
Lecture 7
Derived blow-ups

In this lecture we will explain how to blow up regular immersions of derived schemes. The
interest is that one can extend Thomason’s blow-up formula in K-theory to the derived setting,
a fact which is an input into the pro-cdh descent theorem of Kerz–Strunk–Tamme.

Let i : Z ↪→ X be a regular closed immersion of classical schemes. Recall that the blow-up of
X in Z is a scheme π : X̃→ X which is obtained by “replacing the closed subscheme Z by its
projectivized normal bundle”. More precisely, π is a proper morphism which is an isomorphism
away from Z, and the fibre over Z is PZ(NZ/X)→ Z.

Further, the projective bundle PZ(NZ/X) sits inside X̃ as an effective Cartier divisor (i.e. a
regular immersion of codimension 1), and we can also think of the blow-up as the universal way
to “turn Z into an effective Cartier divisor”. More precisely, there is a universal property for
the blow-up of the following form: for any morphism f : S→ X such that the (classical) base

change f−1(Z) ↪→ S is an effective Cartier divisor, there is a unique morphism S → X̃ and a
morphism of commutative squares

f−1(Z) S

Z Xi

→
PZ(NZ/X) X̃

Z Xi

We will now extend this construction to the derived setting. In the case of a regular immersion
between classical schemes, this will agree with the classical construction. However, even in
this case, our construction will actually provide a stronger universal property for the classical
blow-up.

1. The construction.

1.1. We begin by defining a derived version of (effective) Cartier divisors.

Definition 1.2. Let X be a derived scheme. A virtual Cartier divisor on X is the datum of a
regular closed immersion i : D ↪→ X of virtual codimension 1.

In other words, virtual Cartier divisors are locally of the form

Spec(R//(f)) ↪→ Spec(R),

where f ∈ R is an element and R//(f) is the construction from Lecture 6.

Example 1.3. If R is discrete, recall that R//(f) ≈ R/(f) iff f is regular (i.e. a non-zero-divisor).
It follows that for X classical, any classical effective Cartier divisor is a virtual divisor.

Example 1.4. Taking f = 0, we get a virtual Cartier divisor Spec(R//(0)) ↪→ Spec(R) which
is a nil-immersion, i.e. it induces an isomorphism on underlying classical schemes. (It is not
an isomorphism: the underlying R-module of R//(0) is given by R⊕R[1].) In particular, it is
topologically of codimension 0.

1.5. Let i : Z ↪→ X be a fixed regular immersion of derived schemes. We define:
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Definition 1.6. 1 Let S be a derived scheme and f : S→ X a morphism. We say that a virtual
Cartier divisor iD : D ↪→ S lying over Z is the datum of a commutative square

(1.1)

D S

Z X,

iD

g f

i

such that iD : D ↪→ S is a virtual Cartier divisor, and the induced morphism

(1.2) g∗(NZ/X)→ ND/S

is surjective.

We let VCartZ/X(S) denote the space of virtual Cartier divisors on S which lie over Z. This
construction is functorial in S, and defines a presheaf of spaces

(1.3) (S→ X) 7→ VCartZ/X(S)

on the site of derived schemes over X.

Construction 1.7. Let i : Z ↪→ X be a regular closed immersion of derived schemes. We let
πZ/X : BlZ/X → X denote the derived prestack over X given by the presheaf

(DSchaff
/X)op → Spc

which is the restriction of (1.3) to affine derived schemes. We call BlZ/X the derived blow-up of
Z ↪→ X, or simply the derived blow-up of X in Z.

Remark 1.8. In the situation of Definition 1.6, suppose that S is affine. Then the surjectivity
condition on

g∗(NZ/X)→ ND/S

is equivalent to saying that this morphism exhibits ND/S as a direct summand of g∗(NZ/X).
This follows from the fact that ND/S is projective (so that the map admits a section).

2. First properties.

2.1. We begin with two easy observations:

Proposition 2.2. The derived prestack BlZ/X is a derived stack, i.e. it satisfies descent.

This follows from the fact that the notion of virtual Cartier divisor is local, as is the surjectivity
condition on the morphism (1.2).

Proposition 2.3. The construction πZ/X : BlZ/X → X is stable under base change. That is,
for any morphism f : X′ → X, there is a canonical isomorphism

(2.1) BlZ/X×
X

X′ = BlZ′/X′ .

of derived stacks over X′, where i′ : Z′ ↪→ X′ denotes the base change of i along f .

We leave the proof as an exercise: the only thing to note is that the derived normal bundle is
stable under arbitrary base change.

1This definition was suggested to me by David Rydh.
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2.4. There is a canonical morphism iuniv fitting into a commutative square

PZ(NZ/X) BlZ/X

Z X,

iuniv

i

which we will later identify with the “universal virtual divisor” lying over Z ↪→ X.

To construct iuniv, note that it suffices to define a Z-morphism

(2.2) PZ(NZ/X)→ BlZ/X×
X

Z = BlZ×X Z/Z .

As we saw last time, for any z : T → Z, a T-point of PZ(NZ/X) is a pair (L, u), where L is a
locally free sheaf of rank one on T, and u : z∗NZ/X → L is a surjection on π0 (exhibiting L

as a direct summand). Given such, we can construct a virtual divisor DL on T as the derived
intersection:

DL T

T VT(L),

iD

iD s

s

where VT(L) is the vector bundle (line bundle) associated to L, and s : T ↪→ VT(L) is the zero
section.

Claim 2.5. We have DL ∈ VCartZ×X Z/Z(T).

The assignment (L, u) 7→ DL is clearly functorial and gives a map (2.2).

3. Comparison with classical blow-ups.

3.1. Our goal for the remainder of this lecture is to prove the following:

Theorem 3.2. Let i : Z ↪→ X be a regular closed immersion of derived schemes.

(i) The derived stack BlZ/X is schematic.

(ii) If i is a regular immersion between classical schemes, then the derived scheme BlZ/X is

classical, and coincides with the classical blow-up Blcl
Z/X as constructed in EGA II.

In the last lecture we showed that Zariski-locally on X, the regular immersion i : Z ↪→ X can
be written as a derived base change of the zero section in n-dimensional affine space (where n is
the virtual codimension in the given neighbourhood). Therefore, in order to prove the first claim,
it follows from Proposition 2.3 that we may assume that i is the zero section i : {0} ↪→ An for
some n > 0. In fact, we will show:

Claim 3.3 (Main Claim). Let i : {0} ↪→ An and consider the derived blow-up B := Bl{0}/An .
Then B is schematic, classical, and moreover isomorphic to the classical blow-up of i.

This will in fact also show the second assertion of Theorem 3.2. Indeed there is a canonical
morphism

(3.1) ε : Blcl
Z/X → BlZ/X,

classifying the Cartier divisor PZ(NZ/X) ↪→ Blcl
Z/X. In order to show that ε is invertible, we can

reduce to the case of the origin in affine space again, since a regular immersion between classical
schemes can be written locally as a flat base change of {0} ↪→ An (and the classical blow-up is
stable under flat base change).
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3.4. Claim 3.3 will also show the following properties of the derived blow-up:

Corollary 3.5. Let i : Z ↪→ X be a regular immersion of derived schemes.

(i) The structural morphism

πZ/X : BlZ/X → X

is proper.

(ii) The morphism

(3.2) iuniv : PZ(NZ/X) ↪→ BlZ/X

exhibits PZ(NZ/X) as the universal virtual Cartier divisor lying over Z ↪→ X. That is, given a
morphism S → X, any virtual divisor D ∈ VCartZ/X(S) can be written as the base change of
iuniv along the morphism S→ BlZ/X classifying D.

(iii) The morphism πZ/X induces an isomorphism

(3.3) πZ/X : BlZ/X−PZ(NZ/X)
∼−→ X− Z.

Proof. For (i), note that the property of being proper is local on the target and stable under
base change. Thus the assertion follows from the analogous statement for the classical blow-up
(of the affine space in the origin).

For (ii), the fact that PZ(NZ/X) ↪→ BlZ/X is a virtual Cartier divisor can also be checked

locally, so it follows similarly from the fact that Pn−1 ↪→ Bl{0}/An is a Cartier divisor (in the
classical sense, hence also in the virtual sense). The existence of the universal virtual divisor
Duniv ↪→ BlZ/X lying over Z ↪→ X is formal: it comes from the identity of BlZ/X under the
tautological identification

VCartZ/X(BlZ/X) = BlZ/X(BlZ/X
πZ/X−−−→ X) = MapsX(BlZ/X,BlZ/X).

By universality there is a canonical morphism PZ(NZ/X) → Duniv, which is an isomorphism

locally, by universality of the Cartier divisor Pn−1 ↪→ Bl{0}/An .

The proof of (iii) follows similarly from the analogous property of the classical blow-up of
{0} ↪→ An. �

3.6. The next remark explains the relationship between the derived blow-ups described here
and the construction of [2].

Remark 3.7. Let X = Spec(R) be an affine classical scheme and let f1, . . . , fn be a sequence
of elements. These define a derived regular subscheme Z = Spec(R//(fi)i), which is the base
change of {0} ↪→ An along the morphism f : X→ An determined by the fi’s.

In this setting, Kerz–Strunk–Tamme [2] defined the derived blow-up of X in Z as

BlKST
Z/X := Blcl

{0}/An ×
An

X,

where Blcl
{0}/An denotes the classical blow-up. It will thus follow from Claim 3.3 that there are

isomorphisms

BlKST
Z/X ≈ Bl{0}/An ×

An
X ≈ BlZ/X,

where the second isomorphism is the stability under base change (Proposition 2.3).
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3.8. The rest of the lecture will be dedicated to the proof of Claim 3.3. Let B := Bl{0}/An and

B = Blcl
{0}/An be the derived and classical blow-ups, respectively. In order to show that the

canonical morphism (3.1)

ε : B→ B

is invertible, we will use the following general fact: suppose we have a morphism f : Y→ X of
derived stacks that admits a relative cotangent complex; then f is an isomorphism iff LY/X = 0
and f induces an isomorphism of underlying classical stacks Ycl → Xcl.

4. Deformation theory of virtual divisors.

4.1. We begin by showing that the morphism ε has relative cotangent complex equal to zero.
The main point is to compute the relative cotangent complex LB/An (and then to observe that
it is canonically isomorphic, through the morphism ε, to the cotangent complex LB/An).

Proposition 4.2. The cotangent complex LB/An is canonically isomorphic to

(4.1) LB/An = (iuniv)∗(LPn−1).

In particular, for any (S
f−→ An) ∈ DSchaff

/An , and any point η ∈ B(S
f−→ An) classifying a virtual

divisor iD : D ↪→ S, we have

η∗LB/An = (iD)∗(F ⊗N⊗−1
D/S ),

where F denotes the locally free sheaf Fib(δ∗NW/S → ND/S) = LD/W[−2], where δ : D ↪→W =
S×An{0}.

4.3. To prove Proposition 4.2 we will begin by realizing B := Bl{0}/An as an open substack of
a bigger derived stack.

Construction 4.4 (Moduli of closed subschemes). Let M denote the derived stack

M : S 7→ (DSchclosed,lfp,lfta
/S )≈,

which sends S ∈ DSchaff to the space of closed derived subschemes Z ↪→ S which are locally of
finite presentation (= lfp) and locally of finite tor-amplitude (= lfta).

Construction 4.5 (Weil restriction). Let Y be a derived stack over X and let f : X→ X′ be a
morphism. The Weil restriction of Y along f is the prestack ResX/X′(Y) over X′ defined by the
assignment

ResX/X′(Y) : (S′ 7→ X′) 7→ Y(S′ ×
X′

X).

We can view M as a derived stack over the terminal scheme Spec(Z) ≈ {0}; we let

R := Res{0}/An(M)

denote the Weil restriction along {0} ↪→ An. This is defined by the assignment

(S
f−→ An) 7→ (DSchclosed,lfp,lfta

/S×An{0} )≈.

By definition, we have an inclusion

(4.2) B ↪→ R

of derived stacks over An. This amounts to viewing a virtual divisor D ∈ VCart{0}/An(S) as a
morphism δ : D→W := S×An{0}, which is in particular a closed immersion that is lfp and lfta.

Claim 4.6. The morphism (4.2) is an open immersion.
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Proof. Let η be a point of R classifying a closed immersion δ : D ↪→ W = S×An{0} and let
iD : D ↪→W → S. The cotangent complex LD/S is automatically perfect (since iD is lfp) and
0-connected (since it is a closed immersion). The inclusion B ↪→ R is defined by imposing the
further conditions:

(i) The sheaf LD/S[−1] is locally free and of rank 1 (so that iD : D ↪→ S is a virtual divisor).

(ii) The morphism δ∗NW/S → ND/S is surjective, or equivalently its cofibre ND/W is 0-connected.

In the presence of (i), condition (ii) is also equivalent to saying that the fibre of that map,
LD/W[−2], is locally free (of rank n− 1). Thus both conditions are “open”, see [3, Prop. 2.9.3.2,
Lem. 2.9.3.3]. �

4.7. It follows that there is a canonical isomorphism LB/An = LR/An |B. In order to compute
the cotangent complex of R, we can compute the cotangent complex LM and then apply the
general deformation theory of Weil restrictions.

The first part follows more or less directly from Lurie’s version of Kodaira–Spencer theory,
i.e. the moduli of derived Deligne–Mumford stacks; see [3, § 19.4.3]. We get:

Proposition 4.8. The cotangent complex LM exists and is perfect. Let S ∈ DSchaff and
ξ : S → M be a morphism classifying an lfp closed immersion i : Z ↪→ S. Then there is a
canonical isomorphism

ξ∗LM = iL!LZ/S[−1],

where iL! := i!(−⊗ ωZ/S), ωZ/S being the relative dualizing complex.

4.9. Applying the deformation theory of Weil restrictions (see [3, Prop. 19.1.4.3]), we deduce:

Corollary 4.10. The cotangent complex LR/An exists and is perfect. Moreover, for any

(S
f−→ An) ∈ DSchaff

/An , and any point η ∈ R(S
f−→ An) classifying a closed immersion δ : Z ↪→

W := S×An{0}, there is a canonical isomorphism

η∗LR/An = i∗(F ⊗N⊗−1
Z/S ),

where i : Z ↪→W ↪→ S and F denotes the locally free sheaf Fib(OnZ → NZ/S) = LZ/W[−2].

5. Chart-by-chart comparison.

5.1. Define the affine schemes

Ui = Spec(Z[x1/xi, . . . , xn/xi, xi]),

Ei = Spec(Z[x1/xi, . . . , xn/xi])

for each 1 6 i 6 n. The schemes Ui provide an affine Zariski cover for the classical blow-up B,
and the Ei provide a cover for the exceptional divisor Pn−1 (see e.g. [1, Example IV-17]). Our
goal next is to show that they also provide a affine Zariski cover for the derived blow-up.

The evident closed immersions Ei ↪→ Ui define Cartier divisors lying over {0} ↪→ An, and
thus provide canonical morphisms

(5.1) Ui → B

for each i. Let Bi denote the image of the map (5.1), fitting in a factorization

(5.2) Ui � Bi ↪→ B,

where the first arrow is an effective epimorphism of Zariski sheaves and the second is a
monomorphism. In other words, the derived stack Bi can be described as follows: for any
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S = Spec(R) ∈ DSchaff and any morphism f : S→ An, the S-points of Bi are the virtual Cartier
divisors lying over {0} ↪→ An of the form

(5.3)

Z S

Ei Ui

{0} An

where the upper square is cartesian. In particular, if f corresponds to points f1, . . . , fn ∈ RSpc,
then we have an isomorphism Z = Spec(R//fi).

5.2. We first observe that Ui do indeed provide a Zariski atlas for B.

Claim 5.3. The induced morphism

(5.4)
⊔
i

Ui → B

is an effective epimorphism of Zariski sheaves.

Proof. Let S = Spec(R) be an affine derived scheme, f : S→ An a morphism, and η ∈ B(S→
An) a point. It suffices to show that, Zariski-locally on S, η lifts to a point η̃ ∈ Ui(S→ An) for
some i. The point η classifies a virtual Cartier divisor iD : D ↪→ S lying over {0} ↪→ An. By the
geometric characterization of derived regular immersions we proved last lecture (Prop. 4.10), D
is locally of the form Spec(R//f) for some point f ∈ RSpc. Moreover, the proof shows that f
can be taken to be any point such that df ∈ ND/S is a generator. By assumption, the canonical
morphism

〈df1, . . . , dfn〉 = NW/S = g∗N{0}/An → ND/S,

is a projection onto a direct summand, where g : D→ {0} and W := S×An{0} = Spec(R//(fi)i).
In particular, we can take f = fi for some i, so that η lifts to Ui(S→ An) as desired. �

5.4. Next we would like to show that Ui → Bcl is a monomorphism for each i. It will be useful
to make the following preliminary observation:

Claim 5.5. Let (S
f−→ An) ∈ Schaff

/An be a classical affine scheme over An. Then the space

Bi(S) is discrete for each i.

Proof. Let η ∈ Bi(S) be a point corresponding to a virtual Cartier divisor iD : D ↪→ S, and let
us show that its connected component is contractible, i.e. that the loop space Ω(B(S), η) =
AutB(S)(η) is discrete.

Let S = Spec(R), D = Spec(R//fi); we can think of the datum of the virtual divisor D
as a morphism δ : D → W = S×An{0} = Spec(R//(fj)j), or equivalently a homomorphism
δ : R//(fj)j → R//fi fitting into a commutative diagram

Z[x1, . . . , xn] Z[x1, . . . , xn]/(x1, . . . , xn)

R R//(fj)j

R//fi

(fj)j

δ
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where the square is cocartesian. The commutativity of the “outer square” amounts to the data
of paths αj : fj ≈ 0 in R//fi for each j, which thus determine δ uniquely.

Furthermore, since η ∈ Bi(S→ An), the outer square factors as

Z[x1, . . . , xn] Z[x1, . . . , xn]/(x1, . . . , xn)

Z[x1/xi, . . . , xn/xi, xi] Z[x1/xi, . . . , xn/xi]

R R//fi

This implies that the path αi : fi ≈ 0 is isomorphic to the “canonical path” fi ≈ 0. Since R
is discrete, R//fi is 1-truncated, and therefore the space of paths in R//fi is discrete (i.e. any
isomorphism between paths is the identity).

Now, an automorphism of η is the same thing as an automorphism of D over W, or equivalently
an R//(fj)j-algebra automorphism of R//fi. The latter is the same thing as an automorphism ϕ
of R-algebras equipped with isomorphisms of paths ϕ(αj) ≈ αj for each j; since the space of
paths is discrete, these are properties rather than additional structure on ϕ. Therefore it suffices
to show that ϕ is trivial as an automorphism of R-algebras. An R-algebra automorphism of
R//fi is uniquely determined by a path fi ≈ 0 in R//fi (which is the image by the automorphism
of the canonical path fi ≈ 0). Since the automorphism ϕ preserves the path αi, which is the
canonical path fi ≈ 0, this determines it uniquely as the identity automorphism. �

Claim 5.6. The canonical morphism Ui → (Bi)cl is a monomorphism.

Proof. The claim is that for every classical affine scheme S = Spec(R) and every morphism
f : S→ An, the map

Ui(S→ An)→ Bi(S→ An)

is a monomorphism of spaces. Since both spaces are in fact discrete by Claim 5.5, this is just a
map of sets and we will show that it is injective.

A point η ∈ Bi(S) is determined by a set of paths (αj : fj ≈ 0)j in R//fi. Each of these paths
amount to the datum of an element aj ∈ R with ajfi = fj . A point η̃ ∈ Ui(S) corresponds to
a set of elements ãj ∈ R with ãjfi = fj , for each j 6= i. Now if η̃ lifts η, then we clearly have
ãj = aj for each j 6= i, so η̃ is unique. �

5.7. Putting everything together, we get:

Claim 5.8. The canonical morphism Ui → Bi is an isomorphism for each i.

Proof. Each Ui → Bi is formally étale, as the restriction of the formally étale morphism
ε : B→ B. Therefore it suffices to show that Ui → (Bi)cl is invertible. We showed that it is an
effective epimorphism and a monomorphism, so the claim follows. �

5.9. Finally we can deduce our main claim, that B→ B is invertible (Claim 3.3). Indeed, we
have exhibited an affine Zariski cover for B which is canonically isomorphic to the “standard”
cover for the classical blow-up B.
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