Lecture 8
Pro-systems of K-theory spectra

In this lecture we will start looking at pro-systems of K-theory spectra, and begin to see how
pro-systems help us pass from the derived world back to the classical world.

1. K-theory of projective bundles and derived blow-ups. We first tie up some loose
ends from the previous two lectures. Proofs are omitted since they follow the same pattern as in
classical algebraic geometry.

1.1. Let C be a stable presentable co-category. Earlier we considered two-term semi-orthogonal
decompositions C = (C, C_). More generally, given a collection of full stable subcategories
C4,...,C,, we say that they form a semi-orthogonal decomposition if they generate C as a stable
subcategory, and each C; is right orthogonal to C; for j > i (i.e. Maps(c;, ¢;) is contractible for
all j > i).

1.2. Let X be a derived scheme. Let € be a locally free sheaf of rank n, and let 7 : Px(€) — X
denote the associated projective bundle. Then we have:

Theorem 1.3.

(i) For each integer k, the assignment F — 7*(F) @ O(k) defines a fully faithful functor
Qcoh(X) — Qcoh(Px(€)).

(ii) For each integer k, let Qcoh(Px(€))*) denote the essential image of the functor described
in (i). Then there is a semi-orthogonal decomposition

Qcoh(Px (€)) = (Qeoh(Px (€)™, ..., Qeoh(Px (&)~ H).

1.4. Let X be a derived scheme. Let Z — X be a regular closed immersion of codimension n
and p : Blz,x — X the derived blow-up. Recall that we have a diagram

Pz(Nz/x) —2— Blyx
[ JP
Z—"—=X
We have:
Theorem 1.5.
(i) The functor p* : Qcoh(X) — Qcoh(Blyx) is fully faithful.

(ii) For each integer k, the assignment F — (ig)«(7*(F) @ O(k)) defines a fully faithful functor
Qcoh(Z) — Qcoh(Blz/x).

(iii) For each integer k, let Qcoh(BlZ/X)(k) denote the essential image of the functor described
in (ii). Then there is a semi-orthogonal decomposition

Qcoh(Blz/x) = (p* Qeoh(X), Qeoh(Blz/x) ™. .., Qeoh(Bly/x) ™).

1.6. Now suppose that X is quasi-compact and quasi-separated. By the compact generation
results discussed in Lecture 3, we can pass to perfect complexes and we get exact sequences,
whence exact triangles in K-theory. Since m, preserves perfect complexes these exact sequences
are split, so we also get splittings in K-theory:
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Corollary 1.7 (Projective bundle formula). For any locally free sheaf & of rank n on X, there
s a canonical isomorphism of spectra

n—1

D K(X) - K(Px()).

k=0

Similarly we have:

Corollary 1.8 (Derived blow-up formula). For any regular closed immersion i : Z — X of
dimension n, there is a cartesian square

K(X) —— K(2)

| |

K(Blz/x) — K(Px(Nz/X))

1.9. Using Zariski descent for the standard affine cover of P! (Lecture 4) and the projective
bundle formula, one derives:

Theorem 1.10 (Bass fundamental theorem). Let X be a quasi-compact quasi-separated derived
scheme. Then for each integer n we have a split exact sequence of abelian groups

0— Kn(X) = Kp(AY) @K, (AL) = K, (A% — 5(X)) = K,_1(X) =0,

where s : X < AL is the zero section.

2. Pro-systems. We now briefly discuss pro-objects in the oco-categorical setting (see [2, § A.8.1]
for details).

2.1. Let C be an accessible co-category admitting finite limits. A pro-object of C is a cofiltered
diagram {x;}c1, i.e. a functor I — C with I cofiltered (and essentially small). Pro-objects in C
form an oo-category Pro(C), where mapping spaces are given by the formula

Maps({zi}i, {y;};) = lim lim Maps(z;, y;).

This oo-category Pro(C) is the free completion of C by cofiltered limits ([2, Prop. A.8.1.6]). It
can be realized alternatively as the full subcategory of Funct(C, Spc)°P spanned by accessible
left-exact functors.

Any object z € C can be viewed as a constant pro-system {z} (indexed by the terminal
category); the assignment x — {z} defines a fully faithful functor C < Pro(C). If C is
presentable, then this functor admits a right adjoint which is given by {z;}; — @l x; (where
the limit is computed in C).

2.2. Consider the oo-category Pro(Spt) of pro-spectra. This is stable and admits a t-structure
where truncations are given by 7<x{X;}; = {7<xX;}i and 7>, {X;}; = {r>1X;};; homotopy
groups 7, {X;}; = {mx(X;)}i live in the heart, the category of pro-abelian groups.

2.3. Let Pro(Spt), denote the full subcategory of Postnikov-complete pro-spectra, i.e. pro-
spectra {X;}; such the canonical morphism
{Xi}i = lim rep {X, 12
k
is invertible. The inclusion Pro(Spt), < Pro(Spt) admits a left adjoint L, given by
m

Lr({X;}:) = &17 T<iiXiti = {t<uXitik,
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where the latter is a pro-object indexed by pairs (¢,k). This exhibits Pro(Spt), as a left
localization at the class of morphisms {X;}; — {Y,}, such that

{r<eXiti = {m<kY;};
is invertible for each integer k. We refer to such morphisms as quasi-isomorphisms. If {X;}; and
{Y;}; are eventually connective, then this is equivalent to the condition that the morphisms of
pro-abelian groups

{me(Xa) b = {me(Y;)};
are invertible for each integer k.

FEzample 2.4. Let X be a spectrum and consider the constant pro-spectrum {X}. This is generally
not Postnikov-complete. Indeed the canonical morphism {X} — L,{X} is invertible in Pro(Spt)
iff X is eventually coconnective, because we have L {X} = {7<;X}; and therefore

Mapsp.o(spe) (Lr {X}, {X}) = lim Mapsg,,, (7<iX, X).

K2

2.5. We will also make use of the oco-category Pro(SCRing) of pro-simplicial commutative
rings. We define Postnikov-complete objects and quasi-isomorphisms in Pro(SCRing) just as
above. Note that a morphism {A;}; — {B;}; is a quasi-isomorphism iff the induced morphism
of pro-spectra {(A;)spt}i = {(Bj)spt}; is a quasi-isomorphism. This is also equivalent to the
condition that the morphisms of pro-abelian groups {m(A;)}; — {mx(B;)}; are isomorphisms
for all k& (since simplicial commutative rings have connective underlying spectra).

3. A model for connective K-theory. To go further we will finally need a model for
connective K-theory. Using Zariski descent we will be able to reduce many questions of interest
to the affine case, where we can give a model for (connective) K-theory that is much more naive
than the Waldhausen S.-construction.

3.1. Let R be a simplicial commutative ring. Let Mod%rOj denote the full subcategory of Modgr
spanned by finitely generated projective R-modules, i.e. direct summands of free modules R®".
The tensor product of two finitely generated projective R-modules is again finitely generated
projective, so the co-category Mod%rOj inherits a symmetric monoidal structure. This induces

a structure of €.,-monoid on the underlying oo-groupoid (Mod%™)* (obtained by discarding
non-invertible 1-morphisms). If X — X8 denotes group completion of &..-monoids, we have:

Theorem 3.2. There is an isomorphism of group-like & ..-spaces
Q=K (Spec(R)) =~ ((Modi)~)eP.

Furthermore, this isomorphism is functorial in R.

4. K-theory and truncations. Next we will explain why K-theory behaves well with respect
to quasi-isomorphisms of pro-systems.

4.1. Let R be a simplicial commutative ring. For k > 0, let 7¢;R denote the kth Postnikov
truncation of R. For k£ < 0 set 7<xR = 7<oR.

The following observation, due to Jacob Lurie, says that the (k+ 1)-truncation of the K-theory
spectrum K(R) only depends on 7<;R.

Proposition 4.2. For each integer k, the canonical morphism of simplicial commutative rings
R — 7<iR induces an isomorphism of spectra

T<k+1K(R) — T<k+1K(T<kR)'



Using the Bass fundamental sequence (Theorem 1.10), it will suffice to show this for k& > 0.
This will follow from the following observation:

Claim 4.3. For each k > 0, the canonical morphism of simplicial commutative rings R — <R
induces an equivalence of (k + 1)-categories

cat proj proj
71 (Modg ™) — MOdTgkR'

Here Tg}ct 1 denotes the “categorical” truncation that turns an oo-category into a (k + 1)-
category (by truncating the mapping spaces).

Proof. Fully faithfulness amounts to the claim that the canonical map

T<k MapSMOdR(M, N) — MapSModT<k (Tng, TgkN)

R

is invertible for all M, N € Mod%roj. If M = R®" is free, then this is identified with the canonical
isomorphism
TngOO(N)Xn — Qoo(TgkN)X”.
In general it follows that the map in question is a retract of an isomorphism, hence an isomorphism.
(Note that this in fact holds for N € Modg arbitrary.)
It remains to show that the functor

Mod®®F — ModP™

T<1‘,R

is essentially surjective. Recall that M € Modg is finitely generated and projective iff it is locally
free of finite rank. Therefore the claim follows from the fact that R and 7¢;R have equivalent
small Zariski sites (and we can use the fully faithfulness to lift gluing data). O

4.4. The functor K : SCRing — Spt extends object-wise to a functor K : Pro(SCRing) —
Pro(Spt). As a corollary of the previous observation, we deduce:

Corollary 4.5. The functor K : Pro(SCRing) — Pro(Spt) preserves quasi-isomorphisms.

Proof. Let {A;}; — {B;}; be a quasi-isomorphism of pro-simplicial rings and consider the
induced morphism of pro-spectra
{K(A)} — {K(B;))};
It suffices to show that it induces isomorphisms of pro-spectra
{r<eK(Ai) b = {7<K(Bj)};
for each k. By Proposition 4.2 this is levelwise isomorphic to the pro-spectrum
{r<eK(r<n-18)}i = {7<eK(T<h-1B;)};

so this follows from the assumption that {A;}; — {B,}; is a quasi-isomorphism. a

5. Pro-systems of regular closed immersions. Let R be a commutative ring and f € R
an element. Recall that the construction R//(f) is discrete iff f is regular, i.e. a non-zero divisor.
Under noetherian hypotheses, the next proposition shows that, even when f is a zero divisor,
we can consider this construction as discrete if we consider the pro-system of all infinitesimal
neighbourhoods R//(f™).

Proposition 5.1. Let R be a (discrete) noetherian commutative ring. Then for any sequence
of elements (f1,..., fr), the pro-simplicial ring {R//(f")i}n is quasi-discrete, i.e. the canonical
morphism of pro-simplicial rings

{RY)itn = AR/ (f{)itn
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1 a quasi-isomorphism. More generally, for any discrete finitely generated R-module M, the
canonical morphism

Mer R/(f")itn = {M@r R/(f]")i}n

18 a quast-isomorphism.

Proof. 1t is clear that it is a levelwise isomorphism on 7, so it suffices to show that the pro-
system {7, (M @ R/ (f!"):)}n vanishes for each k > 0. We argue by induction on the number of
elements in the sequence (f1,..., fr). If # = 0 then the claim is clear since M is discrete.

For » > 0 we make use of the cofibre sequences
M,_1(n) 25 M,_1(n) = M,(n),

where M,.(n) := M @gr RJ(f1, ..., f"), and M,_1(n) := M ®r RJ/(fT",..., f" ;). Looking at
the long exact sequence on homotopy groups,

> LM ()} = (i (M1 (1))} 225 (s (M1 ()} -+

we reduce by induction to showing that the kernel of the morphism of pro-abelian groups

f
Ker({moM;—1(n)}n == {moMr—1(n)}n)
vanishes. Note that moM,._1(n) = M/(f7,..., f™ ;). For each pair m,n > 0, write
K(n,m) := Ker({M/(f7', ..., i) }n == AM/(fT -5 f71) )
so that we have a commutative diagram
K(n n) —— Kn—-1,n) —— K(n—2,n)

b~ b I

K(nnfl %anlnfl — Kn—-2,n-1)
lfr \ lfr
K(n7n—2)*>K(n—1n—2 —— K(n—2,n—2)

The claim is that the “diagonal” tower vanishes as a pro-system, i.e. for each n, the transition
morphism K(n',n’) — K(n,n) is zero for some n’ > n. By the commutativity it suffices to
show that for each fixed n, the “vertical” pro-systems {K(n,m)},, vanish. Note that there are
canonical inclusions for each n,

K(n,1) C K(n,2) C
of submodules of M/(fT, ..., f_1); the latter is a finitely generated R-module so the noetherian
assumption implies that this chain stabilizes, whence the claim. O
5.2. Applying Corollary 4.5 we deduce:

Corollary 5.3. Let R be a (discrete) noetherian commutative ring. Then for any sequence of
elements (f1,..., fr), the morphism of pro-spectra

{KRJ(f)i)n = KR/ (f{)i) In

18 a quasi-isomorphism.

This observation will be instrumental in passing from descent for derived blow-ups to pro-
descent for classical blow-ups.
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