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The main reference for this subject is [1]. Part of the arguments ex-
posed here come from this reference.

1. Bézout theorem

Theorem 1.1 (Bézout). � (1) Let P and Q be non-zero homoge-
neous polynomials in C[X, Y, Z] of degrees d > 0 and e > 0. We let
V+(P ), V+(Q) ⊂ P2(C) be the sets of zeros of P and Q in the projective
plane. We assume that P and Q do not have a non-trivial common
factor, then the intersection X = V+(P )∩ V+(Q) is �nite and #X ≤ de.
Moreover, if the curves V+(P ) and V+(Q) intersects transversally at

all intersections points, then #X = de.

V+(P ) and V+(Q) are two curves in the projective plane which do not
have common components. The intersection X must be 0-dimensional
and then, X is �nite.
We may express P and Q as :

P = A0Y
d + A1Y

d−1 · · ·+ Ad Q = B0Y
e + · · ·+Be

where Ai, Bi ∈ C[X,Z] are homogeneous of degree i.
Then, we may consider the resultant R = Resd,e(P,Q) ∈ C[X,Z] of

P and Q with respect to the variable Y . It is the determinant of the
following matrix of size d + e (it is called the Sylvester matrix of P and

(1)Many French mathematicians wonder whether there is an acute accent in the name
of Étienne Bézout. There surely is such as the author of the work Théorie générale des

équations algébriques printed in Paris in 1779 is � M. Bézout �. The theorem is stated
there as � Le degré de l'équation �nale résultante d'un nombre quelconque d'équations
complettes renfermant un pareil nombre d'inconnues, & de degrés quelconques, est
égal au produit des exposans des degrés de ces équations. �. This is a statement which
is not limited to dimension 2, i.e., the intersection of two hypersurfaces, which Bézout
attributes to Euler.
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Q): 

A0 A1 A2 . . . Ad 0 . . . 0
0 A0 A1 . . . Ad−1 Ad 0 . . .

0
. . . . . . . . . . . . . . . . . . 0

0 . . . 0 A0 A1 . . . Ad−1 Ad
B0 B1 B2 . . . Be 0 . . . 0
0 B0 B1 . . . Be−1 Be 0 . . .

0
. . . . . . . . . . . . . . . . . . 0

0 . . . 0 B0 B1 . . . Be−1 Be


We can prove that R is homogeneous of degree de. To see this, consider

a nonzero term in the general formula of determinants. For any line
index i, we have to choose a column σ(i) such that σ is a permutation
and the (i, σ(i))-coe�cient is nonzero. Then, for the �rst e lines, we
have to choose elements 0 ≤ a1, . . . , ae ≤ d and set σ(i) = i + ai and
for the last d lines numbers 0 ≤ b1, . . . , bd ≤ e and set σ(e + i) = i + bi.

The degree of the associated homogeneous term ε(σ)
∏d

i=1Aai

∏e
i=1Bbi

is
∑e

i=1 ai +
∑d

i=1 bi =
∑d+e

i=1 σ(i) −
∑d

i=1 i −
∑e

i=1 i. We see that this
does not depend on σ, so that we can compute the degree by looking at
the case σ(i) = i. Then, R is homogeneous of degree de.
For (x, z) ∈ C2 − {0}, R(x, z) = 0 if and only if the polynomials

P (x, Y, z) and Q(x, Y, z) have a common root y ∈ C or if the leading
coe�cients A0 = P (0, 1, 0) ∈ C and B0 = Q(0, 1, 0) ∈ C do not vanish
both. By doing a generic linear change of variables, we may assume that
(0, 1, 0) 6∈ X, so that R(x, z) will vanish if and only if ∃y ∈ C such that
[x : y : z] ∈ X. By a generic change of variables, we may moreover
assume that [0 : 1 : 0] does not belong to any line passing through two
di�erent elements u and u′ of X. Then, for any (x, z) ∈ C2−{0}, R(x, z)
vanishes if and only if there exists y ∈ C such that [x : y : z] = 0 and
such y is unique. The cardinality of X is then precisely the number of
roots of R in P1(C). It is less than or equal to the degree of R, i.e., ≤ de.
A careful analysis shows that if the intersection at a point u = [x : y :

z] ∈ X is transverse, then [x : z] is a single root of R. For simplicity,
assume x = y = 0 and z = 1. Set P̃ (X, Y ) = P (X, Y, 1). We have
P̃ (0, 0) = 0. The smoothness of V+(P ) at this point means that the
di�erential of P̃ at (0, 0) is not zero. We may assume that ∂P

∂Y
(0, 0) 6=

0 so that the implicit function theorem says there exists an analytic
function f(X) in a neighbourhood of 0 such f(0) = 0, f ′(0) 6= 0 and
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P̃ (X, f(X)) = 0. Then, we can �nd S ∈ O[Y ] where O is the ring of
germs of holomorphic functions in a neighbourhood of 0 (with variable
X) such that P̃ = (Y − f(X))S(X, Y ). We have ∂P

∂Y
(0, 0) = S(0, 0) 6= 0.

Then, Resd,e|Y (P̃ , Q̃) = Q̃(X, f(X)) · Resd−1,e|Y (S, Q̃).

The reductions made before shows that P̃ and Q̃ do not have
common zeros of the form (0, y) other than (0, 0). It follows that
that λ = Resd−1,e|Y (S, Q̃)(0) 6= 0 for S(0, 0) 6= 0. Finally, we have
∂ Resd,e|Y (P̃ ,Q̃)

∂X
(0, 0) = λ∂Q̃(X,f(X))

∂X
(0). The fact that the di�erentials of

P̃ and Q̃ are both nonzero and not proportional at (0, 0) proves that
∂ Resd,e|Y (P̃ ,Q̃)

∂X
(0, 0) 6= 0.

Then, we get that Resd,e|Y (P,Q) has only single roots, which �nishes
the proof.

2. Invertible sheaves, divisors

2.1. Invertible sheaves. �

De�nition 2.1. � Let X be a scheme. An invertible sheaf L on X is
a vector bundle of rank 1 on X.

On any open subset U = SpecA ⊂ X, the restriction L|U corresponds
to a �nite type A-module L which is projective and of rank 1 (if A is a
domain and K = Frac(A), the latter condition means that L ⊗A K is a
1-dimensional vector space).

Example 2.2. � � LetX be a smooth curve. Examples of invertible
sheaves are the trivial bundles, tangent bundles, cotangent bundles.

� X = Spec(A) where A is a Dedekind domain (e.g., A = OK whereK
is a number �eld), any nonzero ideal of A corresponds to an invert-
ible sheaf. More generally, if K = Frac(A), a nonzero submodule of
K is an A-module which corresponds to an invertible sheaf on X.

Proposition 2.3. � The tensor product endows the set of isomor-
phisms classes of invertible sheaves on X with the structure of an abelian
group, which is denoted Pic(X).

The inverse is given by the dual.

Example 2.4. � If X = Spec(OK), then Pic(X) is the class group of
the number �eld K.
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2.2. Divisors. � We assume that X is noetherian and that its local
rings are factorial. These assumptions are satis�ed when X is a smooth
variety. For simplicity, we assume that X is connected. We denote K
the �eld of meromorphic (or rational) functions on X. A meromorphic
function is given by a nonempty subset U of X and a function s on U .
Two meromorphic functions given as (s, U) and (t, V ) are equal in K if
they coincide on U ∩ V (i.e., on any given nonempty subset contained in
U ∩ V ).
More generally, a rational section of an invertible sheaf L is given by

the data of a nonempty subset U of X and a section s of L on U . The set
of rational sections of L is obviously a 1-dimensional vector space over
K.

De�nition 2.5. � A divisor D on X is an element in the free abelian
group Div(X) generated by irreducible closed subsets of X on codimen-
sion 1. It can be expressed as D =

∑
i niVi with distinct Vi. We say that

D is e�ective if all ni are nonnegative.

Example 2.6. � If X is a smooth curve, a divisor on X is a formal
linear combination of points of the curve. If X = Spec OK , Div(X) is
the free abelian group generated by nonzero prime ideals of OK .

Proposition 2.7. � To any invertible sheaf L on X and a nonzero
rational section s of L is attached a divisor div s ∈ DivS. It satis�es
div(s⊗ t) = div s+ div t.

We �rst consider the case X = Spec(A) is a discrete valuation ring,
i.e., a principal domain which has only one nonzero prime ideal. We
let x denote the maximal ideal of x. Let L be an invertible sheaf cor-
responding to a module L. As A is local, there exists an isomorphism
ϕ : L

∼→ A.
The set of rational sections of L identi�es to L ⊗A K. We extend

ϕ to an isomorphism ϕ : L ⊗A K
∼→ K. For any f ∈ L ⊗A K, we set

div f = v(ϕ(f)) · x where v : K× → Z is the valuation. It is obvious that
the de�nition does not depend on ϕ.
We see that if L = A, then div s is e�ective if and only if s ∈ A, which

means that s is de�ned at x. If the coe�cient is nonnegative, we say that
it is the order of vanishing of s at x. If it is negative, we say that there
is a pole of order minus this coe�cient.
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In the general case, for any 1-codimensional closed integral subscheme
Z ⊂ X, (i.e., if X = Spec(A), Z corresponds to a minimal nonzero prime
ideal p ⊂ A), we can consider the local ring OX,Z = A(p) (it de�nes a
scheme X(x)) and the localisation of L and s to this ring OX,Z which is a
discrete valuation ring (for it is factorial). Using the previous case, we get
a coe�cient nZ ∈ Z. Then, we would like to set div(s) =

∑
Z nZ ·Z. To do

this, we have to prove that the number of such Z with nonzero nZ is �nite.
The matter is local on X. We may assume that X = Spec(A) and that
L = OX . Then, s is an element in the fraction �eld of A. Then, we may
assume that s ∈ A−{0}. All coe�cients nZ will be nonnegative. The Z
such that nZ > 0 are precisely those which are contained in the zero locus
of s. Actually, they are the irreducible components of the (reduced) zero
locus of Z (which are all 1-codimensional by the Hauptidealsatz ). The
ring A/(s) is noetherian and thus only have a �nite number of minimal
prime ideals.

Theorem 2.8. � Let X be a noetherian schemes whose local rings are
factorial. Let K be the function �eld of X. We denote CH1(X) the cok-
ernel of div : K× → Div(X). There is a group morphism div : Pic(X)→
CH1(X) which is an isomorphism.

To any invertible sheaf L and choice of a nonzero rational section
s, there is an attached element div s which has a class in CH1(X).
This class in independant of the choice of s. The associated map
div : Pic(X)→ CH1(X) is a group homomorphism.
It is injective. If s is a rational section of an invertible sheaf L such

that div s = div f for some meromorphic function f , we can replace s
by f−1s so as to assume div s = 0. Then, I claim that s is a global
section of L which generates L . This claim is local on X, so we may
assume that L is trivial. Then, we only have to do the case where s is a
meromorphic function on (an open subset of) X, which can be assumed
a�ne. By localisation, we may even assume X = Spec(A) where A is

local. Then, it is factorial. We get that s can be written as u
∏k

i=1 f
ei
i ,

where the fi belong to a set of representatives of irreductible elements of
A. Then, div s =

∑
i eiZi where Zi is the zero locus of fi. We assumed

that all the coe�cients are zero. Then, s = u is invertible.
It it also surjective. Let Z be an integral closed subscheme of X of

codimension 1. We have to construct an invertible sheaf L whose class
in CH1(X) is [Z]. We consider the ideal IZ ⊂ OX corresponding to the
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closed subscheme Z. As X is locally factorial, IZ is locally generated by
a function which is a nonzero divisor. Then, IZ is an invertible sheaf.
The global section 1 of OX is a rational section of IZ , and its divisor
is −[Z]. Then, the dual of IZ (also denoted O(Z)) corresponds to the
class of the divisor [Z].

2.3. Elliptic curves. � Let k be an algebraically closed �eld of char-
acteristic 6= 2. Let P ∈ k[X] be a polynomial of degree 3 such that
P ∧P ′ = 1. We may consider the projective curve E de�ned in the plane
by the equation Y 2Z = P (X/Z)Z3. We let E(k) be the set of k-points
of E. The only point of E in the line Z = 0 (denoted D∞) at the in�nity
is O = [0 : 1 : 0] and it is smooth.
This curve is smooth, for we can �x Z = 1 to get the a�ne plane

curve of equation f(X, Y ) = 0 with f(X, Y ) = Y 2 − P (X). Assume
f(x, y) = 0, ∂f

∂X
(x, y) = −f ′(x) = 0 and ∂f

∂Y
(x, y) = 2y = 0. We get

y = 0, f(x) = 0 and f ′(x) = 0, which contradicts the assumption on P .
Then, E is smooth.
We consider the abelian group Pic(E).

Theorem 2.9. � The map E(k)→ Pic(E) which sends P to [P −O] is
injective and its image is the kernel Pic0(E) of the degree map Pic(E)→
Z.

We shall prove later that the degree map Div(E) → Z which maps∑
i eiPi to

∑
i ei induces a group morphism Pic(E) → Z whose kernel

shall be denoted Pic0(E). (This is true for all projective and smooth
curves.)
For any projective line D in P2, it makes sense to consider the inter-

section D ∩ E. By Bézout's theorem, the cardinality of this intersection
is ≤ 3. One can be more precise. Via a parametrisation P1 ∼→ D of
D, the equation of E restricts to an homogeneous polynomial of degree
3. Then, on D, we have an e�ective divisor of degree 3. As it lies in
D ∩ E, it also de�nes an e�ective divisor of degree 3 on E. Let us de-
note it D · E ∈ Div(E). If we consider one linear equation f of D in
Γ(P2,O(1)), then this divisor D · E is also div f|E where f|E is the re-
striction of f , considered as a (regular) section of the invertible sheaf
O(1) on E (it is not completely obvious that the multiplicities are the
same as with the previous construction, but this will be a consequence
of upcoming formulas).
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We say that two divisors are rationally equivalent if they have the same
class in CH1(E). The discussion above shows that the class in CH1(E)
of the divisor D ·E ∈ Div(E) is independant of the line D. In particular,
we can take the line D∞. In that case, D∞ ·E = 3O. This means that if
P1, P2 and P3 are three points of E(k) which lies in the same line (in the
sense that P1 +P2 +P3 = D ·E for some line D), then P1 +P2 +P3 ∼ 3O,
i.e., ϕ(P1) + ϕ(P2) + ϕ(P3) = 0.
This means that if we take two points P1 and P2 of E(k), we can

consider the line D = (P1P2) (the tangent to E if P1 = P2). Then, the
cycle D ·E is of the form P1 +P2 +P3 for some point P3, and it satis�es
ϕ(P1) + ϕ(P2) + ϕ(P3) = 0 in Pic0(E).
For example, if P = [x : y : z] ∈ E(k), we can consider the vertical

line (OP ). It intersects E at a third point Q = [x : −y : z] which will be
such that ϕ(Q) = −ϕ(P ).
The previous constructions shows that the image of ϕ : E(k) →

Pic0(E) is a group and then, it is surjective. To �nish the proof, one
has to show that it is injective. Assume that P and P ′ are such that
ϕ(P ) = ϕ(P ′), i.e., [P ] ∼ [P ′]. We let R ∈ E(k) be such that O, P and
R lie on a line D. It follows that O + P ′ + R ∼ 3O. As 3O is in the
equivalence class associated to the invertible sheaf O(1) on E, it means
that there exists a rational section s of O(1) such that div s = O+P ′+R.
As s is e�ective, this rational s must be a regular section of O(1). At
this stage, we take for granted the non obvious fact that the restriction
map

Γ(P2,O(1))→ Γ(E,O(1))

is surjective (and actually bijective): it is related to the Riemann-Roch
theorem for curves. Then, s is the equation of some line D′ and div s =
D′ ·E = O+P ′+R. As O and R belongs to D′ and D, we have D = D′.
As D · E = O + P +R, we get P = P ′.

Corollary 2.10. � The set E(k) is naturally equipped with a group
structure.

3. Algebraic cycles

3.1. De�nition. � We assume thatX is a �nite scheme or variety over
a �eld k (sometimes, we will localise these schemes). This assumption
shall be implicit until the end of these notes. Points x of the scheme X
are in bijection with the set of irreducible closed subsets Z = {x} of X.
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The dimension of the closure Z is the same as the transcendance degree
of the �eld associated to x (the function �eld of the variety Z). We let

d(x) = dim {x}. We shall call it the dimension of x. We may also de�ne
the codimension c(x) of x, it is the dimension of the ring OX,x.
If X is equidimensional (i.e., all irreducible components have the same

dimension), then c(x) = dimX − d(x).

De�nition 3.1. � A cycle of dimension d (or a d-cycle) is a formal
linear combination of points (or irreducible closed subsets) of dimension
d. We let Zd(X) be the group of d-cycles and Z?(X) the corresponding
graded abelian group.

Remark 3.2. � Z?(Xred)
∼→ Z?(X).

3.2. Cycle associated to a closed subscheme. �

De�nition 3.3. � Let Z ⊂ X be a closed subscheme. We let
C1, . . . , Cn be its irreducible (integral) components. We let Ai be the
localised ring of X at the generic point ηi of Ci. We de�ne ei = lgAi

OZ,ηi
.

We set [Z] =
∑n

i=1 ei[Ci] ∈ Z?(X).

If A is a local ring with residue �eld k and M is an A-module such
that there exists a �ltration 0 = M0 ⊂ M1 ⊂ M2 ⊂ Ml = M by sub-A-
modules such that Mi/Mi−1 ' k, we say that A is of �nite length and
lgAM := l is independent of the choice of �ltrations (Jordan-Hölder).
We may check that the modules considered in the de�nition are of

�nite length. For, if A is of the localised ring at generic points of Z, we
are reduced to the case X = SpecA and the set-theoretic closed subset
associated to Z = Spec(A/I) is the closed point {m}, where m is the

maximal ideal of A which means that
√
I = m. Then, by choosing a

�nite set of generators x1, . . . , xk of the ideal m, we see that there exists
o ≥ 1 such that xoi ∈ I. Then, for a big enough d, any monomial of
degree d in the xi is a multiple of some xoi , which proves that md ⊂ I.
Then, A/I is a quotient of A/md which is easily seen to be an A-module
of �nite length.
If A is a discrete valuation ring and I ⊂ A is nonzero ideal, then

lgA(A/I) is the valuation of a generator of I. Thus, we see that the
notation D · E we used for some 0-cycles in the paragraph on elliptic
curves correspond to the cycle of the intersection scheme D ∩ E (in D,
E or P2).
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Example 3.4. � Let X = A2
k and x ∈ X be the closed point associated

to the origin. It means we consider m = (X, Y ) ⊂ k[X, Y ]. Nonempty
subschemes Z supported by {x} corresponds to ideals I ⊂ m which
contain some power md. If d = 1, I = m and the multiplicity e =
lgA(A/I) is 1. If d = 2, we have m2 ⊂ I ⊂ m. We can look at the
quotient A/m2 ' k ⊕m/m2 where m/m2 is a 2-dimensional vector space
with basis X and Y and whose square is zero. An ideal I as above
corresponds to the datum of a subspace V of m/m2 and then, the length
e is 3− dimk V .
If I = (Y,X) = m, then V = m/m2 and e = 1.
If I = (Y, Y −X2), then V = k · Y and e = 2.
If I = (X2, Y 2, XY ) = m2, then V = {0} and e = 3.

3.3. Direct image of cycles. � Let p : X → S be a proper mor-
phisms between algebraic varieties. We shall de�ne a graded morphism
Z?(X)→ Z?(S).

De�nition 3.5. � Let Z be an integral closed subscheme of X. As p
is proper, the image Z ′ = p(Z) is an (integral) closed subscheme of S.
We consider the extension of �elds K/K ′ associated to Z and Z ′. If it is
�nite, we set p?([Z]) = [K : K ′] · [Z ′]. Otherwise, we set p?([Z]) = 0. It
extends to a group morphism Z?(X)→ Z?(S).

This construction is obviously functorial in p.

De�nition 3.6. � Let X be an integral variety. Let f be a meromor-
phic function on X. We would like to de�ne the divisor of f as it was
previously done in a favourable situation. We consider the normalisation
ν : X̃ → X of X. (If X = Spec(A), then X̃ = Spec(Ã) where Ã is the
integral closure of A in its fraction �eld. The ring Ã is a �nite algebra
over A.) We can identify f to a meromorphic function ν?f of X̃. The
construction given above actually applies to normal schemes, so that we
can consider div(ν?f) ∈ Z?(X̃) and de�ne div f = ν? div(ν?f) ∈ Z?(X).

Proposition 3.7. � Let p : X → S be a �nite and surjective morphism
between integral schemes. Let h be a meromorphic function on X, i.e., an
element of the function �eld L of X. We let K denote the function �eld of
S. The extension L/K is �nite. Then, p? div h = divNL/K(h) ∈ Z?(S).

If we introduce the normalisations ofX and S, we immediately see that
we may assume that both X and S are normal. As we have to compare
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some coe�cients at some codimension 1 points of S, we may localise S
so as to assume that S = Spec(A) with A a discrete valuation ring with
maximal ideal p. Then, X = Spec(B) with B a Dedekind domain with
only a �nite number of nonzero prime ideals q1, . . . , qg.

Lemma 3.8. � Let A be a discrete valuation ring. Let v1, . . . , vd be a
basis of a free A-module M ⊂ Ad of rank d. Then, the valuation of the
determinant of the vectors v1, . . . , vd is the length of the A-module Ad/M .

It follows from the structure theory of modules over principal domains.
To prove the proposition, we may assume that h ∈ B−{0} and consider

M = (h) ⊂ B. As an A-module, B ' Ad where d is the degree of p. The
determinant of h is NL/K(h). Using these identi�cations, we get that
the valuation of this determinant, i.e, v(NL/K(h)) is the length of the
A-module B/(h).
We may introduce the coe�cients ni such that div h =

∑g
i=1 niqi.

To �nish the proof, we have to obtain lgAB/(h) =
∑g

i=1 nifi where fi
is the degree of the extension of residue �elds associated to qi and p.
As the statements are multiplicative in h, we may further assume that
h is a generator of one of the qi, say q1, then one has to prove that
lgAB/q1 = f1. This is obvious as B/q1 is the residue �eld associated to
q1, the notion of length reduces to that of dimension of vector spaces.

De�nition 3.9. � Let X be an (integral) projective variety over a �eld
k. We consider the projection p : X → Spec k. It induces a group mor-
phism deg : Z0(X)→ Z0(Spec k) ' Z.

Proposition 3.10. � Let C be an (integral) projective curve over a
�eld k. Then, for any nonzero meromorphic function f on C, we have
deg(div f) = 0.

Assume �rst that C = P1. Then f is identi�ed to an element f ∈
k(T ) − {0}. To prove the proposition, we may assume that f = a0 +
a1T + · · ·+ad−1T

d−1 +adT
d ∈ k[T ] is a monic polynomial. We may even

further assume that it is irreducible of some degree d. We let p ⊂ k[T ]
be the ideal generated by f . The rational function f is regular on the
a�ne line A1 = P1 − {∞} and this prime ideal p is precisely the locus
where f vanishes. The contribution of the points of the a�ne line to the
divisor of f shall obviously by [p]. We also have to consider the point
∞. The complement of the origin P1 − {0} is identi�ed to Spec k[U ]
with the identi�cation TU = 1 on P1 − {0,∞}. Thus, we also get
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f = U−d·(1+ad−1U+· · ·+a0U
d) whose U -valuation (i.e., valuation of f at

∞) is −d. It follows that div f = [p]−d[∞]. Then, deg div f = d−d = 0.
In the general case, any �non constant� rational function on the curve

C de�nes a �nite surjective morphisn p : C → P1. Then, deg div f =
deg divNk(C)/k(P1)f = 0.

Remark 3.11. � The proof is similar to that of the product formula
for number �elds.

Corollary 3.12. � If X is a smooth and projective curve, there is a
degree morphism Pic(X) → Z which maps the isomorphism class of an
invertible sheaf L to the degree of the divisor of a rational section of L .

3.4. Rational equivalence. �

De�nition 3.13. � For any algebraic variety X (irreducible or not),
we de�ne a (graded) subgroup Rat?(X) ⊂ Z?(X): it is the subgroup
generated by cycles of the form i? div f where i : Z → X is the closed
immersion of an integral closed subscheme Z and f is a nonzero mero-
morphic function of Z.

De�nition 3.14. � Two cycles are rationally equivalent if their di�er-
ence is in Rat?(X). We de�ne CH?(X) = Z?(X)/Rat?(X).

For example, if X is (irreducible and) locally factorial, we have seen
that CHdimX−1(X) ' Pic(X).
Obviously, for any irreducible X, CHdimX(X) ' Z.

Proposition 3.15. � For any projective morphism p : X → S, the
group morphism p? : Z?(X) → Z?(S) induces a graded morphism
p? : CH?(X)→ CH?(S).

The general case follows formally from that of a surjective morphism
p : X → S between irreducible normal varieties and the case of the cycle
div f of a nonzero meromorphic function f on X. We have to prove that
p? div f ∈ Rat?(S).
First case: dimX = dimS. I claim that p? div f = divNL/K(f) where

L/K is the �nite extension of �elds of meromorphic functions on X and
S. This formula can be checked by localising S so that we may assume
S is a discrete valuation ring. Then, X must be �nite over S and we can
use the formula of proposition 3.7.
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Second case: dimX > dimS. I claim that p? div f = 0. Let Z be
an irreducible subvariety of X of dimension dimX − 1. If p?[Z] 6= 0 in
Z?(S), then dimS ≥ dim p?Z = dimX − 1 ≥ dimS. Then, we may
assume that dimX = dimS + 1 and we can localise at the generic point
of S. Then, we are in the situation S = SpecK and X is a curve over S.
Then, p? : Z0(X) → Z0(S) identi�es to the degree map and we already
proved that it vanishes on divisors of meromorphic functions.

Corollary 3.16. � Let X be a projective variety over a �eld k. Then
the morphism a : X → Spec k de�nes a group morphism a? : CH0(X)→
CH0(Spec k) which identi�es to a map deg : CH0(X)→ Z.

3.5. Flat inverse image. �

Proposition 3.17. � Let f : X → S be �at of relative dimension n,
i.e., for all Z ⊂ S irreducitlbe, f−1(Z) is empty or equidimensional of
dimension dimZ+n (this is automatic if S is irreducible and X is equidi-
mensional), then, there exists a unique group morphism f ? : Z?(S) →
Z?(X) such that:

(i) f ? maps Zk(S) to Zk+n(X);
(ii) for any closed subscheme Z ⊂ S, we have f ?([Z]) = [f−1(Z)].

Moreover, f ?(Rat?(S)) ⊂ Rat?(X). More precisely, f ? div g = div f ?g
for any nonzero meromorphic function g on S.

We de�ne f ? so that (ii) applies for all integral closed subschemes.
Then, it satis�es (i) by assumption. Then, we have to prove that (ii)
applies to all closed subschemes Z of S. By localising at the generic points
of the irreducible components of Z, we may assume that S = Spec(A)
is local, with maximal ideal m (corresponding closed point x) and that

Z = V (I) where
√
I = m. Let e = lgA(A/I) so that [Z] = e[x]. We have

to prove that [f−1(Z)] = e[f−1(x)]. This computation can be done locally
onX, so that we may assumeX = SpecB and even localise at the generic
point of an irreducible component of f−1Z. Then, f−1(x) = Spec(B/mB)
and f−1(Z) = Spec(B/IB). The B-module B/mB is of �nite length. We
have to prove that lgB(B/IB) = e lgB(B/mB).
We may choose a �ltration I = I0 ⊂ I1 ⊂ Ie = A with Ik/Ik−1 ' A/m.

Then, we get a �ltration Jk = IkB ⊂ B. By �atness, Jk = Ik ⊗A B and
Jk/Jk−1 ' Ik/Ik−1 ⊗A B ' (A/m)⊗A B ' B/mB. By dévissage, we get
the expected computation of lengths.
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The formula f ? div g = div f ?g can be checked locally on S and on X.
Then, we may assume g is a nonzero element of A where S = SpecA
and X = SpecB. As g can be locally expressed as a quotient, we may
assume that g ∈ A − {0}. Then, div g = [Spec(A/gA)] and div f ?g =
[Spec(B/gB)]. The expected formula then follows from (ii) applied to
the closed subscheme V (g) ⊂ S.

Corollary 3.18. � If f : X → S is �at, we get a morphism f ? : CH?(S)→
CH?(X).

This morphism is not graded. It is reasonable to use a number-
ing by codimension. If X and S are equidimensional: CHc(X) =
CHdimX−c(X), CHc(S) = CHdimS−c(S). Then, we get a graded
morphism f ? : CH?(S)→ CH?(X).

3.6. Simple computations. �

Proposition 3.19. � For any X, the morphism p? : CHi(X) →
CHi+1(X ×A1) is surjective for all i ∈ Z.

Lemma 3.20. � The proposition is true is X = SpecK where K is a
�eld. More precisely, CH1(A1

K) ' Z and CH0(A1
K) = 0.

We can use the identi�cation CH0(A1
K) ' Pic(A1

K). This group is
trivial because K[T ] is a principal domain.

Lemma 3.21. � Assume that Z ⊂ X is a closed subscheme and U ⊂ X
is the open complement. We have the inclusions i : Z → X and j : U →
X. Then, we have an exact sequence:

CH?(Z)
i?→ CH?(X)

j?

→ CH?(U)→ 0 .

It is obvious. If z ∈ Z?(X) is such that j?z is rationally equivalent
to zero, we have j?z =

∑
k iUk→U,?[div fk] where fk is nonzero ratio-

nal function on integral subschemes Uk of U . We may consider fk as
meromorphic function on the closure Uk in X. Then, we obviously have
z −

∑
k iUk→X,?[div fk] ∈ i?Z?(Z).

We can prove the proposition by induction on dimX. Let z be an
element of CH?(A

1
X). Let η1, . . . , ηc be the generic points of the ir-

reducible components X (which can be assumed to be reduced). We
have ηi = SpecKi where Ki is some �eld. We proved that CH?(ηi) →
CH?(A

1
ηi

) is surjective (actually bijective). I claim that this surjective
map

∏
iCH?(ηi) →

∏
iCH?(A

1
ηi

) is obtained as the �ltering colimit of
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the maps CH?(U) → CH?(A
1
U) where U varies in the ordered set of

dense open subsets of X.
Then, there exists a small enough such U such that the restriction

of z ∈ CH?(A
1
X) to CH?(A

1
U) belongs to the image of p?U : CH?(U) →

CH?(A
1
U). We choose a class b ∈ CH?(X) such that p?Ub|U = zA1

U
. Then,

z−p?Xb is mapped to zero by the restriction map CH?(A
1
X)→ CH?(A

1
U),

then it is of the form z − p?Xb = iA1
Z→A1

X ,?
z′ where z′ ∈ CH?(A

1
Z) and

Z = X−U . By induction, there exists b′ ∈ CH?(Z) such that b′ = p?Z(b′),
so that �nally z = p?X(b+ iZ→X,?b

′).

Corollary 3.22. � Let d ≥ 0. We have CHd(A
d
k) ' Z and CHi(A

d
k) =

0 if i 6= d.

Corollary 3.23. � Let 0 = V0 ⊂ V1 ⊂ V2 ⊂ Vn ⊂ Vn+1 = kn+1 be a
complete �ag in kn+1, i.e., dimVi = i. For any 1 ≤ i ≤ n+1, Vi de�nes a
subprojective space P(Vi) ⊂ Pn. Then, for all 1 ≤ i ≤ n+ 1, CHi−1(Pn)
is generated by the class of P(Vi)

(2).

We can do induction on n. We use the exact sequence

CH?(P(Vn))→ CH?(P
n)→ CH?(P

n −P(Vn))→ 0

The variety Pn − P(Vn) is isomorphic to An, so that its Chow group,
except in dimension n are zero. Then, the maps CHi−1(P(Vn)) →
CHi−1(Pn) for i 6= n are surjective, so that the induction shows
CHi−1(Pn) is generated by [P(Vi)]. In top dimension, CHn(Pn) is
obviously generated by [P(Vn+1)].

4. Products

4.1. First Chern class of a line bundle. �

De�nition 4.1. � Let X be a �nite type scheme over a �eld k. Let L
be a line bundle over X. We de�ne a group morphism

c1(L ) ∩ − : Z?(X)→ CH?−1(X)

in the following way. Let Z be a integral closed subscheme of X. We
denote iZ : Z → X the corresponding closed immersion. We de�ne

(2)We do not have the tools yet to prove that CHi−1(Pn) is actually isomorphic to
Z.
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c1(L ) ∩ [Z] = iZ?([div s]) where s is a nonzero meromorphic section
of the restriction L|Z .

Proposition 4.2. � The morphism c1(L )∩− factors through rational
equivalence to give a pairing Pic(X)× CH?(X)→ CH?−1(X).

One is reduced to the following proposition:

Proposition 4.3. � If X is an integral scheme, then on 1-codimensional
cycles, the previous construction induces a commutative pairing
Pic(X)× Pic(X)→ CH2(X).

We shall do only the favourable case where X is locally factorial (the
general case is [1, Theorem 2.4]). We already have a bilinear pairing
b : Z1(X) × Z1(X) → CH2(X). Let D and D′ be two integral closed
subschemes on X of codimension 1. We can de�ne the cycles [D], [D′]
and the invertible sheaves O(D) and O(D′). The pairing of [D] and [D′]
is the divisor class associated to O(D)|D′ considered as a cycle on D′ and
pushed through D′ → X.
We should prove b([D], [D′]) = b([D′], [D]). It is obviously true if

D = D′. Now, assume D 6= D′. We consider the invertible sheaf O(D)
associated to D. The unit of OX de�nes a global section of O(D) which
is invertible on X−D. The divisor of this global section is precisely [D].
Then, O(D)|D′ is equipped with the restriction of that section and it is
invertible on D′−D∩D′. Then, it is a nonzero global section. Its divisor
represents b([D], [D′]) and is supported on D ∩D′.
Then, we see that we can localise X at points of codimension 2 lying

in the intersection of D and D′. Thus, we may assume X = SpecA is
local (2-dimensional) with closed point x. As we assumed X is factorial,
we can assume that D is the hypersurface de�ned by f ∈ A and D′ by
g ∈ A. We may identify O(D) to f−1A ⊂ K = Frac(A), equipped with
the section 1 ∈ A. This identi�es to A ⊂ K equipped with the section
f ∈ A. Then, b([D], [D′]) identi�es to the divisor of the image of f in
the ring A/(g) of functions on D′. By de�nition, b([D], [D′]) is the cycle
class of the subscheme A/(f, g). This is not changed when we invert D
and D′.

Proposition 4.4. � If L is a line bundle on X equipped with a
trivialisation t : OX−Z

∼→ L|X−Z outside a closed subscheme Z,
then c1(L ) ∩ − : CH?(X) → CH?−1(X) re�nes to a morphism
c1(L , t) ∩ − : CH?(X)→ CH?−1(Z).
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4.2. Projective bundles, vector bundles. �

Proposition 4.5. � Let n ≥ 0. We consider the invertible sheaf O(1)
on Pn (it is the dual of the universal line O(1) ⊂ On+1

Pn ). For any 0 ≤
i ≤ n, we de�ne ui the image of [Pn] ∈ CH0(Pn) by the ith power of
c1(O(1))∩− acting on CH?(P

n). Then, CH i(Pn) is a free abelian group
generated by ui.

If V ⊂ kn+1 is a subspace of codimension i, expressing V as the inter-
section of i hyperplanes, one can see that ui = [P(V )]. We already know
that ui generates CH i(Pn). To �nish the proof, it su�ces to construct
a morphism ϕi : CH

i(Pn)→ Z which maps ui to 1. To do this, we may
consider the (n − i)th power c1(O(1))◦(n−i) ∩ − : CH i(Pn) → CHn(Pn)
of c1(O(1)) ∩ − followed by the degree map CH0(Pn)→ Z.

Proposition 4.6. � Let X be a scheme. Let E be a vector bun-
dle of rank n + 1 on X. Then, we have a canonical isomorphism∏n

i=0CH?+i−n(X) → CH?(P(E )) (3) which maps a family of classes
x0, . . . , xn to

∑n
i=0 c1(O(1))i ∩ π?xi where π : P(E ) → X denotes the

projection from the projective bundle.

The proof uses variants of arguments seen above.

Corollary 4.7. � Let X be a scheme. Let E be a vector bundle of rank
n on X. We identify E to a scheme above X with a projection π : E → X.
Then, π? : CH?−n(X)→ CH?(E ) is an isomorphism.

We may embed E as an open subscheme of P(E ∨ ⊕ OX) where a
vector v is mapped to the point of homogeneous coordinates [v : 1]. The
complement of E is the closed subscheme which identi�es to P(E ∨) ⊂
P(E ∨ ⊕ OX). Then, we have an exact sequence:

CH?(P(E ∨))
i?→ CH?(P(E ∨ ⊕ OX))→ CH?(E )→ 0 .

The Chow groups of these two projective bundles are computed in terms
of CH?(X) and we can compute the map between the sames. We let
π : CH?(P(E ∨)) → X and π′ : CH?(P(E ∨) ⊕ OX) → X denote the two
projections and i : P(E ∨) → P(E ∨ ⊕ OX) denote the inclusion. Then,
we see that for x ∈ CH?(X), i?(c1(O(1))k ∩ π?x) = c1(O(1))k+1 ∩ π′?x:
this follows from the fact that O(1) on P(E ∨⊕OX) is trivialised outside

(3)From this stage, we use the Grothendieck P, so that P(E ) does not parametrise
lines in E but hyperplanes in it. There are good reasons to do this...
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P(E ∨) so that c1(O(1)) ∩ π′?x is represented by i?(π?x) which is the
expected formula for k = 0 and the general case follows by applying
c1(O(1))k ∩ − on both sides. Then, writting CH?(E ) as the cokernel of
the shifting map we computed:

n−1⊕
k=0

CH?+k+1−n(X)→
n⊕
k=0

CH?+k−n(X) ,

we obtain that the cokernel identi�es to CH?−n(X).

4.3. Blow-ups. �

De�nition 4.8. � Let i : Y → X be a closed immersion de�ned by an
ideal I ⊂ OX of �nite type. Then, BlY X = Proj (⊕n≥0I nT n) where
⊕n≥0I nT n is the obvious subalgebra of OX [T ].

Locally, I = (f0, f1, . . . , fn), then, we have a morphism X − Y →
Pn ×X given by the homogeneous coordinates [f0 : · · · : fn]. Then, the
blow-up BlY X is the schematic closure of X − Y in Pn ×X.
There is a map π : BlY X → X which is an isomorphism above X −Y

such that π−1(Y ) = Proj(⊕n≥0I n/I n+1) which is the projectivisation
of the normal cone of i.

Remark 4.9. � If V ⊂ X is a closed subscheme and W = Y ∩ Y ,
then the blow-up BlW V identi�es to a closed subscheme of BlY X: it is
called the strict transform of V . Note: it is contained in π−1(V ), but the
inclusion is not an equality in general.

4.4. Deformation to the normal cone. � We �x a closed immer-
sion i : Y → X. The goal of this paragraph is to de�ne a morphism
i? : CH?(X) → CH?−c(Y ) under some circumstances. We assume that
i is a regular immersion of codimension c > 0. Locally on Y (with
X = Spec(A) and Y = Spec(A/I), this means that I is generated by c
elements f1, . . . , fc which form a regular sequence: f1 is not a zero divisor
in A, [f2] is not a zero divisor in A/(f1)... and [fc] is not a zero divisor
in A/(f1, . . . , fc−1). If I is the ideal de�ning Y (locally, it corresponds
to I), the conormal sheaf of i is the quotient I /I 2 considered as a
OY -Module. It is a locally free sheaf of ranf c on Y .

Example 4.10. � Any hypersurface H in Pn (or An) de�nes a regular
immersion H → Pn of codimension 1.
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If X and Y are smooth varieties, any closed immersion i : Y → X is
a regular immersion. If TY and TX are the tangent bundles to X and
Y , then the conormal sheaf on Y is the dual of the normal bundle NX/Y

which is the quotient (i?TX)/TY .

De�nition 4.11. � We de�ne B = BlY×{∞}(X × P1): it is the blow-
up of Y ×∞ in X × P1. We have a projection π : B → X × P1 which
is an isomorphism above the open subset X × P1 − Y × {∞} (it is
birational) and π−1(Y ×{∞}) ' P(NX×P1/Y×{∞}) where NX×P1/Y×{∞}
is the conormal sheaf of the immersion i′ : Y = Y × {∞} → X × P1.
Obviously, NX×P1/Y×{∞} = NX/Y ⊕ OY . Then, geometrically π−1(Y ×
{∞}) identi�es to the projective bundle of the direct sum of the normal
bundle to i and of the trivial vector bundle of rank 1 on Y .

De�nition 4.12. � Above ∞, the blow-up B contains the blow-up
BlY X of Y in X as a closed subscheme. We remove it to get the defor-
mation space D = B − BlY X. This BlY X meets P(NX/Y ⊕OY ) as the
closed subscheme given by the hyperplane P(NX/Y ) ⊂ P(NX/Y ⊕ OY ).
Then, if we let p : D → P1 denote the projection and identify A1 to
P1 − {∞}, then p−1(A1) ' A1 ×X and p−1(∞) ' NX/Y is the normal
bundle of i. There also exists a canonical closed immersion Y ×P1 → D
which can be considered as a 1-parameter family of immersions of Y in
the �bers of D. Outside ∞, this is the given immersion i : Y → X but
at ∞, it identi�es to the zero section Y → NX/Y of the normal bun-
dle. This is the reason why this construction is the �deformation to the
normal cone� (4).

De�nition 4.13. � The morphism i? : CH?(X) → CH?−c(Y ) is de-
�ned as follows:

CH?(X)
∼ // CH?+1(A1 ×X)

CH?+1(D)

OOOO

c1(p?O(1),t=∞)∩−
// CH?(NX/Y )

CH?+1(NX/Y )

OO

0
44
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

CH?−c(Y )

∼
OO

(4)If i was not assumed regular, instead of the normal bundle, we would only have a
cone.
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A priori, a choice appears in this construction when we lift an ele-
ment of CH?+1(A1 × X) to an element of CH?+1(D). The lifting is
de�ned up to the image of the pushforward CH?+1(NX/Y )→ CH?+1(D).
But the composition with c1(p?O(1), t = ∞) ∩ − gives the zero map
CH?+1(NX/Y ) → CH?(NX/Y ) because the restriction of the invertible
sheaf p?O(1) to NX/Y is trivial.

4.5. Variations, examples. �

4.5.1. Normal cone. � Let i : Y → X be a regular closed immersion of
codimension c. Let V be an integral closed subscheme of dimension k in
X. We denote W = V ∩ Y . We consider W as a closed subscheme of V .
LetI be the ideal ofW in V . There is a cone CWV = Spec

⊕
n≥0 I /I 2

over W : it is the normal cone of W → V . This cone identi�es to a
subcone of the restriction of the vector bundle NX/Y from Y toW . Then,

it has a class in CHk(NX/Y |W )
∼← CHk−c(W ) which can be pushed by

CHk−c(W ) → CHk−c(Y ). The class obtained in CHk−c(Y ) is precisely
i?[V ].

Remark 4.14. � Assume Y is integral, that Y and V intersects prop-
erly, i.e., the integral componentsW1, . . . ,Wk ofW are of dimension k−c.
Then, the class constructed (which we shall denote here i?refV ) above in

CHk−c(W ) decomposes uniquely as
∑k

i=1mi[Wi]. The number mi is the
multiplicity of Wi in �the product Y · V �.

4.5.2. Curves on surfaces. � Assume C and D are two smooth curves
on a surface X and that they intersects transversally at some points
x1, . . . , xn. We consider i : C → X which is a regular immersion of
codimension 1. The canonical closed immersion CWD → NX/C |W where

W = {x1, . . . , xn} is then an isomorphism. Then, i?refD = [W ].
The situation is orthogonal to this one when C = D. Then, W = C ∩

C = C, and the normal cone CCC is the zero section of the normal bundle
NX/C . By the following lemma, we see that i?refC = c1(NX/C)inCH0(C).

Lemma 4.15. � Let X be an integral scheme. Let L be an invert-
ible sheaf over X, which we also consider as a scheme over X. We let
p : L → X be the projection and s : X → L be the zero section. Then,
s?[X] = p?c1(L ) ∈ CH1(L ) where c1(L ) where L is line bundle on an
integral scheme U is a notation for c1(L ) ∩ [U ] ∈ CH1(U).
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We consider L as an open subscheme of P(L ∨ ⊕ OX). We have
a canonical surjection p?L ∨ ⊕ p?OX → O(1). The second component
p?OX → O(1) is surjective on the open subset L , so that O(1)|L is
trivial.
By tensoring with L , the �rst component p?L ∨ → O(1) de�nes a

section of p?L ⊗ O(1) whose divisor is precisely the class s?[X] of the
zero section. Then, p?c1(L ) + c1(O(1)) = c1(p?L ⊗ O(1)) = s?[X] ∈
CH1(P(L ∨ ⊕ OX)). The result follows by taking the restriction of the
open subset L .

4.5.3. Proper intersections. � Assume X is regular and Y and V are
integral closed subschemes in X that intersects properly. Let Z be an
integral component of W = Y ∩ V . We have de�ned a multiplicity m of
Z in the product Y and V (actually only if Y embeds regularly in X).

Theorem 4.16 (Serre). � Let A be the local ring of X at W . Let
I and J be the ideals of I corresponding to Y and V . Then, m =∑dimA

i=0 (−1)i lgA TorAi (A/I,A/J).

The term corresponding to i gives a contribution which corresponds to
the naive de�nition we may imagine, which would be taking the cycle [W ]
of the intersection W . We give an example where the two are di�erent, a
phenomenon which may happen only if dimA ≥ 4 (for in other cases, we
have intersection with divisors for which the naive de�nition is enough):

Example 4.17 ([1, 7.1.5]). � We consider A = k[X, Y, Z, T ] and the
ideals I = (XT − Y Z,X2Z − Y 3, Y T 2 − Z3, Y 2T − Z2X) and J =
(X,T ). Then, I and J are two primes ideals of codimension 2 which
intersects properly and such that lgA(A/(I+J)) = 5 but the intersection
multiplicity is 4.

We shall compute TorAi (A/I,A/J). First, A/I = k[M ′] whereM ′ is the
monoid obtained from M = XN ·Y N ·ZN ·TN by taking the quotient by
the relations XT ∼ Y Z, X2Z ∼ Y 3, Y T 2 ∼ Z3 and Y 2T ∼ Z2X. There

is a map of monoids M ′ ϕ→ N2 such that ϕ(X) = (4, 0), ϕ(Y ) = (3, 1),
ϕ(Z) = (1, 3) and ϕ(T ) = (0, 4).
The image of ϕ is {(a, b) ∈ N2, 4|a + b} − {(2, 2)} and ϕ is injective

(hint: construct an inverse map and check it is a morphism).
Then, we have an injective map A/I = k[M ′] → k[N2], where the

latter is a polynomial algebra with two variables, so that I is a prime
ideal such that dim(A/I) = 2.
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We have an equality of ideals I+J = (X,T, Y Z, Y 3, Z3), whose radical
is (X, Y, Z, T ). The quotient A/(I +J) is isomorphic to k[Y, Z]/(Y 3, Z3)
divided by the ideal generated by Y Z which is the vector space with
basis Y Z, Y 2Z, Y Z2, Y 2Z2, which shows that lgAA/(I + J) = 5.
We compute the higher Tor in two steps. As T is not a zero divisor in A,

the derived tensor product A/I ⊗L
A A/(T ) is represented by the complex

[A/I
T→ A/I] (in homological degrees 1 and 0). Obviously, T 6∈ I and

A/I is a domain, so that the multiplication with T is injective. Then,
there are no higher Tor at this stage: A/I ⊗L

A A/(T ) = A/(I + (T )) = B
with B = k[X, Y, Z]/(Y Z,X2Z−Y 3, Z3, Z2X) which is easily seen to be
isomorphic, as a k[X]-module, to

k[X]1⊕ k[X]Y ⊕ k[X]Y 2 ⊕ k[X]Z ⊕ k[X]/(X)Z2 .

Then, B ⊗L
A/T A/(T,X) is represented by [B

X→ B]. The cokernel was

already computed and the kernel is the line in B spanned by Z2, so that
dim TorAi (A/I,A/J) is 5 if i = 0, 1 if i = 1 and 0 if i ≥ 2, which proves
the claim.

4.6. Products. �

De�nition 4.18. � Let X be a smooth variety over a �eld k. We
consider the diagonal morphism ∆: X → X×X. The external product of
cycles de�nes a bilinear morphism CHa(X)×CHb(X)→ CHa+b(X×X).
By composing with ∆? : CH?(X × X) → CH?(X), we get a bilinear
morphism CHa(X)× CHb(X)→ CHa+b(X).

The construction of the preceding paragraph enjoys many good prop-
erties, especially compability with composition of closed regular immer-
sions. Then, this construction gives a graded ring structure on CH?(X).
The multiplication is commutative (and not up to signs as it happens
with some cohomology theories: actually one should think of classes of
cycles as cohomology classes in even degrees).

5. Chow motives

We �x a base �eld k.
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5.1. E�ective Chow motives. �

De�nition 5.1. � Let X and Y be smooth and projective varieties
over k. We let dX and dY be the dimensions of these varieties. If Y is
equidimensional, we set Corr(X, Y ) = CHdY

(Y×kX). If Y has connected
components Yi of dimensions di, then Corr(X, Y ) =

∏
i Corr(X, Yi). The

group Corr(X, Y ) is the group of Chow correspondences.

De�nition 5.2. � We de�ne a category PreCHMeff(k). Its ob-
jects are the projective and smooth varieties X over k. The ob-
ject in PreCHMeff(k) corresponding to X is denoted h(X). We
de�ne the group of morphisms h(X) → h(Y ) in PreCHMeff(k)
by the formula HomPreCHMeff(k)(h(X), h(Y )) = Corr(X, Y ). As-
sume X, Y, Z are three (connected) projective and smooth varieties
over k, that α ∈ HomPreCHMeff(k)(h(X), h(Y )) = CHdY

(Y × X)

and β ∈ HomPreCHMeff(k)(h(Y ), h(Z)) = CHdZ
(Z × Y ). We de�ne

β ◦ α ∈ HomPreCHMeff(k)(h(X), h(Z)) = CHdZ
(Z ×X) by the formula:

β ◦ α = p13,?(p
?
12β · p?23α) ,

where the product is taken in CH?(Z × Y × X) and the pij denote
projections from Z × Y ×X to some factors.

This de�nes an additive category PreCHMeff(k).

Proposition 5.3. � There is a functor SmProj(k)opp → PreCHMeff(k)
that maps X to h(X) and a morphism f : Y → X to the class of the
graph Γf ⊂ Y ×X considered as an element in f ? ∈ Corr(X, Y ).

As a result, the identity of h(X) is given by the class of the diagonal
in CHdX

(X ×X).

Proposition 5.4. � The group EndPreCHMeff(k)(h(P1)) = CH1(P1 ×
P1) is isomorphic to Z2 and generated by the classes p = [∞× P1] and
q = [P1 × ∞]. Then, p ∈ EndPreCHMeff(k)(P

1) is f ? for the constant

morphism f : P1 → P1 with value ∞. We have p ◦ p = p, q ◦ q = q,
p ◦ q = q ◦ p = 0 and p+ q = idh(X).

The fact that p and q are a basis of CH1(P1 × P1) follows from the
general computation of Chow groups of projective bundles. We de�ne
the two projections π1, π2 : P1 ×P1 → P1. Then, we see that π1,?p = 0,
π2,?p = 1, π1,?q = 1 and π2,?q = 0. For a given class z ∈ CH1(P1 ×P1),
this enables to �nd an expression for z as a linear combination of p and
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q. For example, the diagonal ∆ ∈ P1 × P1 is such that π1,?[∆] = 1 and
π2,?[∆] = 1 so that [∆] = p+ q.
Furthermore, p ◦ p = p because p ◦ p corresponds to (f ◦ f)? = f ?.

Then, p is a projector of h(X). As usual, we have the supplementary
projector idh(X) − p = [∆] − p = q which satis�es p ◦ q = q ◦ p = 0 and
q ◦ q = q.
We have a morphism h(Spec k)→ h(P1) corresponding to the projec-

tion P1 → Spec k and a morphism in the other way h(P1) → h(Spec k)
given by the inclusion of∞ : Spec k → P1. The composition h(Spec k)→
h(Spec k)→ h(Spec k) is the identity.
Then, in any reasonable sense, the morphism p which is the composi-

tion of the morphism given above h(P1) → h(Spec k) → h(P1) should
be an endomorphism of h(P1) which is a projector on the direct factor
h(Spec k). However, there does not exist any objectM in PreCHMeff(k)
such that h(P1) ' h(Spec k)⊕M .

De�nition 5.5. � The category of e�ective Chow motives CHMeff(k)
is the Karoubian (or pseudo-abelian) envelope of PreCHMeff(k). An
object of CHMeff(k) is an object M of PreCHMeff(k) equipped with a
projector p ∈ EndPreCHMeff (M). Such a tuple (M, p) should be consid-
ered as the (formal) image of p. Then, we de�ne

HomCHMeff(k)((M, p), (N, q)) = q ◦ HomPreCHMeff(k)(M,N) ◦ p ,

considered as a subgroup of HomPreCHMeff(k)(M,N).

This de�nes an additive category CHMeff(k), with a fully faithful
functor PreCHMeff(k) → CHMeff(k) which maps M to (M, idM). If
M ∈ PreCHMeff(k) and p ∈ EndPreCHMeff(k)(M) such that p◦p = p, we

have a canonical decomposition in CHMeff(k): M ' (M, p)⊕ (M, idM −
p).

De�nition 5.6. � The Lefschetz motive L is the motive (h(P1), q)
with q as de�ned above. We denote 1 the unit motive h(Spec k). Then,
we have a canonical decomposition h(P1) = 1⊕ L.

5.2. Tensor products. �

De�nition 5.7. � We de�ne a functor⊗ : PreCHMeff(k)×PreCHMeff(k)→
PreCHMeff(k) by setting h(X) ⊗ h(Y ) = h(X ×k Y ). On mor-
phisms, it is given corresponds to the external product of cycles, if
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α : h(X) → h(X ′) is given by an element in CHdX′
(X ′ × X) and

β : h(Y ) → h(Y ′) is given by an element in CHdY ′
(Y ′ × Y ), then

α ⊗ β : h(X × Y ) → h(X ′ × Y ′) is given by the external product of α
and β in CHdX′+dY ′

(X ′ ×X × Y ′ × Y ) ' CHdX′+dY ′
(X ′ × Y ′ ×X × Y ).

This de�nition extends to a functor ⊗ : CHMeff(k) × CHMeff(k) →
CHMeff(k).

Proposition 5.8. � The functor − ⊗ L : CHMeff(k) → CHMeff(k)
is a fully faithful functor: for any M and M ′, the obvious map
HomCHMeff(k)(M,M ′) → HomCHMeff(k)(M ⊗ L,M ′ ⊗ L) is a bijec-
tion.

De�nition 5.9. � A Chow motive is a tuple (M,n) with M ∈
CHMeff(k) and n ∈ Z. A morphism (M,n) → (M ′, n′) is an element
in the inductive limit limk≥max(−n,−n′) HomCHMeff(k)(M ⊗ L⊗n+k,M ′ ⊗
L⊗n

′+k). This constitutes a category CHM(k). We have an obvious
fully faithful functor CHMeff(k)→ CHM(k) which maps M to (M, 0).

Proposition 5.10. � Let X and Y be two (connected) smooth and pro-
jective varieties over k. Then, for all n and n′, HomCHM(k)(h(X) ⊗
L⊗n, h(Y )⊗ L⊗n

′
) ' CHdY −n+n′(Y ×X).

De�nition 5.11. � Let M ∈ CHM(k). For any n ∈ Z, we set
CHn(M) = Hom(L⊗n,M) and CHn(M) = Hom(M,L⊗b).

Remark 5.12. � If f : X → Y is a morphism in SmProj(k), then the
morphism f ? : h(Y ) → h(X) constructed using the graph of f induces
a morphism : CH?(X) → CH?(Y ) which is the graded pushforward f?
associated to the proper morphism f and there is also an induced map
f ? : CH?(Y ) → CH?(X) which corresponds to the previous construc-
tions if f is �at or a closed immersion.

Proposition 5.13 (Manin's identity principle)

If M
ϕ→ M ′ is a morphism in CHM(k), then ϕ is an isomorphism

if and only if ϕ? : CH?(M ⊗ N) → CH?(M ′ ⊗ N) is a bijection for all
Chow motives N .

This is a good exercise.

Proposition 5.14. � Let X be a smooth and projective variety over
k. Let E be a vector bundle of rank n + 1 over X. Then, there is an
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isomorphism

h(P(E ) '
n⊕
i=0

h(X)⊗ L⊗i .

This follows from the computation of the Chow groups of projective
bundles and Manin's identity principle.

5.3. Realization functors. � Assume the base �eld k is embedded
into C via ι : k → C. Then, the singular cohomology de�nes a functor
HB : SmProj(k)opp → GrVecQ. This extends to a (covariant) functor
rB : CHM(k)→ GrVecQ which maps the motive h(X) to H?(X(C),Q).
The key inputs for this construction are the Poincaré duality isomorphism
and the cycle class map CHn(X)→ H2n(X(C),Q)⊗Q(n) where Q(n) =
Q(1)⊗n andQ(1) is the dual ofH2(P1,Q). This rB is the Betti realization
functor. Similar functors exist for other Weil cohomology theories: De
Rham cohomology, `-adic étale cohomology...
Then, if two motives M and N are isomorphic, then rB(M) ' rB(N),

r`(M) ' r`(N), rDR(M) ' rDR(N). Sometimes, it is easy to construct
such isomorphisms in each cohomology theory, but Grothendieck's idea
of motives was to obtain such isomorphism (or some morphisms) as in-
duced by algebraic cycles and isomorphisms of motives. Then, such
(iso)morphisms of motives can have di�erent incarnations in each co-
homology theories. It is expected that all reasonable isomorphisms in
cohomology of algebraic varieties can be explained by algebraic cycles...

Theorem 5.15. � Let X be a smooth and projective variety. Let Y be a
closed subvariety of X of codimension c. Then, there is an isomorphism
of Chow groups:

CH?(X)
⊕
⊕c−1
i=1CH

?−i(Y )
∼→ CH?(BlY X) .

If follows from an exact sequence:

0→ CH?−c(Y )→ CH?−1(P(NX/Y ))⊕ CH?(X)
i?⊕p?

→ CH?(BlY X)→ 0

where i : P(NX/Y ) → BlY X and p : BlY X → X are the obvious mor-
phisms.

Corollary 5.16. � Let X be a smooth and projective variety. Let Y be
a closed subvariety of X of codimension c. Then, there is an isomorphism
of motives:

h(BlY X) ' h(X)
⊕
⊕c−1
i=1h(Y )⊗ L⊗i .
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As a corollary of this isomorphism, we get a computation of the coho-
mology of a blow-up in all Weil cohomology theories.
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