
Lecture 8
Pro-systems of K-theory spectra

In this lecture we will start looking at pro-systems of K-theory spectra, and begin to see how
pro-systems help us pass from the derived world back to the classical world.

1. K-theory of projective bundles and derived blow-ups. We first tie up some loose
ends from the previous two lectures. Proofs are omitted since they follow the same pattern as in
classical algebraic geometry.

1.1. Let C be a stable presentable ∞-category. Earlier we considered two-term semi-orthogonal
decompositions C = 〈C+,C−〉. More generally, given a collection of full stable subcategories
C1, . . . ,Cn, we say that they form a semi-orthogonal decomposition if they generate C as a stable
subcategory, and each Cj is right orthogonal to Ci for j > i (i.e. Maps(ci, cj) is contractible for
all j > i).

1.2. Let X be a derived scheme. Let E be a locally free sheaf of rank n, and let π : PX(E)→ X
denote the associated projective bundle. Then we have:

Theorem 1.3.

(i) For each integer k, the assignment F 7→ π∗(F) ⊗ O(k) defines a fully faithful functor
Qcoh(X)→ Qcoh(PX(E)).

(ii) For each integer k, let Qcoh(PX(E))(k) denote the essential image of the functor described
in (i). Then there is a semi-orthogonal decomposition

Qcoh(PX(E)) = 〈Qcoh(PX(E))(k), . . . ,Qcoh(PX(E))(k−n+1)〉.

1.4. Let X be a derived scheme. Let Z ↪→ X be a regular closed immersion of codimension n
and p : BlZ/X → X the derived blow-up. Recall that we have a diagram

PZ(NZ/X) BlZ/X

Z X

iE

π p

i

We have:

Theorem 1.5.

(i) The functor p∗ : Qcoh(X)→ Qcoh(BlZ/X) is fully faithful.

(ii) For each integer k, the assignment F 7→ (iE)∗(π
∗(F)⊗ O(k)) defines a fully faithful functor

Qcoh(Z)→ Qcoh(BlZ/X).

(iii) For each integer k, let Qcoh(BlZ/X)(k) denote the essential image of the functor described
in (ii). Then there is a semi-orthogonal decomposition

Qcoh(BlZ/X) = 〈p∗Qcoh(X),Qcoh(BlZ/X)(1) . . . ,Qcoh(BlZ/X)(n)〉.

1.6. Now suppose that X is quasi-compact and quasi-separated. By the compact generation
results discussed in Lecture 3, we can pass to perfect complexes and we get exact sequences,
whence exact triangles in K-theory. Since π∗ preserves perfect complexes these exact sequences
are split, so we also get splittings in K-theory:
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Corollary 1.7 (Projective bundle formula). For any locally free sheaf E of rank n on X, there
is a canonical isomorphism of spectra

n−1⊕
k=0

K(X)→ K(PX(E)).

Similarly we have:

Corollary 1.8 (Derived blow-up formula). For any regular closed immersion i : Z ↪→ X of
dimension n, there is a cartesian square

K(X) K(Z)

K(BlZ/X) K(PX(NZ/X)).

1.9. Using Zariski descent for the standard affine cover of P1 (Lecture 4) and the projective
bundle formula, one derives:

Theorem 1.10 (Bass fundamental theorem). Let X be a quasi-compact quasi-separated derived
scheme. Then for each integer n we have a split exact sequence of abelian groups

0→ Kn(X)→ Kn(A1
X)⊕Kn(A1

X)→ Kn(A1
X − s(X))→ Kn−1(X)→ 0,

where s : X ↪→ A1
X is the zero section.

2. Pro-systems. We now briefly discuss pro-objects in the∞-categorical setting (see [2, § A.8.1]
for details).

2.1. Let C be an accessible ∞-category admitting finite limits. A pro-object of C is a cofiltered
diagram {xi}i∈I, i.e. a functor I→ C with I cofiltered (and essentially small). Pro-objects in C
form an ∞-category Pro(C), where mapping spaces are given by the formula

Maps({xi}i, {yj}j) = lim←−
j

lim−→
i

Maps(xi, yj).

This ∞-category Pro(C) is the free completion of C by cofiltered limits ([2, Prop. A.8.1.6]). It
can be realized alternatively as the full subcategory of Funct(C,Spc)op spanned by accessible
left-exact functors.

Any object x ∈ C can be viewed as a constant pro-system {x} (indexed by the terminal
category); the assignment x 7→ {x} defines a fully faithful functor C ↪→ Pro(C). If C is
presentable, then this functor admits a right adjoint which is given by {xi}i 7→ lim←−i xi (where

the limit is computed in C).

2.2. Consider the ∞-category Pro(Spt) of pro-spectra. This is stable and admits a t-structure
where truncations are given by τ6k{Xi}i = {τ6kXi}i and τ>k{Xi}i = {τ>kXi}i; homotopy
groups πk{Xi}i = {πk(Xi)}i live in the heart, the category of pro-abelian groups.

2.3. Let Pro(Spt)π denote the full subcategory of Postnikov-complete pro-spectra, i.e. pro-
spectra {Xi}i such the canonical morphism

{Xi}i → lim←−
k

τ6k{Xi}i

is invertible. The inclusion Pro(Spt)π ↪→ Pro(Spt) admits a left adjoint Lπ given by

Lπ({Xi}i) = lim←−
k

τ6k{Xi}i = {τ6kXi}i,k,



3

where the latter is a pro-object indexed by pairs (i, k). This exhibits Pro(Spt)π as a left
localization at the class of morphisms {Xi}i → {Yj}j such that

{τ6kXi}i → {τ6kYj}j
is invertible for each integer k. We refer to such morphisms as quasi-isomorphisms. If {Xi}i and
{Yj}j are eventually connective, then this is equivalent to the condition that the morphisms of
pro-abelian groups

{πk(Xi)}i → {πk(Yj)}j
are invertible for each integer k.

Example 2.4. Let X be a spectrum and consider the constant pro-spectrum {X}. This is generally
not Postnikov-complete. Indeed the canonical morphism {X} → Lπ{X} is invertible in Pro(Spt)
iff X is eventually coconnective, because we have Lπ{X} = {τ6iX}i and therefore

MapsPro(Spt)(Lπ{X}, {X}) = lim−→
i

MapsSpt(τ6iX,X).

2.5. We will also make use of the ∞-category Pro(SCRing) of pro-simplicial commutative
rings. We define Postnikov-complete objects and quasi-isomorphisms in Pro(SCRing) just as
above. Note that a morphism {Ai}i → {Bj}j is a quasi-isomorphism iff the induced morphism
of pro-spectra {(Ai)Spt}i → {(Bj)Spt}j is a quasi-isomorphism. This is also equivalent to the
condition that the morphisms of pro-abelian groups {πk(Ai)}i → {πk(Bj)}j are isomorphisms
for all k (since simplicial commutative rings have connective underlying spectra).

3. A model for connective K-theory. To go further we will finally need a model for
connective K-theory. Using Zariski descent we will be able to reduce many questions of interest
to the affine case, where we can give a model for (connective) K-theory that is much more naive
than the Waldhausen S•-construction.

3.1. Let R be a simplicial commutative ring. Let Modproj
R denote the full subcategory of ModR

spanned by finitely generated projective R-modules, i.e. direct summands of free modules R⊕n.
The tensor product of two finitely generated projective R-modules is again finitely generated
projective, so the ∞-category Modproj

R inherits a symmetric monoidal structure. This induces

a structure of E∞-monoid on the underlying ∞-groupoid (Modproj
R )≈ (obtained by discarding

non-invertible 1-morphisms). If X 7→ Xgp denotes group completion of E∞-monoids, we have:

Theorem 3.2. There is an isomorphism of group-like E∞-spaces

Ω∞K(Spec(R)) ≈ ((Modproj
R )≈)gp.

Furthermore, this isomorphism is functorial in R.

4. K-theory and truncations. Next we will explain why K-theory behaves well with respect
to quasi-isomorphisms of pro-systems.

4.1. Let R be a simplicial commutative ring. For k > 0, let τ6kR denote the kth Postnikov
truncation of R. For k < 0 set τ6kR = τ60R.

The following observation, due to Jacob Lurie, says that the (k+1)-truncation of the K-theory
spectrum K(R) only depends on τ6kR.

Proposition 4.2. For each integer k, the canonical morphism of simplicial commutative rings
R→ τ6kR induces an isomorphism of spectra

τ6k+1K(R)→ τ6k+1K(τ6kR).
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Using the Bass fundamental sequence (Theorem 1.10), it will suffice to show this for k > 0.
This will follow from the following observation:

Claim 4.3. For each k > 0, the canonical morphism of simplicial commutative rings R→ τ6kR
induces an equivalence of (k + 1)-categories

τ cat6k+1(Modproj
R )→ Modproj

τ6kR
.

Here τ cat6k+1 denotes the “categorical” truncation that turns an ∞-category into a (k + 1)-

category (by truncating the mapping spaces).

Proof. Fully faithfulness amounts to the claim that the canonical map

τ6k MapsModR
(M,N)→ MapsModτ6kR

(τ6kM, τ6kN)

is invertible for all M,N ∈ Modproj
R . If M = R⊕n is free, then this is identified with the canonical

isomorphism

τ6kΩ∞(N)×n → Ω∞(τ6kN)×n.

In general it follows that the map in question is a retract of an isomorphism, hence an isomorphism.
(Note that this in fact holds for N ∈ ModR arbitrary.)

It remains to show that the functor

Modproj
R → Modproj

τ6kR

is essentially surjective. Recall that M ∈ ModR is finitely generated and projective iff it is locally
free of finite rank. Therefore the claim follows from the fact that R and τ6kR have equivalent
small Zariski sites (and we can use the fully faithfulness to lift gluing data). �

4.4. The functor K : SCRing → Spt extends object-wise to a functor K : Pro(SCRing) →
Pro(Spt). As a corollary of the previous observation, we deduce:

Corollary 4.5. The functor K : Pro(SCRing)→ Pro(Spt) preserves quasi-isomorphisms.

Proof. Let {Ai}i → {Bj}j be a quasi-isomorphism of pro-simplicial rings and consider the
induced morphism of pro-spectra

{K(Ai)}i → {K(Bj)}j .
It suffices to show that it induces isomorphisms of pro-spectra

{τ6kK(Ai)}i → {τ6kK(Bj)}j
for each k. By Proposition 4.2 this is levelwise isomorphic to the pro-spectrum

{τ6kK(τ6k−1Ai)}i → {τ6kK(τ6k−1Bj)}j ,
so this follows from the assumption that {Ai}i → {Bj}j is a quasi-isomorphism. �

5. Pro-systems of regular closed immersions. Let R be a commutative ring and f ∈ R
an element. Recall that the construction R//(f) is discrete iff f is regular, i.e. a non-zero divisor.
Under noetherian hypotheses, the next proposition shows that, even when f is a zero divisor,
we can consider this construction as discrete if we consider the pro-system of all infinitesimal
neighbourhoods R//(fn).

Proposition 5.1. Let R be a (discrete) noetherian commutative ring. Then for any sequence
of elements (f1, . . . , fr), the pro-simplicial ring {R//(fni )i}n is quasi-discrete, i.e. the canonical
morphism of pro-simplicial rings

{R//(fni )i}n → {R/(fni )i}n
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is a quasi-isomorphism. More generally, for any discrete finitely generated R-module M, the
canonical morphism

{M⊗R R//(fni )i}n → {M⊗R R/(fni )i}n
is a quasi-isomorphism.

Proof. It is clear that it is a levelwise isomorphism on π0, so it suffices to show that the pro-
system {πk(M⊗ R//(fni )i)}n vanishes for each k > 0. We argue by induction on the number of
elements in the sequence (f1, . . . , fr). If r = 0 then the claim is clear since M is discrete.

For r > 0 we make use of the cofibre sequences

Mr−1(n)
fnr−−→ Mr−1(n)→ Mr(n),

where Mr(n) := M ⊗R R//(fn1 , . . . , f
n
r ), and Mr−1(n) := M ⊗R R//(fn1 , . . . , f

n
r−1). Looking at

the long exact sequence on homotopy groups,

· · · → {πk(Mr(n))} → {πk−1(Mr−1(n))} frn−→ {πk−1(Mr−1(n))} → · · ·

we reduce by induction to showing that the kernel of the morphism of pro-abelian groups

Ker({π0Mr−1(n)}n
fnr−−→ {π0Mr−1(n)}n)

vanishes. Note that π0Mr−1(n) = M/(fn1 , . . . , f
n
r−1). For each pair m,n > 0, write

K(n,m) := Ker({M/(fn1 , . . . , f
n
r−1)}n

fmr−−→ {M/(fn1 , . . . , f
n
r−1)}n)

so that we have a commutative diagram

K(n, n) K(n− 1, n) K(n− 2, n)

K(n, n− 1) K(n− 1, n− 1) K(n− 2, n− 1)

K(n, n− 2) K(n− 1, n− 2) K(n− 2, n− 2)

fr fr fr

fr fr fr

The claim is that the “diagonal” tower vanishes as a pro-system, i.e. for each n, the transition
morphism K(n′, n′) → K(n, n) is zero for some n′ > n. By the commutativity it suffices to
show that for each fixed n, the “vertical” pro-systems {K(n,m)}m vanish. Note that there are
canonical inclusions for each n,

K(n, 1) ⊂ K(n, 2) ⊂ · · ·

of submodules of M/(fn1 , . . . , f
n
r−1); the latter is a finitely generated R-module so the noetherian

assumption implies that this chain stabilizes, whence the claim. �

5.2. Applying Corollary 4.5 we deduce:

Corollary 5.3. Let R be a (discrete) noetherian commutative ring. Then for any sequence of
elements (f1, . . . , fr), the morphism of pro-spectra

{K(R//(fni )i)}n → {K(R/(fni )i)}n

is a quasi-isomorphism.

This observation will be instrumental in passing from descent for derived blow-ups to pro-
descent for classical blow-ups.
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