
Lecture 5
The cotangent complex and Nisnevich descent

Last lecture we saw the proof of Zariski descent in algebraic K-theory. Once we define the
notion of Nisnevich square, the proof for Nisnevich descent will be exactly the same. To this
end, we will begin this lecture by introducing the notion of the cotangent complex and étale
morphisms in derived algebraic geometry. Since we will need to work with the cotangent complex
later in the course, we will take this opportunity to cover it in some detail.

1. Derived derivations. Recall that the module of (algebraic) Kähler differentials admits a
universal property in terms of derivations. The cotangent complex can be viewed as a derived
version of Kähler differentials, and admits a universal property in terms of a derived version of
derivations.

1.1. Recall that for an ordinary commutative ring R and an ordinary R-module M, one can
define a new commutative ring R⊕M, the trivial square-zero extension of R by M, where the
multiplication is defined by the formula

(r,m) · (r′,m′) = (rr′, r′m+ rm′).

Now let R ∈ SCRing and M ∈ Modcn
R be a connective R-module. One can then construct a

new simplicial commutative ring whose underlying R-module is the direct sum R⊕M, and such
that the ring structure on π0(R)⊕ π0(M) is given by the formula above.

Remark 1.2. There are various possible ways to actually construct R⊕M ∈ SCRing. Of course
if we choose strict models for the ∞-category SCRing then this is trivial. To do this directly
with the model of SCRing we gave, one could instead use Lurie’s “straightening/unstraightening”
correspondence: it is relatively easy to define a cartesian fibration over Poly and then “straighten”
it into a presheaf (Poly)op → Spc. Alternatively, one could prove the equivalence

ModR
∼−→ Stab(SCRingR\/R),

where the right-hand side is the∞-category of spectrum objects in the∞-category of augmented
simplicial commutative R-algebras; then R⊕M can be defined as the image of M by the functor

ModR
∼−→ Stab(SCRingR\/R)

Ω∞−−→ SCRingR\/R.

The latter approach is taken by Lurie in the setting of E∞-ring spectra [1, § 7.3.4].

Definition 1.3. Let R ∈ SCRing and M ∈ Modcn
R . The simplicial commutative ring R⊕M is

called the trivial infinitesimal extension of R by M.

1.4. Note that there is a canonical homomorphism

(1.1) R⊕M→ R

given informally by the projection (r,m) 7→ r. It admits a canonical section

(1.2) R→ R⊕M

given informally by r 7→ (r, 0).

Let R be a simplicial commutative ring, A a simplicial commutative R-algebra, and M a
connective A-module. For any A-module M, the homomorphism A⊕M→ A (1.1) induces a
canonical map

(1.3) MapsSCRingR
(A,A⊕M)→ MapsSCRingR

(A,A).

The space DerR(A,M) of R-linear derivations of A with values in M is the homotopy fibre of
this map at the point idA.
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In other words, a derivation is a morphism A→ A⊕M together with a commutative diagram

R

A A⊕M

A

Example 1.5. The trivial derivation is defined by the canonical section (1.2). We denote this by
dtriv : A→ A⊕M.

2. The cotangent complex.

2.1. Let R ∈ SCRing and A ∈ SCRingR a simplicial commutative R-algebra.

Definition 2.2. We say that a connective A-module L is a cotangent complex for A over R if
it corepresents the functor M 7→ DerR(A,M), i.e. if there are functorial isomorphisms

MapsModA
(L,M) ≈ DerR(A,M)

for any connective A-module M.

If such an L exists, then we say that A admits a cotangent complex over R and denote it by
LA/R. Note that it is automatically unique (up to isomorphism in the ∞-category Modcn

A ) by
the Yoneda lemma. We also write LR := LR/Z for the absolute cotangent complex.

We would like to prove that the cotangent complex always exists:

Theorem 2.3. Let R ∈ SCRing and A ∈ SCRingR a simplicial commutative R-algebra. Then
A admits a cotangent complex over R.

2.4. We begin with a simple case.

Proposition 2.5. Let R ∈ SCRing, N a connective R-module, and A = SymR(N) the free
R-algebra on N. Then the A-module L = N⊗R A is a cotangent complex for A over R.

Proof. Follows immediately from the universal property of A = SymR(N). �

2.6. Recall that the ∞-category SCRingR is (freely) generated under sifted colimits by the

polynomial R-algebras R[T1, . . . ,Tn] ≈ SymR(R⊕n). This allows us to reduce Theorem 2.3 to
the case of Proposition 2.5.

Proof of Theorem 2.3. We can write any A ∈ SCRingR as a sifted colimit of polynomial R-
algebras Aα ≈ R[T1, . . . ,Tnα ]. Let L denote the connective A-module

lim−→
α

LAα/R ⊗Aα A ≈ lim−→
α

A⊕nαα ⊗Aα A = lim−→
α

A⊕nα .

We claim that L is a cotangent complex for A over R, i.e. that for any connective A-module M
we have functorial isomorphisms

MapsModA
(L,M) ≈ DerR(A,M).

Note that the left-hand side is isomorphic (functorially) to

MapsModA
(L,M) ≈ MapsModA

(lim−→
α

A⊕nα ,M) = lim←−
α

MapsModA
(A⊕nα ,M) = lim←−

α

Ω∞(M)×nα .
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Let us now compute the space of derivations. Note that we have A⊕M = lim−→α
Aα ⊕M; this

formula is clearly true on the underlying spectra, and the forgetful functor SCRing→ Sptcn is
conservative and preserves sifted colimits. We therefore get functorial isomorphisms

DerR(A,M) = Fib(MapsSCRingR
(A,A⊕M)→ MapsSCRingR

(A,A))

= Fib(lim←−
α

MapsSCRingR
(Aα,A⊕M)→ lim←−

α

MapsSCRingR
(Aα,A))

= lim←−
α

Fib(MapsSCRingR
(Aα,A⊕M)→ MapsSCRingR

(Aα,A))

= lim←−
α

Fib((A⊕M)×nαSpc → A×nαSpc )

= lim←−
α

Ω∞(M)×nα .

Here we have used the fact that the Aα are free as R-algebras. �

2.7. The following observation will also be useful:

Proposition 2.8. Let R be a simplicial commutative ring and let A be a simplicial commutative
R-algebra which is locally of finite presentation. Then the cotangent complex LA/R is a perfect
A-module.

Proof. It suffices to show that LA/R is compact, i.e. that the functor

M 7→ MapsModR
(LA/R,M) = MapsModcn

R
(LA/R,M>0) ≈ DerR(A,M>0)

preserves filtered colimits. This follows from the fact that each of the following constructions
commute with filtered colimits: M 7→ M>0, M 7→ A⊕M, B 7→ MapsSCRingR

(A,B) (since A is

locally of finite presentation), and (X→ Y) 7→ Fib(X→ Y) for maps of spaces X→ Y. �

2.9. The proof of Theorem 2.3 actually shows that the cotangent complex is the “nonabelian
derived functor” of the sheaf of Kähler differentials. This has the following immediate conse-
quence:

Proposition 2.10. Let R be a simplicial commutative ring and let A be a simplicial commutative
R-algebra. Then we have

π0(LA/R) ≈ Ωπ0(A)/π0(R).

2.11. The following fundamental properties follow immediately from the definitions.

Proposition 2.12.

(i) Let A→ B→ C be homomorphisms of simplicial commutative rings. Then we have an exact
triangle in ModC:

LB/A ⊗B C→ LC/A → LC/B.

(ii) Suppose we have a cocartesian square in SCRing:

A B

A′ B′.

Then we have a canonical isomorphism

LB/A ⊗B B′ ≈ LB′/A′

in ModB′ .
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3. Infinitesimal extensions. Next we briefly review how the cotangent complex controls
deformation theory along infinitesimal extensions, and provides a derived version of Kodaira–
Spencer deformation theory.

3.1. Let R ∈ SCRing, A ∈ SCRingR, and M ∈ Modcn
R . Let d ∈ DerR(A,M[1]) be an R-linear

derivation of A valued in M[1], or equivalently a morphism d : LA/R → M[1].

We define the infinitesimal extension of A along d, denoted ϕd : Ad → A, by the cartesian
square in SCRingR

Ad A

A A⊕M[1].

ϕd dtriv

d

3.2. Given an infinitesimal extension ϕd : Ad → A, we can recover the module M as the
homotopy fibre

M ≈ Fib(Ad → A)

in ModR. Indeed, this fibre is isomorphic by construction to the fibre of dtriv : A→ A⊕M[1].
Both squares in the diagram

Fib(dtriv) A 0

0 A⊕M[1] M[1]

dtriv

are cartesian, whence the claim.

3.3. Let R ∈ SCRing and M ∈ Modcn
R a connective R-module. Let d ∈ Der(R,M[1]) be a

(Z-linear) derivation of R valued in M[1] and let ϕd : Rd → R the associated infinitesimal
extension.

Definition 3.4. Let A ∈ SCRingR a simplicial commutative R-algebra. A deformation of A

along the infinitesimal extension Rd → R is an Rd-algebra Ã fitting into a cocartesian square

Rd R

Ã A.

ϕd

3.5. Consider the exact triangle

LR/A[−1]→ LR ⊗R A→ LA.

Here we write LR := LR/Z, LA := LA/Z.

The derivation d corresponds to a morphism d : LR →M[1]. Suppose that for some reason
the composite

obstrA
d : LA/R[−1]→ LR ⊗R A

d⊗idA−−−−→ M[1]⊗R A

is null-homotopic, so that we get an induced morphism

d′ : LA → M[1]⊗R A.

This defines a derivation of A with values in M⊗R A[1], and we let Ã := Ad′ → A denote the
associated infinitesimal extension. This gives a deformation of A in the above sense.

In fact, we have:
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Theorem 3.6 (Lurie, Toën–Vezzosi). The space of deformations of the R-algebra A along the
infinitesimal extension Rd → R is equivalent to the space of null-homotopies of the composite

obstrA
d : LA/R[−1]→ LR ⊗R A

d⊗idA−−−−→ M[1]⊗R A.

See [1, Prop. 7.4.2.5].

3.7. In other words, we have a class obstrA
d ∈ Ext2

A(LA/R,M ⊗R A) which measures the

obstruction for the existence of a deformation along Rd → R.

4. Smooth and étale morphisms.

4.1. Let R ∈ SCRing and A ∈ SCRingR a simplicial commutative R-algebra.

Definition 4.2.

(i) We say that A is formally smooth over R if the cotangent complex LA/R is a finitely generated

projective A-module (i.e. it is a direct summand of a free A-module A⊕n for some n > 0).

(ii) We say that A is formally étale over R if the cotangent complex LA/R is zero.

(iii) We say that A is smooth (resp. étale) over R if it is locally of finite presentation and
formally smooth (resp. formally étale).

Theorem 4.3 (Lurie, Toën–Vezzosi). An R-algebra A is smooth (resp. étale) iff it is flat, and
π0(A) is smooth (resp. étale) as a π0(R)-algebra.

See [2, § B.1.1] or [3, Thm. 2.2.2.6].

4.4. Theorem 4.3 immediately gives the following useful characterization of open immersions:

Corollary 4.5. Let A be an R-algebra. Then the following conditions are equivalent:

(i) The homomorphism R→ A is locally of finite presentation, flat, and an epimorphism. That
is, Spec(A)→ Spec(R) is an open immersion of derived schemes.

(ii) The homomorphism R→ A is étale and an epimorphism.

5. The cotangent complex for schemes.

5.1. Let f : Y → X be a morphism of derived schemes. Let y : Spec(R) → Y be an R-point
(with R ∈ SCRing).

For any connective R-module M ∈ Modcn
R we have a commutative square

Y(R⊕M) Y(R)

X(R⊕M) X(R)

pr∗

f f

pr∗

where the map pr : R⊕M→ R is the canonical projection (1.1), which determines a canonical
map

(5.1) Y(R⊕M)→ Y(R) ×
X(R)

X(R⊕M).

The point y ∈ Y(R) and the point (dtriv)∗(f(y)) ∈ X(R⊕M),

(dtriv)∗(f(y)) : Spec(R⊕M)
dtriv−−−→ Spec(R)

y−→ Y
f−→ X,
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together with the canonical isomorphism

(pr)∗(dtriv)∗(f(y)) ≈ f(y) ∈ X(R),

determine a point in the target of (5.1).

We define the space of M-valued derivations of p (at the point y) as the homotopy fibre at
this point:

Dery(Y/X,M) := Fib(Y(R⊕M)→ Y(R) ×
X(R)

X(R⊕M)).

Definition 5.2. We say that Ly ∈ Modcn
R is a cotangent complex for f at the point y, if L

corepresents the functor M 7→ Dery(Y/X,M), i.e. there are functorial isomorphisms of spaces

MapsModR
(Ly,M) ≈ Dery(Y/X,M).

When such Ly exists, we say that f admits a cotangent complex at the point y. We write it
as y∗Lf or y∗LY/X, and view it as a quasi-coherent sheaf on Spec(R).

Example 5.3. Suppose that X = Spec(A) and Y = Spec(B) are affine. Then any morphism
f : Y → X admits a cotangent complex at any point y : Spec(R)→ Y, which is given by

y∗LSpec(B)/ Spec(A) = LB/A ⊗B R.

Definition 5.4. Let L be a connective quasi-coherent sheaf on Y. We say that L is a (global)
cotangent complex for f : Y → X if for any point y ∈ Y(R) with R ∈ SCRing, the inverse image
y∗L is a cotangent complex for f at y.

If L exists, we say that f admits a (global) cotangent complex, and we write it as Lf or
LY/X.

Remark 5.5. In the non-schematic case, i.e. when X and Y are derived stacks, it is not appropriate
to require that the cotangent complex be connective.

5.6. The following property follows from the definitions:

Proposition 5.7. Let Z
g−→ Y

f−→ X be morphisms of derived schemes. Suppose that f admits a
cotangent complex. Then g admits a cotangent complex iff f ◦ g admits a cotangent complex. In
either of these cases we moreover have an exact triangle

g∗LY/X → LZ/X → LZ/Y

in Qcoh(Z).

5.8. As we saw already (Corollary 4.5), any open immersion of affine schemes is étale and has
vanishing cotangent complex. This also holds in the non-affine case:

Proposition 5.9. Let j : U ↪→ X be an open immersion of derived schemes. Then j admits a
cotangent complex, and moreover LU/X = 0.

Proof. It suffices to show that u∗LU/X = 0 for all points u ∈ U(R) and all R ∈ SCRing. This
amounts to the claim that for any M ∈ Modcn

R , the canonical map

U(R⊕M)→ U(R) ×
X(R)

X(R⊕M)

has contractible fibre at the point (u, (dtriv)∗(j(u))). Since j is a monomorphism, it is easy to
see that this map is also a monomorphism, i.e. has empty or contractible fibres. Note that the
point (dtriv)∗(u) ∈ U(R⊕M) lives in the fibre, so the claim follows. �

Remark 5.10. The proof of Proposition 5.9 only used the fact that j is an monomorphism.
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5.11. We now show that any morphism of derived schemes admits a cotangent complex.

Theorem 5.12. Let f : Y → X be a morphism of derived schemes. Then f admits a cotangent
complex LY/X ∈ Qcoh(Y).

Proof. If X and Y both admit absolute cotangent complexes LX and LY, respectively (i.e.
cotangent complexes over Spec(Z)), then we can set

LY/X := Cofib(f∗LX → LY)

in view of Proposition 5.7. Therefore we can assume that X = Spec(Z).

Recall that, since Y is a (derived) scheme, we have an equivalence (Lecture 1)

(5.2) Qcoh(Y) = lim←−
U
y−→Y

Qcoh(U),

where the limit is taken over pairs (U, y) with U = Spec(R) affine, and y an open immersion.
Therefore it suffices to construct a compatible system of quasi-coherent sheaves (y∗LY/X)y for
all such pairs (U, y). According to the exact triangle

y∗LY → LU → LU/Y

from Proposition 5.7, and the fact that LU/Y = 0 (Proposition 5.9), we must have

(5.3) y∗LY = LU

if LY and LU exist. Note that LU exists and is just the R-module LR := LR/Z, viewed as a
quasi-coherent sheaf on U = Spec(R). It is easy to show that the formula (5.3) defines an object
in the limit (5.2) (which is indexed by a poset), and one verifies that it is indeed a cotangent
complex for Y. �

6. Smooth and étale morphisms of schemes.

6.1. Let p : Y → X be a morphism of derived schemes. We can extend “local properties” to the
schematic case as follows:

Definition 6.2. We say that p is étale (resp. smooth, flat, locally of finite presentation) if there
exist affine Zariski covers (Yα ↪→ Y)α and (Xβ ↪→ X)β such that the following holds: for each α,
there exists an index β and a morphism of affine derived schemes Yα → Xβ which is étale (resp.
smooth, flat, locally of finite presentation) and fits in a commutative square

Yα Xβ

Y X.

6.3. It follows easily from the definition that étaleness and smoothness can be detected using
the cotangent complex:

Proposition 6.4. Let p : Y → X be a morphism of derived schemes which is locally of finite
presentation. Then p is étale (resp. smooth) iff the cotangent complex LY/X is zero (resp. is
locally free of finite rank).

7. Nisnevich descent. Finally, we now state Thomason’s Nisnevich descent theorem.
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7.1. Suppose we have a cartesian square of qcqs derived schemes:

(7.1)

W V

U X.

p

j

We say that it is a Nisnevich square if it satisfies the following conditions:

(i) The morphism j is a quasi-compact open immersion.

(ii) The morphism p is quasi-compact and étale.

(iii) There exists a closed immersion Z ↪→ X complementary to U such that the induced morphism

p−1(Z)→ Z

is invertible.

7.2. The proof of Zariski descent in K-theory (Lecture 4) immediately extends, essentially
word-for-word, to Nisnevich squares.

Theorem 7.3 (Thomason). Let X be a qcqs derived scheme and suppose we have a Nisnevich
square (7.1). Then the induced square of spectra

K(X) K(U)

K(V) K(U ∩V)

is cartesian.

Remark 7.4. One can define a Grothendieck topology on the site of qcqs (derived) schemes,
associated to the pretopology generated by covering families {j, p} for all Nisnevich squares
(7.1). Hoyois has shown that over qcqs schemes, this topology agrees with all known definitions
of the Nisnevich topology. As we remarked in Lecture 4, it is then a theorem of Voevodsky that
the above condition is equivalent to Čech descent with respect to the Nisnevich topology for the
presheaf of spectra K : (DSchqcqs)

op → Spt.
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