C.

Proposition 2.7. Let u : C→ D be an exact fully faithful functor between stable ∞-categories.
Suppose that every object d ∈ D is a direct summand of an object in the essential image of u.
Then we have:

(i) The induced homomorphism of abelian groups

(2.2) K0(C)→ K0(D)

is injective.

(ii) An object d ∈ D belongs to the essential image of u iff its class [d] ∈ K0(D) belongs to the
image of the homomorphism (2.2).

In particular we deduce:

Corollary 2.8. Suppose that the condition of Proposition 2.7 holds. Then for any object d ∈ D,
the object d⊕ d[1] belongs to the essential image of u.
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To prove Proposition 2.7, it will be convenient to introduce a variant of K0(C) for which
Proposition 2.7 is trivially true. For this, we modify the definition of K0(C) to only consider
split exact triangles. Thus, let K⊕0 (C) denote the free abelian group on isomorphism classes of
objects of C, modulo the subgroup generated by elements [c]− [c′]− [c′′] for all objects satisfying
c = c′ ⊕ c′′ in C. The following property is easy to check:

Lemma 2.9. Let c1 and c2 be objects of C. Then we have [c1] = [c2] in K⊕0 (C) iff there exists
an object c3 ∈ C such that c1 ⊕ c3 = c2 ⊕ c3.

Using Lemma 2.9 one verifies easily that the analogue of Proposition 2.7 holds for K⊕0 . To
prove Proposition 2.7, we note that there is a canonical surjection K⊕0 (C)→ K0(C) for any C.
We therefore have a diagram of short exact sequences

(2.3)

0 I(C) K⊕0 (C) K0(C) 0

0 I(D) K⊕0 (D) K0(D) 0

Proposition 2.7 now immediately follows from the following lemma and some diagram chasing.

Lemma 2.10. Under the assumptions of Proposition 2.7, the left-hand map

I(C)→ I(D)

is surjective.

Proof. By construction, I(D) is generated by elements of the form [d]− [d′]− [d′′] where d′ →
d→ d′′ is an exact triangle in D. It suffices to construct, for any such triangle, another triangle
c′ → c→ c′′ which is in the essential image of u and is such that [c]− [c′]− [c′′] = [d]− [d′]− [d′′].
By assumption, there exist objects e′, e′′ ∈ D such that d′⊕e′ and d′′⊕e′′ belong to the essential
image of u. Then the desired triangle is

d′ ⊕ e′ → d⊕ e′ ⊕ e′′ → d′′ ⊕ e′′,
where the middle term also belongs to the essential image of u because u is exact. �

Putting everything together, we have:

Theorem 2.11 (Thomason–Neeman localization theorem). Let

C′
u−→ C

v−→ C′′

be an exact sequence of stable presentable∞-categories. Suppose that C, C′ and C′′ are compactly
generated, and that u and v preserve colimits and have colimit-preserving right adjoints. Then
for any compact object x ∈ C′′, the object x⊕ x[1] belongs to the essential image of v.

3. Perfect complexes on qcqs schemes. We begin working towards the compact generation
theorem by showing that, under quasi-compact quasi-separated hypotheses, all perfect complexes
are compact.

3.1. Let us take a minute to introduce some basic finiteness properties of derived schemes:

Definition 3.2.

(i) A derived scheme X is quasi-compact if for any Zariski cover (jα : Uα → X)α∈Λ, there exists
a finite subset Λ0 ⊂ Λ such that the family (jα)α∈Λ0

is still a Zariski cover.

(ii) A morphism of derived schemes f : Y → X is quasi-compact if for any affine derived scheme
S and any morphism S→ X, the spectral scheme S×X Y is quasi-compact.
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(iii) A morphism of derived schemes f : Y → X is quasi-separated if the diagonal Y → Y×X Y
is quasi-compact.

(iv) A derived scheme X is quasi-separated if it the morphism X→ Spec(Z) is quasi-separated.

(v) A morphism of derived schemes f : Y → X is separated if the diagonal Y → Y×X Y
is a closed immersion, i.e. it induces a closed immersion on underlying classical schemes.
Equivalently, fcl : Ycl → Xcl is separated.

(vi) A derived scheme X is separated if for any open immersions U ↪→ X and V ↪→ X, with U
and V affine, the intersection U×X V is quasi-compact.

Exercise 3.3. Let X be a derived scheme. Then X is quasi-separated iff for any open immersions
U ↪→ X and V ↪→ X, with U and V affine, the intersection U×X V is quasi-compact.

3.4. We have:

Proposition 3.5. Let X be a quasi-compact derived scheme. If a quasi-coherent sheaf F ∈
Qcoh(X) is compact, then it is a perfect complex.

Proof. By definition, it suffices to show that f∗F is perfect for each morphism f : S→ X where
S is affine. We already know that the compact objects of Qcoh(S) are precisely the perfect
complexes when S is affine. Therefore it suffices to show that f∗ preserves compact objects, or
equivalently that its right adjoint f∗ preserves colimits. We saw that in Lecture 2 that this is
true whenever f is quasi-compact, which holds in this case. �

3.6. Next we would like to prove a converse to Proposition 3.5.

We begin with a formal observation about compactness and limits. Let (Cα)α be a finite
diagram of presentable ∞-categories (and colimit-preserving functors) with limit C. Then we
have:

Lemma 3.7. Let c ∈ C be an object and write cα ∈ Cα for its image for each α. If cα is
compact for each α, then c is compact.

Proof. Recall that c is compact iff the functor MapsC(c,−) commutes with filtered colimits.
Thus the claim follows from the fact that the operations of taking mapping spaces and forming
limits of ∞-categories commute, and filtered colimits of spaces commute with finite limits. �

3.8. Recall that for any derived stack X we know (by definition) that Qcoh(X) can be written
as a limit of ∞-categories Qcoh(S) with S affine. In general, it is not possible however to write
it as a finite limit (in order to apply Lemma 3.7).

On the other hand, suppose that X is a derived scheme which admits an affine Zariski cover
X = U∪V. As discussed in Lecture 2, the Zariski excision property says that we have a cartesian
square

(3.1)

Qcoh(X) Qcoh(U)

Qcoh(V) Qcoh(U ∩V)

j∗U

j∗V (j′V)∗

(j′U)∗

In this case we can apply Lemma 3.7 and conclude that a quasi-coherent sheaf FX ∈ Qcoh(X)
is compact iff its restrictions to U and V are both compact. Since U and V are affine, this is
equivalent to the condition that FX|U and FX|V are perfect. For example, this holds if FX is
perfect, so we see that any perfect complex on X is a compact object.
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3.9. More generally, suppose that X is quasi-compact, so that it admits a finite affine Zariski
cover; if it is further quasi-separated, then we know the pairwise intersections are again quasi-
compact. We can therefore argue in this case by induction on the size of the affine cover to
reduce to the case X = U ∪V as in Paragraph 3.8. We get:

Proposition 3.10. Let X be a qcqs derived scheme. Then any perfect complex F ∈ Perf(X) is
a compact object of Qcoh(X).

4. Interlude: the small Zariski site. We make a brief digression to discuss the basic
structure theory of open immersions of derived schemes.

In particular we will show that the small Zariski site of an affine derived scheme S = Spec(R)
is equivalent to that of its underlying classical scheme Scl = Spec(π0R). This justifies the
idea that elements of the higher homotopy groups πi(R) should be thought of as “higher order
nilpotents”: like usual nilpotents, they are invisible to the underlying topological space.

4.1. We begin with the most important example of an open immersion.

Let X = Spec(R) be an affine derived scheme. For any point f ∈ RSpc in the underlying
space of R, let

R→ R[f−1]

denote the R-algebra defined by attaching a 1-cell to the polynomial algebra R[x] which identifies
f · x ' 1. That is, we have a cocartesian square

Z[t] R[x]

Z R[f−1]

t 7→0

t7→fx−1

in SCRing. In particular we have π0(R[f−1]) = π0(R)[f−1].

Lemma 4.2. The morphism Spec(R[f−1])→ Spec(R) is an open immersion.

Proof. By construction, ϕ : R→ R[f−1] is of finite presentation.

The universal property of the fibred coproduct shows that for any simplicial commutative
ring R′, the mapping space

MapsSCRing(R[f−1],R′)

is identified with a direct summand of MapsSCRing(R,R′): it is the union of the connected
components of homomorphisms ϕ : R→ R′ which send f to a unit in π0(R′). In particular we
see that ϕ is an epimorphism.

This universal property also shows that π∗(R[f−1]) = π∗(R)[f−1], which implies that ϕ is
flat. �

4.3. Let i : Z ↪→ X be a closed immersion of derived schemes. We define the complementary
open immersion to i as follows.

Let U be the prestack defined as follows: for an affine derived scheme S = Spec(A), we define
U(S) to be the full sub-∞-groupoid of X(S) spanned by morphisms S→ X such that the square

∅ S

Z Xi

is cartesian, where ∅ is the empty scheme.
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Remark 4.4. Note that U only depends on Zcl. That is, Z ↪→ X and Zcl ↪→ X have the same
open complement.

We will prove:

Proposition 4.5. The prestack U is a derived scheme, and the canonical morphism j : U→ X
is an open immersion.

4.6. We first make an simple observation.

Lemma 4.7. Let j : U ↪→ X be an open immersion of derived schemes. Then there exists a
closed immersion i : Z ↪→ X such that j is the complementary open immersion to i.

Indeed let i0 : Z ↪→ Xcl be a closed immersion which is complement to jcl : Ucl ↪→ Xcl. Then

i : Z
i0−→ Xcl ↪→ X is a closed immersion which is complement to j.

4.8. We now show that any open subscheme of an affine derived scheme S = Spec(R) is

Zariski-locally of the form Spec(R[f−1]) for some element f ∈ RSpc in the underlying space.

Proposition 4.9. Let X = Spec(R) be an affine derived scheme. For any open immersion
j : U ↪→ X, there exists an affine Zariski cover of U of the form (Spec(R[f−1

α ]) ↪→ U)α, for some
elements fα ∈ RSpc.

Proof. Let i : Z ↪→ X be a complementary closed immersion and take fα to be (lifts of) generators
of the ideal cutting out Zcl in Xcl. Then we have open immersions Uα = Spec(R[f−1

α ]) ↪→ X. It
is clear that each Uα → X factors through U and will show that the map

∐
α Spec(R[f−1

α ])→ U
is an effective epimorphism. It suffices to show that for any S = Spec(A) → U there exists a
Zariski-covering family (Spec(Aβ) ↪→ A)β such that each Spec(Aβ) → U lifts to a morphism
Spec(Aβ)→ Uα for some α (which depends on β).

Let ϕ : R→ A be the homomorphism corresponding to S→ U ↪→ X. Since it factors through
U, the image of the ideal I ⊂ π0(R) generates π0(A). We can therefore write 1 =

∑
α aα · ϕ(fα)

for some elements aα ∈ π0(R) (only finitely many of which are nonzero). Now consider the family
(A→ A[ϕ(fβ)−1])j , indexed by the j’s such that aβ 6= 0. Then we have lifts Aβ → R[f−1

β ] for

each β, and it suffices to show that A→
∏
β Aβ is faithfully flat, so that (A→ A[ϕ(fβ)−1])j is

indeed Zariski-covering.

Since it is flat, it suffices to show that the induced map π0(A)→
∏
j π0(Aj) is faithfully flat

(in the usual sense); see Lemma 4.10 below. Let M be a discrete module over π0(A) such that
M⊗π0(A) π0(Aβ) = 0 for all β (ordinary tensor product). It suffices to show that Mm is zero for
all maximal ideals m ⊂ π0(A). For a given m we can choose an index γ such that ϕ(fγ) 6∈ m, so
that the map A→ Am factors through Aγ ; then we have

Mm = M⊗π0(A) π0(A)m = M⊗π0(A) π0(Aγ)⊗π0(Aγ) π0(A)m = 0,

whence the desired conclusion. �

Here we used the following lemma:

Lemma 4.10. A morphism of simplicial commutative rings A→ B is faithfully flat iff it is flat
and π0(A)→ π0(B) is faithfully flat (in the ordinary sense).

Proof. We prove the condition is sufficient. Let M be a connective A-module such that M⊗AB = 0.
We will show that πn(M) = 0 for all n. Since π0(A)→ π0(B) is faithfully flat it suffices to show
that πn(M)⊗π0(A) π0(B) = 0 for all n, where the tensor product is the usual tensor product (as
opposed to the derived one). But by flatness this is identified with πn(M⊗A B), so the claim
follows. �
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We can now return to the proof of Proposition 4.5:

Proof of Proposition 4.5. It is clear that U is an fpqc sheaf. It suffices to construct an affine
Zariski cover. Since the claim is local we can assume that X is affine, and conclude using
Proposition 4.9. �

4.11. For a derived scheme X, let Open/X denote the∞-category of derived schemes U equipped
with open immersions j : U ↪→ X.

Theorem 4.12. Let X = Spec(R) be an affine derived scheme. Then the base change functor

Open/X → Open/Xcl

is an equivalence. In particular, Open/X is a 1-category (a poset, in fact).

Proof. Let us show that the functor is essentially surjective. Given an open immersion j0 : U0 ↪→
Xcl, we can find a Zariski cover by open subschemes of the form U0,α = Spec(π0(R)[f−1

α ]) ↪→ U0

with fα ∈ π0(R). Choose lifts of fα to R arbitrarily and let Uα = Spec(R[f−1
α ]) ↪→ X. Then let

j : U ↪→ X be the image of the map ∐
α

Uα → X.

It is immediate from the construction that this is an open immersion and that U×X Xcl = Ucl =
U0.

It remains to show that it is fully faithful. Given open immersions j1 : U1 ↪→ X and
j2 : U2 ↪→ X, consider the map

MapsOpen/X
(U1,U2)→ MapsOpen/Xcl

((U1)cl, (U2)cl)

Suppose that U1 = Spec(R[f−1
1 ) and U2 = Spec(R[f−1

2 ]). In this case we are looking at

MapsSCRingR
(R[f−1

1 ],R[f−1
2 ])→ MapsCRingπ0(R)

(π0R[f−1
1 ], π0R[f−1

2 ]).

By the universal property of the localization R[f−1
1 ], the source is either empty or contractible

depending on whether the image of f1 is invertible in R[f−1
2 ]; the same holds for the target

using the universal property of the classical localization π0R[f−1
1 ].

In general, we reduce to this case using Proposition 4.9. �

5. Compact generation of affine schemes. We begin with the affine case. If X = Spec(R),
we already know that Qcoh(X) = ModR is compactly generated by the perfect R-module R.

5.1. Given an open immersion j : U ↪→ X, we will write Qcoh(X)U for the kernel of the restriction
functor j∗ : Qcoh(X)→ Qcoh(U). We will show that Qcoh(X)U is compactly generated when j
is quasi-compact.

Proposition 5.2. Let X = Spec(R) be an affine derived scheme and j : U ↪→ X be a quasi-
compact open immersion. Then the following hold:

(i) The ∞-category QcohU(X) is compactly generated by a single perfect complex.

(ii) There is a semi-orthogonal decomposition

Qcoh(X) = 〈Qcoh(X)U, j∗Qcoh(U)〉.
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Proof. By Proposition 4.9 there exists an affine Zariski cover U =
⋃
i Ui where Ui = Spec(R[f−1

i ])
and f1, . . . , fn are points in the underlying space of R; since U is quasi-compact, this cover is
finite. Consider the perfect complexes

Ki = Cofib(OX
fi−→ OX), K =

⊗
16i6n

Ki.

Note that we have j∗K = 0. To show that K is a compact generator, it suffices to show that for
any F ∈ Qcoh(X)U in the right orthogonal of K, i.e. with MapsQcoh(X)U(K,F) = pt, we have
F = 0. Write K6=j = ⊗i 6=jKi for each j; by adjunction, we have

pt = Maps(K,F) = Maps(K1,Hom(K 6=1,F))

which means that f1 acts invertibly on Hom(K 6=1,F), i.e. that Hom(K6=1,F) is an OX[f−1
1 ]-

module. We therefore have

Hom(K 6=1,F) = Hom(K 6=1,F)⊗OX
OX[f−1

1 ] = Hom(K 6=1,F ⊗OX
OX[f−1

1 ]) = 0,

using the fact that j∗F = 0 and Spec(R[f−1
1 ]) ⊂ U at the end. Arguing inductively we eventually

get

Hom(Kn,F) = 0,

which means that fn acts invertibly on F, hence F = F ⊗OX
OX[f−1

n ] = 0. Thus Qcoh(X)U is
compactly generated by K.

We now consider (iii). By Proposition 1.3 and the fact that j∗ is fully faithful and admits a
left adjoint j∗, there exists a semi-orthogonal decomposition

Qcoh(X) = 〈⊥(j∗Qcoh(U)), j∗Qcoh(U)〉,

where ⊥j∗Qcoh(U) is the left orthogonal to j∗Qcoh(U). It suffices to show that ⊥j∗Qcoh(U) =
Qcoh(X)U. This follows by adjunction: F ∈ Qcoh(X) is left orthogonal to j∗Qcoh(U) iff

Maps(F, j∗G) = Maps(j∗F,G) = pt

for all G ∈ Qcoh(U), or equivalently if j∗F = 0. �

6. Compact generation of qcqs schemes. Let X be a derived scheme and j : U ↪→ X an
open immersion. We will write Qcoh(X)U for the kernel of the restriction functor j∗ : Qcoh(X)→
Qcoh(U), and similarly Perf(X)U for the kernel of j∗ : Perf(X)→ Perf(U).

6.1. We now prove Thomason’s compact generation theorem, as generalized to qcqs schemes by
Bondal–Van den Bergh, and to the derived setting by Toën.

Theorem 6.2. Let X be a qcqs derived scheme and j : U ↪→ X a quasi-compact open immersion.
Then the following hold:

(i) The ∞-category QcohU(X) is compactly generated by a single perfect complex.

(ii) An object of QcohU(X) is compact iff it is a perfect complex.

(iii) There is a semi-orthogonal decomposition

Qcoh(X) = 〈Qcoh(X)U, j∗Qcoh(U)〉.

Of course taking U to be empty, we find that Qcoh(X) is compactly generated for any qcqs
derived scheme X. The statement for general U will be needed to get descent for K-theory, but
for simplicity of exposition we will only prove the case U = ∅ as the general case follows the
same idea.
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Proof. We have already seen (ii) (Proposition 3.5 and Proposition 3.10).

The proof of (iii) is the same as in the affine case (Proposition 5.2). The key point is that j∗
is fully faithful and right adjoint to j∗.

We now consider statement (i) (in the case U = ∅). By quasi-compactness, X admits a finite
affine Zariski cover U1, . . . ,Un. By quasi-separatedness, the pairwise intersections Ui ∩Uj are
again quasi-compact.

We will show that Qcoh(X) is compactly generated by a single object, by using induction to
reduce to the affine case. Let U = U1 ∪U2 ∪ · · · ∪Un−1 and V = Un. We have a cartesian square

U ∩V V

U X

j′U

j′V jV

jU

The claim holds for Qcoh(V) since V is affine, and by induction we can assume that it holds
also for Qcoh(U); let QU ∈ Qcoh(U) be a compact generator. Since V is affine, we have by
Proposition 5.2 an exact sequence

(6.1) Qcoh(V)U∩V → Qcoh(V)→ Qcoh(U ∩V)

with the Koszul complex KV ∈ Qcoh(V)U∩V a compact generator. The conditions of Theo-
rem 2.11 are satisfied and we find that the compact object QU|U∩V ∈ Qcoh(U ∩ V) lifts to a
compact object QV ∈ Qcoh(V) such that QV|U∩V = (QU ⊕ QU[1])|U∩V.

By the Zariski excision property (Lecture 2) we have the cartesian square

(6.2)

Qcoh(X) Qcoh(U)

Qcoh(V) Qcoh(U ∩V).

j∗U

j∗V (j′V)∗

(j′U)∗

We can therefore define two quasi-coherent sheaves Q1
X, Q2

X on X as follows. The first Q1
X ∈

Qcoh(X) is glued from 0 ∈ Qcoh(U) and KV ∈ Qcoh(V) via the canonical isomorphisms

0|U∩V
α−→ 0

β←− KV|U∩V.

The second Q2
X ∈ Qcoh(X) is glued from QU ⊕ QU[1] ∈ Qcoh(U) and QV ∈ Qcoh(V), via the

canonical isomorphisms

(QU ⊕ QU[1])|U∩V
α−→ (QU ⊕ QU[1])|U∩V

β←− (QV)|U∩V.

By Lemma 3.7, both Q1
X and Q2

X are compact in Qcoh(X).

Now we claim that QX := Q1
X ⊕ Q2

X is a compact generator of X. Let FX ∈ Qcoh(X) be right
orthogonal to QX (hence to both QiX’s); it suffices to show that FX = 0. Using the square (6.2),
it suffices to show that FX|U = 0 and FX|V = 0.

First we show that FX|V is in the essential image of the fully faithful functor (j′U)∗ : Qcoh(U∩
V) ↪→ Qcoh(V), i.e. that FX|V = (j′U)∗(FX|U∩V). This will imply that it suffices to show
that FX|U = 0 (as then FX|V = 0 as well). Indeed, by the exact sequence (6.1) (which is a
semi-orthogonal decomposition) this claim is equivalent to the assertion that FX|V is right
orthogonal to Qcoh(V)U∩V, or equivalently to its generator KV. Since Q1

X|U = 0, the cartesian
square (6.2) shows that for each n > 0, we have

Maps(KV[−n],FX|V) = Maps(Q1
X[−n],FX)

which is contractible since FX is right orthogonal to Q1
X.
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It remains to show that FX|U = 0. Since QU is a compact generator of Qcoh(U), it will suffice
to show that the mapping spaces Maps(QU[−n],FX|U) are contractible for n > 0. In fact, we
have

Maps(QU[−n],FX|U) = Maps(Q2
X[−n],FX)

which is contractible since FX is right orthogonal to Q2
X. The isomorphism of mapping spaces

follows from the cartesian square (6.2) and the isomorphism FX|V = (j′U)∗(FX|U∩V). �
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