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Abstract. Given a torus action on a compact space X, a fundamental
result of Borel and Atiyah–Segal asserts that the equivariant cohomology
of X is concentrated in the fixed locus XT , up to inverting enough
Chern classes. We prove an analogue for algebraic varieties over an
arbitrary field. In fact, we deduce this from a categorification at the level
of equivariant derived categories and even equivariant stable motivic
homotopy categories, which also gives concentration at the level of
Voevodsky motives and for homotopy K-theory.
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Introduction

0.1. Cohomological concentration. The starting point for this paper is
the following fundamental result in equivariant cohomology (see [Hsi, §3.2,
Thm. III.1]):

Theorem 0.1 (Borel, Atiyah–Segal). Let X be a compact topological space
with an action of a compact Lie group G. Let Σ be a set of nontrivial rank one
G-representations and let Z ⊆X be a G-invariant closed subspace containing
every point x ∈X such that for every ρ ∈ Σ the restriction ρ∣Gx is nontrivial
(where Gx denotes the stabilizer of the G-action at x). Then the inclusion
i ∶ Z ↪X induces an isomorphism

i∗ ∶ H∗

G(X)[Σ−1]→ H∗

G(Z)[Σ−1]

where Σ acts via multiplication by the first Chern class1.

Here H∗

G(−) denotes G-equivariant singular cohomology, defined via the
Borel construction. One of our goals in this paper is to prove a variant of
Theorem 0.1 in algebraic geometry. Let k be a field and let H∗

G(−) denote
one of:

(i) G-equivariant Betti cohomology H∗

G(X(C);Z) (if k =C),
(ii) G-equivariant étale cohomology H∗

G(Xét;Z/nZ) (if n is invertible in k),
(iii) G-equivariant `-adic cohomology H∗

G(Xét;Z`) (if ` is invertible in k).

Then we have (see Corollary 3.4):

Theorem A (Cohomological concentration). Let X be an algebraic space of
finite type over k with an action of an algebraic group G. Let Σ be a set of
nontrivial rank one G-representations and let Z ⊆X be a G-invariant closed
subspace containing every geometric point x of X for which the restrictions
ρ∣Gx are nontrivial for all ρ ∈ Σ. Then the inclusion i ∶ Z ↪ X induces an
isomorphism

i∗ ∶ H∗

G(X)[Σ−1]→ H∗

G(Z)[Σ−1] (0.2)

where Σ acts via multiplication by the first Chern class.

In fact, we prove a much more general statement about the cohomology of
algebraic stacks. Each of the cohomology theories above admits a canonical
extension to algebraic stacks in such a way that the cohomology of a quotient
stack [X/G] is the equivariant cohomology H∗

G(X) (see e.g. [KR2]), and we
have (see Corollary 3.4):

Theorem B (Cohomological stacky concentration). Let X be an algebraic
stack2 of finite type over k. Let Σ be a set of line bundles on X and let Z ⊆ X

be a closed substack containing every geometric point x of X for which the

1See e.g. [Ati, Appendix] for the definition of c1(ρ).
2Throughout the introduction, all algebraic stacks are assumed to have affine stabilizer

groups.
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restrictions L ∣BAutX(x) are nontrivial for all L ∈ Σ. Then the inclusion
i ∶ Z↪ X induces an isomorphism

i∗ ∶ H∗(X)[Σ−1]→ H∗(Z)[Σ−1] (0.3)

where Σ acts via multiplication by the first Chern class.

One recovers Theorem A by applying Theorem B to the inclusion Z = [Z/G]↪
X = [X/G]. Note in fact that this also implies that we may take X itself to
be an algebraic stack in Theorem A (see e.g. [Rom] for an introduction to
group actions on stacks).

Theorem B is a cohomological variant of the stacky concentration theorem of
[AKLPR, Thm. B], which was proven for Borel–Moore homology. The two
statements are equivalent when X and Z are smooth, via Poincaré duality.
The arguments of op. cit. can be dualized to prove a variant for cohomology
with compact support H∗

c (−), asserting the invertibility of the canonical map

H∗

c (X)[Σ−1]→ H∗

c (Z)[Σ−1], (0.4)

but not for cohomology itself (when X is not proper).

We expect cohomological concentration to be useful in geometric represen-
tation theory, where one considers operators in cohomology induced by
correspondences of schemes or stacks (possibly with action of a reductive
algebraic group). In that context the spaces involved are often singular
and it is important to distinguish between cohomology and Borel–Moore
homology. In fact, one may also want to study cohomology with coeffi-
cients in more general sheaves, such as the intersection complex, see e.g.
[Ach, GKM, Jos, Kir, Bry, EM]. Another example appears in the emerg-
ing subject of cohomological Donaldson–Thomas theory, which studies a
certain perverse sheaf φM associated with oriented (−1)-shifted symplectic
spaces M , such as the moduli of compactly supported coherent sheaves on a
Calabi–Yau threefold; 3d cohomological Hall algebras are (partly conjectural)
associative algebra structures on cohomology with coefficients in φM , see
[KS, KL, BBDJS, Kin, KK].

We discuss “with coefficients” and categorified versions of concentration below,
which surprisingly turn out to be instrumental in our proofs of Theorems A
and B.

0.2. Categorical concentration. To prove Theorem B, we will demonstrate
the following categorification of [AKLPR, Thm. B]. For a finite type algebraic
space X over k, let D(X) denote one of the following:

(i) the derived ∞-category of sheaves of abelian groups on the topological
space X(C) (if k =C),

(ii) the derived ∞-category of sheaves of Z/nZ-modules on the small étale
site Xét (if n is invertible in k),

(iii) the derived ∞-category of `-adic sheaves on the small étale site Xét (if
` is invertible in k).
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Each of these admits a canonical extension to algebraic stacks, such that the
Ext groups in D(X) calculate the cohomology groups H∗(X). We define the
categorical localization D(X)[Σ−1], roughly speaking, by formally inverting
for every line bundle L ∈ Σ the first Chern class c1(L ), regarded as a
morphism ΛX → ΛX(1)[2] (where ΛX denotes the constant sheaf on X).
Similarly, we define D(Z)[Σ−1] for the substack Z ⊆ X by inverting the
morphisms c1(L ∣Z) ∶ ΛZ → ΛZ(1)[2].3

Theorem C (Categorical stacky concentration). Let X, Z and Σ be as in
Theorem B. Then the inclusion i ∶ Z↪ X induces an equivalence

i∗ ∶D(Z)[Σ−1]→D(X)[Σ−1]. (0.5)

In particular, for every F ∈D(X) the canonical morphism

F → i∗i
∗F (0.6)

is an isomorphism up to Σ-localization.

From this statement one deduces moreover that Theorems A and B hold with
coefficients. For example, we have:

Corollary D. Let X, Z and Σ be as in Theorem B. Then for every F ∈D(X),
the canonical map

H∗(X;F )[Σ−1]→ H∗(X; i∗i
∗F )[Σ−1] ≃ H∗(Z; i∗F )[Σ−1] (0.7)

is invertible.

The idea to categorify comes from the fact that for any closed immersion
i ∶ Z↪ X there is a Verdier sequence of stable ∞-categories

D(Z) i∗Ð→D(X)→D(X ∖ Z)
categorifying the localization triangle on Borel–Moore chains. We will show
that this is preserved under Σ-localization. Therefore, to prove Theorem C
it is possible to mimic the strategy of the proof of [AKLPR, Thm. B],
reducing to the Σ-acyclicity of D(X ∖ Z). This is done by categorifying
every step of the proof of loc. cit. As we alluded to earlier, this kind
of localization argument does not work for cohomology itself but only for
compactly supported cohomology.

We expect categorical concentration to be useful in categorifications of enu-
merative geometry where the invariants of interest live “one category level
up”. For example, cohomological Donaldson–Thomas theory is the study of a
certain perverse sheaf φM associated with oriented (−1)-shifted symplectic
spaces M (such as the moduli of compactly supported coherent sheaves on a
Calabi–Yau threefold), which categorifies the numerical Donaldson–Thomas
invariants [KS, KL, BBDJS]. This sheaf is difficult to “compute” in any way
except when M can be presented globally as the critical locus of a function f
(in which case φM is by definition the sheaf of vanishing cycles with respect
to f , up to a twist). If M admits a Gm-action preserving the (−1)-shifted
symplectic structure and orientation data, then Theorem C implies that the

3See Subsect. 1.3 for the precise definitions.
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Σ-localization of φM is completely determined by its restriction to the fixed
locus, which may be easier to compute. For instance, when the action is
“circle-compact”, i.e., every point is in the attracting locus, this restriction
is a direct sum of (shifts of) the perverse sheaves φMα associated with the
irreducible components Mα of the fixed locus (see [?, ?] and [?, Thm. 5.16]).

0.3. Motivic concentration. Recently, the formalism of Grothendieck’s six
operations has been extended to various stable ∞-categories of motives over
algebraic stacks (we refer the reader to [Voe] for a first introduction to stable
motivic homotopy theory). Specifically, given a finite type algebraic stack X

over k, with quasi-compact and separated diagonal, we may consider:

(i) the stable ∞-category DM(X) of relative Voevodsky motives over X,
(ii) the stable ∞-category DMGL(X) of MGL-motives over X, i.e., modules

over the algebraic cobordism spectrum MGLX in SH(X).
(iii) (if X is scalloped) the stable∞-category DKGL of genuine KGL-motives

over X, i.e., modules over the algebraic K-theory spectrum KGLX in
the genuine stable motivic homotopy category SHgen(X) .

See [Kha1, App. A], [Cho], [Kha4, §4] for the first two cases and [KR1, §2] for
the case of genuine KGL-modules. Note that for quotient stacks X = [X/G],
the objects of (i) and (ii) are coefficients for Borel-equivariant motivic coho-
mology and algebraic cobordism, respectively (see [KR2]), whereas genuine
KGL-cohomology recovers the homotopy K-theory of G-equivariant vector
bundles on X (see [KR1, §12]). An interesting feature of our proof is that,
since it only requires a suitable six functor formalism, we are able to treat
both types of equivariance uniformly.

We find in particular that the results stated so far hold for motivic coho-
mology and motivic Borel–Moore homology. They even hold before taking
hypercohomology, i.e., already for the cohomological and Borel–Moore motives

M(X) ∶= f∗f∗(Z), MBM(X) ∶= f∗f !(Z) ∈ DM(Spec(k)) (0.8)

where f ∶ X→ Spec(k) is the projection (and similarly in MGL-modules, see
Variant 3.8). This kind of motivic concentration theorem makes it possible to
study motivic stable envelopes, i.e., lifts of the theory of stable envelopes in
cohomology (see [MO]) to Voevodsky motives, which we plan to investigate
in future work.

For genuine KGL-cohomology we recover an analogue of Thomason’s concen-
tration theorem [Tho3, Thms. 2.1, 2.2] for homotopy K-theory (see [Hoy, §4]
and [KR1, §10.1] for the definition of equivariant homotopy K-theory):

Corollary E (Homotopy K-theory). Let X be a tame Deligne–Mumford
stack of finite type over k with an action of an affine algebraic group G of
multiplicative type. Let Σ be a set of nontrivial rank one G-representations
and let Z ⊆ X be a G-invariant closed substack containing every geometric
point x of X for which the restrictions ρ∣Gx are nontrivial for all ρ ∈ Σ. Then
the inclusion i ∶ Z ↪X induces an isomorphism

i∗ ∶ KHG(X)[Σ−1]→ KHG(Z)[Σ−1] (0.9)
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where ρ ∈ Σ acts via multiplication by λ−1(ρ) = 1 − [ρ].

In case X is a quasi-projective scheme with linearizable action, we may
take G to be any linearly reductive affine algebraic group. Using the Borel–
Moore variant, which recovers equivariant G-theory (= algebraic K-theory
of G-equivariant coherent sheaves, see [Hoy, Rem. 5.7]), we also recover
Thomason’s concentration [Tho3, Thm. 2.2]. In [KPR] we will give a direct
proof of stacky concentration in G-theory (for possibly non-scalloped stacks).

Note that Corollary E cannot hold for equivariant algebraic K-theory KG(−)
itself (i.e., without imposing homotopy invariance) because it is not nil-
invariant on singular stacks. However, if X is an algebraic space and Z is
the homotopy fixed point space XhG, then we do expect the isomorphism
(0.9) to lift to KG(X)[Σ−1]→ KG(Z)[Σ−1].

0.4. Localization formulas. One standard consequence of Theorem 0.1 in
torus-equivariant cohomology is the localization formula of Atiyah–Bott and
Berline–Vergne [AB, BV] for smooth compact manifolds. In our context, a
straightforward consequence of Theorem A is that for any smooth algebraic
space X of finite type, and any action of a split algebraic torus T with fixed
locus XT ⊆X, the inverse of the isomorphism (Theorem A)

i∗ ∶ H∗

T (X)[Σ−1]→ H∗

T (XT )[Σ−1]
admits the formula

(i∗)−1 = i! (− ∩ e(NXT /X)−1) (0.10)

where i! ∶ H∗(XT ) → H∗(X) is the Gysin map. By Poincaré duality, this
can also be deduced from the localization formula in Borel–Moore homology
proven in [AKLPR, Thm. D] (note that as X is smooth, so is XT ).

In the “virtual” case, where X is quasi-smooth, we have the following new
result:

Corollary F (Cohomological virtual localization formula). Let X be a quasi-
smooth derived algebraic space of finite type over k with T -action. Then the
fixed locus XT ⊆X is quasi-smooth (see [AKLPR, Prop. A.23, Cor. A.35]),
and the isomorphism i∗ ∶ H∗

T (X)[Σ−1] → H∗

T (XT )[Σ−1] of Theorem A has
inverse given by

(i∗)−1 = i! (− ∩ e(NXT /X)−1) . (0.11)

See Corollary 7.8 for a general statement formulated in the context of a
closed immersion i ∶ Z ↪ X as in Theorem C4. Modulo Theorem A, the
nontrivial part of Corollary F is to actually construct the Gysin map i!
and the inverse Euler class e(NXT /X)−1 in this situation, where the closed
immersion i is typically not quasi-smooth, with conormal complex NXT /X

of Tor-amplitude [0,1]. We do this by categorifying the constructions used
to prove the virtual localization formula in Borel–Moore homology [AKLPR,

4For example, when X is Deligne–Mumford we can apply it to i ∶ [XrhT
/T ]→ [X/T ]

where XrhT is the reparametrized homotopy fixed point stack of [AKLPR, §A.6].
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Thm. D]. In particular, we prove a categorification of Corollary F which
computes the inverse of the unit map id → i∗i

∗ in the Σ-localized category
(see Theorem 6.1).

The first version of the virtual localization formula was proven in Chow ho-
mology by Graber–Pandharipande [GP] and has had numerous applications
in enumerative geometry, e.g. in Gromov–Witten and Donaldson–Thomas
theory, where invariants are defined via virtual fundamental classes [Kon].
The generalization proven in [AKLPR, Thm. D] is necessary for applica-
tions involving more complicated moduli spaces/stacks that do not admit
global embeddings into smooth spaces/stacks or global resolutions of their
cotangent complex (see e.g. [Joy, Rem. 2.20], [SS, Prop. 3.7], [AKLPR,
Thm. 7.13]). Note that the version proven here also recovers the K-theoretic
virtual localization formula of [CFK, §5], again with no hypotheses on global
embeddability or resolutions. This generality will be even more important
for applications to Gromov–Witten invariants in non-archimedean analytic
geometry [PY1, PY2], where global embeddings and resolutions are rare (we
believe our arguments carry over to the topological and analytic categories
without much modification).

0.5. Related work. In the context of equivariant singular cohomology of
complex algebraic varieties with torus action, Evens and Mirković proved a
“with coefficients” version of concentration: for i the inclusion of the fixed locus
XT , they showed that the canonical map in compactly supported cohomology

H∗

T,c(X;F )[Σ−1]→ H∗

T,c(X; i∗i
∗F )[Σ−1]

is invertible for every F ∈DT (X) (see [EM, Thm. B.2], as well as [GKM]).5
In contrast, the isomorphism (Corollary D)

H∗

T (X;F )[Σ−1]→ H∗

T (X; i∗i
∗F )[Σ−1]

appears to be new even in singular cohomology.

Over general base fields k, Theorem A appears to be new in étale cohomology.
See however [IZ, Cor. 7.4] for an analogue of Quillen’s concentration theorem
for actions of elementary abelian `-groups [Qui, Thm. 4.2].

Edidin and Graham [EG2] proved concentration theorems for the equivariant
Chow groups [EG1] over an arbitrary base field k. Chow groups form a
Borel–Moore homology-type theory: in fact, the (equivariant) motivic Borel–
Moore homology of a finite type k-scheme is isomorphic to the (equivariant)
higher Chow groups, at least up to inverting p = char(k) when p > 0 (see
[KR2, Cor. 6.4]). One may think of motivic cohomology as a (higher) Chow
cohomology theory for possibly singular schemes. From that perspective,
the only previous result in this direction we are aware of is a concentration
theorem for operational Chow cohomology with rational coefficients proven
by Gonzales [Gon]. However, operational Chow cohomology (introduced by

5For the special case of the intersection complex, such versions of concentration had
been considered earlier by Joshua [Jos], Kirwan [Kir], and Brylinski [Bry].



8 A.A. KHAN AND C. RAVI

Fulton [Ful]) is only a coarse approximation of motivic cohomology (e.g. the
former has no cycle class map [Tot, §8]).

0.6. Conventions and notation. We fix an implicit noetherian base ring
k. The term “stack” will mean derived algebraic stack locally of finite type
over k throughout the paper, where algebraic is a synonym for 1-Artin (see
e.g. [Toë, §5.1]). Similarly, “schemes” and “algebraic spaces” will be derived
and locally of finite type over k. We write Stk for the ∞-category of stacks.

0.7. Acknowledgments. We are grateful to Hyeonjun Park for helpful
discussions and suggestions.

The authors were supported by NSTC grant 110-2115-M-001-016-MY3 and
Academia Sinica grant AS-CDA-112-M01 (A.K.) and EPSRC grant no.
EP/R014604/1 (A.K. and C.R.). We would like to thank the Isaac Newton
Institute for Mathematical Sciences, Cambridge, for support and hospitality
during the programme KAH2 where we began work on this paper. The
second author would like to thank the Max Planck Institute for funding and
excellent working conditions during her stay there.

1. Categorical setup

1.1. Weaves. Throughout the paper we will work in the context of an
oriented topological weave, which is a precise axiomatization of a sheaf theory
with the six functor formalism. We give an informal account below and refer
to [Kha4] for the precise definitions.

We fix a full subcategory S ⊆ Stk which is closed under finite coproducts and
finite limits. Roughly speaking, a weave D on S 6 amounts to a collection of
∞-categories D(X) for every X ∈ S, equipped with the six operations:

(1a) Tensor: (−)⊗ (−) ∶D(X) ×D(X)→D(X),
(1b) Internal Hom: Hom(−,−) ∶D(X)op ×D(X)→D(X),

for every X ∈ S;

(2a) ∗-Inverse image: f∗ ∶D(Y )→D(X),
(2b) ∗-Direct image: f∗ ∶D(X)→D(Y ),

for every morphism f ∶X → Y ;

(3a) !-Direct image: f! ∶D(X)→D(Y ),
(3b) !-Inverse image: f ! ∶D(Y )→D(X),

for every representable morphism f ∶X → Y .

6More precisely: a weave on (S,Srepr
) where Srepr is the subcategory of representable

morphisms; that is, we only require the !-operations to be defined for representable
morphisms (which are necessarily locally of finite type, since all objects of Stk are locally
of finite type over k).
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The operation ⊗ is left adjoint to Hom (as bifunctors), f∗ is left adjoint
to f∗, and f! is left adjoint to f !. These operations are subject to various
standard compatibilities and coherences: for example, ⊗ and Hom define
a closed symmetric monoidal structure on D(X) (we write 1X ∈D(X) for
the unit object); each of the operations f∗, f∗, f!, f ! is compatible with
composition up to coherent homotopy; and !-direct image is compatible with
∗-inverse image (base change formula) and with ⊗ (projection formula) up
to coherent homotopy. Moreover, for every proper representable morphism f
there is a canonical isomorphism f! ≃ f∗ and for every smooth representable
morphism there is a canonical isomorphism f ! ≃ f∗(−)⊗f !(1Y ) where f !(1Y )
is ⊗-invertible (“Poincaré duality”).

The condition that a weave D is topological means that it satisfies the
following:

(a) Localization: The ∞-category D(∅) is trivial (consists of zero objects).
For any X ∈ S and any closed-open decomposition i ∶ Z →X, j ∶X ∖Z →
X, there is a canonical exact triangle of functors

j!j
∗ → id→ i∗i

∗. (1.1)

(b) Homotopy invariance: For any X ∈ S and affine bundle π ∶ Y →X (i.e.,
a torsor under a vector bundle on X), the unit morphism id→ π∗π

∗ is
invertible.

We also assume that D satisfies Nisnevich descent (if all objects of S are
quasi-compact, this is automatic). These axioms imply that D(X) is stable
for every X, and the localization axiom implies that the diagram

D(Z) i∗Ð→D(X) j∗Ð→D(U)

defines a (split) Verdier sequence of stable ∞-categories in the sense of [Cal+8,
App. A].

For a topological weave D we can write, for every smooth representable
morphism f ∶X → Y , f !(1Y ) ≃ 1X⟨Ωf ⟩ where ⟨Ωf ⟩ denotes the “Thom twist”
by the relative cotangent sheaf Ωf . The choice of orientation for D gives an
identification

(−)⟨Ωf ⟩ ≃ (−)⟨d⟩ ∶= (−)(d)[2d]
where d = rk(Ωf) is the relative dimension of f , and (d), resp. [2d], indicates
a Tate twist, resp. shift. Thus for an oriented topological weave, Poincaré
duality reads f ! ≃ f∗(−)⟨d⟩ for f smooth representable of relative dimension
d.

For a locally free sheaf E on X ∈ S of rank r, the top Chern class may be
regarded as a morphism cr(E ) ∶ 1X → 1X⟨r⟩. For any object F ∈D(X) this
yields, by tensoring, a morphism

cr(E ) ∶ F →F ⟨r⟩ (1.2)

which in cohomology corresponds to cap product with cr(E ). See [Kha1,
Constr. A.23].
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Definition 1.3. Given an oriented topological weave D on S, we consider
the following condition:

(PB1) Let X ∈ S and E a locally free sheaf on X of rank r + 1, r ⩾ 0,
with associated projective bundle p ∶ P(E ) → X. Then the natural
transformations

id
unitÐÐ→ p∗p

∗
c1(O(−1))○iÐÐÐÐÐÐ→ p∗p

∗⟨i⟩ (1.4)

induce a canonical isomorphism

⊕
0⩽i⩽r

id⟨−i⟩→ p∗p
∗. (1.5)

(PB2) Let X ∈ S and E a locally free sheaf on X of rank r + 1, r ⩾ 0,
with associated projective bundle p ∶ P(E ) → X. Then the natural
transformation

unit ∶ idD(X) → p∗p
∗

admits a retract.

By the projection formula for p∗ = p!, both conditions can be checked after
evaluation on the unit object 1X . The first condition is the projective
bundle formula, and the second is the assertion that p∗ ∶ C●(X)→ C●(P(E ))
admits a retract. (PB1) implies (PB2): the projective bundle formula implies
p!(p∗(−)∩c1(O(−1))∪r) ≃ idC●(X), where p! ∶ C●(P(E ))⟨r⟩→ C●(X) denotes
the Gysin map in cohomology (notation as in Subsect. 3); see the discussion
in [Dég, Rem. 3.2.3].

Remark 1.6. For E ≃ O⊕r+1
X it is easy to show (PB1) using the localization

triangle, homotopy invariance, and induction on r. Thus (PB1) holds for any
E when X is a scheme or Zariski-locally quasi-separated algebraic space, as
we can reduce to the free case using Nisnevich descent. Note also that (PB2)
holds for any X ∈ S as soon as E admits a surjection E ↠L with L a line
bundle, since we get a section s of p ∶ P(E )→X giving rise to a retraction of
id→ p∗p

∗.

In general we will need to impose (PB2) as an additional axiom, although we
expect it to hold for any oriented topological weave; in the next section, we
will see that it holds for all the examples we consider.

1.2. Examples of weaves.

1.2.1. Lisse-extended weaves. For S ⊆ Stk the full subcategory of schemes,
there are many examples of oriented topological weaves on S. In fact, the
notion is equivalent to that of a Voevodsky formalism on S (see [Kha4, §3.5]),
and as such admits the following examples:

(a) Betti sheaves: If k is a C-algebra, we may take X ↦D(X) sending X
to the derived ∞-category D(X(C),Z) of sheaves of abelian groups on
the topological space X(C).
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(b) Étale sheaves (finite coefficients): If n ∈ k×, we may take X ↦ D(X)
sending X to the derived ∞-category Dét(X,Z/nZ) of sheaves of Z/nZ-
modules on the small étale site of X.

(c) Étale sheaves (`-adic coefficients): If ` ∈ k×, we may take X ↦ D(X)
sending X to the `-adic derived ∞-category Dét(X,Z`) of sheaves on
the small étale site of X, i.e., the limit Dét(X,Z/`nZ) over n > 0.

(d) Motives: Take X ↦ D(X) sending X to the ∞-category DM(X) ∶=
DHZ(X) of modules over the integral motivic Eilenberg–MacLane spec-
trum HZX as in [Spi]. (See [CD2, Thm. 5.1] and [CD1, §14] for com-
parisons with other constructions of derived categories of motives.)

(e) Cobordism motives: Take X ↦ D(X) sending X to the ∞-category
DMGL(X) of modules over Voevodsky’s algebraic cobordism spectrum
MGLX (see e.g. [EHKSY]).

Via the procedure of lisse extension (see [Kha4, §4]), every oriented topological
weave D on schemes gives rise to a canonical oriented topological weave on (a
large class of) stacks. More precisely, let S denote the ∞-category of stacks7
with quasi-compact and separated diagonal. Given X ∈ S we consider the
limit

D(X) ∶= lim←Ð
(T,t)

D(T )

over the ∞-category LisX of pairs (T, t) where T is a scheme and t ∶ T →X
is a smooth morphism, where the transition functors are ∗-inverse image.
This can be extended to a topological weave on S (see [Kha4, §4], [Cho]). In
case D satisfies étale descent (e.g. for the Betti or étale weaves), we can take
S to be the entire ∞-category of stacks, i.e., without the extra conditions
on the diagonal (see [Kha1, App. A], [LZ1, LZ2] for the construction in that
case). Moreover, any orientation of D on schemes also lisse-extends to an
orientation on S.

Proposition 1.7. Let D be an oriented topological weave on S. Suppose
that D is lisse-extended, i.e., that for every X ∈ S the family of functors t∗ ∶
D(X)→D(T ) is jointly conservative as t ranges over smooth morphisms t ∶
T →X with T a scheme. Then D satisfies condition (PB1) of Definition 1.3.

Proof. We reduce to the case where X is a scheme, which holds by Remark 1.6
(see also [AKLPR, Thm. 1.19]). �

1.2.2. Genuine KGL-motives. Let S denote the ∞-category of nicely or
linearly scalloped stacks as in [KR1, §2.3, App. A]. The class of nicely scalloped
stacks includes tame algebraic stacks in the sense of [AOV], as well as quotients
thereof by multiplicative type group actions. The class of linearly scalloped
stacks includes quotients [X/G] where G is a linearly reductive affine group
scheme acting linearly on a quasi-projective scheme X.

If X is nicely (resp. linearly) scalloped and Y → X is representable (resp.
quasi-projective), then Y is nicely (resp. linearly) scalloped.

7i.e., derived algebraic stacks locally of finite type over k (see Subsect. 0.6)
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The main construction of [KR1] provides a topological weave SHgen on S
sending X to the genuine stable motivic homotopy category SHgen(X). This
restricts to SH on schemes, just like its lisse-extended version considered
above, but does not agree for quotient stacks. We refer to [KR1, §12] for an
extended discussion of this point.

Taking modules over the genuine algebraic cobordism spectrum [KR1, §10.2]
gives the oriented topological weave Dgen

MGL of genuine MGL-motives. Un-
fortunately, we do not know whether (PB1) or (PB2) holds in general for
this weave8. Therefore, we restrict our attention to modules over the genuine
algebraic K-theory spectrum [KR1, §10.1], which gives an oriented topological
weave Dgen

KGL of genuine KGL-motives.

Proposition 1.8. The oriented topological weave Dgen
KGL satisfies condi-

tion (PB1) of Definition 1.3.

Proof. In view of [KR1, Prop. 3.7 and Thm. 10.7] this amounts to the
condition that for every nicely (resp. linearly) scalloped stack X, every
locally free sheaf E on X of rank r + 1, and every smooth representable (resp.
quasi-projective) Y →X, the maps of spectra

p∗Y (−) ∪ λ−1(O(−1)) ∶ KH(Y )→ KH(P(E ∣Y ),
where pY ∶ PY (E ∣Y )→ Y , induce an isomorphism

⊕
0⩽i⩽r

KH(Y )→ KH(P(E ∣Y )).

This follows from the corresponding formula for (non-homotopy) algebraic
K-theory, see e.g. [Kha2, Cor. 3.6]. �

1.3. Σ-localization. From now on, D will be an oriented topological weave
on S satisfying condition (PB2) of Definition 1.3.

Given a set of line bundles Σ ⊆ Pic(X), we denote by SΣ the (essentially
small) set consisting of the morphisms (1.2)

c1(L ) ∶ g!(1Z)[m]⟨n⟩→ g!(1Z)[m]⟨n + 1⟩
for all L ∈ Σ, all representable morphisms of finite type g ∶ Z →X, and all
integers m,n ∈ Z.

We consider the localization of D(X) at SΣ in the sense of [Cis, §7.1], or
equivalently the Verdier quotient by the full (stable) subcategory spanned
by the cofibres of the morphisms in SΣ (see e.g. [Cal+8, Prop. A.1.5]). This
is a (large) stable ∞-category D(X)[Σ−1] with an essentially surjective and
exact functor

LΣ ∶D(X)→D(X)[Σ−1] (1.9)
which inverts SΣ and satisfies the following universal property: for every
stable ∞-category C , restriction along (1.9) determines an equivalence

Funex(D(X)[Σ−1],C )→ Funex,Σ(D(X),C ), (1.10)

8To avoid confusion, let us reiterate that we do know this for lisse-extended cobordism
motives.
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where the decoration “ex”, resp. “ex,Σ”, indicates that we consider the full
subcategory of exact functors, resp. exact functors inverting SΣ. We say
that a morphism in D(X) is a Σ-local equivalence if it is inverted by LΣ.

Given any two functors F and G out of D(X)[Σ−1], there is a canonical
isomorphism of ∞-groupoids of natural transformations

Nat(F,G)→ Nat(F ○LΣ,G ○LΣ), (1.11)

by taking mapping ∞-groupoids in (1.10).

We will require some very limited functoriality of the Σ-localization. Given
a representable finite type morphism f ∶ Y → X, we also consider the
localization of D(Y ) with respect to the set f∗SΣ:

LΣ ∶D(Y )→D(Y )[Σ−1].
Since f∗ tautologically sends SΣ to f∗SΣ, we obtain by universal property
an essentially unique exact functor

f∗Σ ∶D(X)[Σ−1]→D(Y )[Σ−1]
such that f∗Σ ○LΣ ≃ LΣ ○ f∗.

Moreover, f! sends f∗SΣ to SΣ. Indeed, given L ∈ Σ and a representable
finite type morphism g ∶ Z →X, consider the endomorphism c1(L ) ∶ g!(1Z)→
g!(1Z)⟨1⟩. The induced endomorphism

f!f
∗(c1(L )) ∶ f!f

∗g!(1Z)→ f!f
∗g!(1Z)⟨1⟩

is identified under the base change formula f!f
∗g!(1Z) ≃ h!(1W ), where

h ∶W →X is the projection of W = Y ×X Z, with the endomorphism induced
by the action of c1(L ) on h!(1W ). Thus there exists an essentially unique
exact functor

fΣ
! ∶D(Y )[Σ−1]→D(X)[Σ−1]

such that fΣ
! ○LΣ ≃ LΣ ○ f!.

If f is proper, then f∗Σ is left adjoint to fΣ
∗
∶= fΣ

! . For example, to construct
the unit transformation id→ fΣ

∗
f∗Σ when f is proper, use the isomorphism

Nat(idD(X)[Σ−1], f
Σ
∗
f∗Σ)→ Nat(LΣ, f

Σ
∗
f∗ΣLΣ)

of (1.11). The desired natural transformation corresponds to the morphism
LΣ → LΣf∗f

∗ ≃ fΣ
∗
f∗ΣLΣ induced by the unlocalized unit.

Similarly, for every n ∈ Z the operation ⟨n⟩ ∶D(Y )→D(Y ) preserves f∗SΣ,
hence induces an operation on D(Y )[Σ−1] which we still denote by ⟨n⟩.

If f is smooth of relative dimension d, then fΣ
! is left adjoint to f !

Σ ∶= f∗Σ⟨d⟩
by the same reasoning.

Lemma 1.12. Let i ∶ Z →X be a closed immersion and denote by j ∶ U →X
the complementary open immersion. Then there is a Verdier sequence of
stable ∞-categories

D(Z)[Σ−1]
iΣ∗Ð→D(X)[Σ−1]

j∗ΣÐ→D(U)[Σ−1].
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Proof. Since D satisfies the localization property, the claim holds before
Σ-localization. It is clear that j∗Σ ○ iΣ

∗
≃ 0 since this can be checked after

applying LΣ on the right. Moreover, the localization triangle (1.1) gives rise,
by applying LΣ on the left, to an exact triangle

jΣ
! j

∗

Σ(LΣF )→ LΣF → iΣ
∗
i∗Σ(LΣF )

for every F ∈D(X). The claim now follows formally. �

Variant 1.13. If D is cocomplete (i.e., D(Y ) admits small colimits for every
Y ∈ S), then we could instead consider the cocontinuous localization in the
sense of [Cis, Rem. 7.7.10]. That is, for a representable finite type morphism
f ∶ Y →X, there exists a cocomplete ∞-category D(Y )JΣ−1K equipped with
a colimit-preserving localization functor

LΣ ∶D(Y )→D(Y )JΣ−1K

and with a universal property like (1.10) but for colimit-preserving functors
instead of arbitrary exact functors. For example, if D(Y ) is presentable
then LΣ admits a right adjoint (by the adjoint functor theorem) which is
automatically fully faithful and identifiesD(Y )JΣ−1K with the full subcategory
of f∗SΣ-local objects in D(Y ) (i.e., the localization in the sense of [Lur1,
§5.2.7]).

Our proof of concentration (Theorem 2.5) will go through mutatis mutandis
for D(−)JΣ−1K in place of D(−)[Σ−1] when D is cocomplete. However,
we need to consider the “plain” localization D(−)[Σ−1] in order to derive
cohomological concentration (Corollary 3.4)9.

Remark 1.14. We note one pleasant advantage of the cocontinuous local-
ization of Variant 1.13. If D is presentable and satisfies continuity (i.e.,
R ↦D(Spec(R)) preserves filtered colimits, see [Kha3, Def. 2.16]), then in
the cocontinuous variant of categorical concentration mentioned above, one
can drop the quasi-compactness hypothesis and thus consider locally of finite
type stacks. In contrast, this fails for the “plain” localization and for the
cohomological localization, cf. [AKLPR, §2.7].

2. Categorical concentration

2.1. Acyclicity.

Theorem 2.1 (Categorical acyclicity). Let X ∈ S with affine stabilizers,
and Σ ⊆ Pic(X) a subset. Let U ⊆X be a quasi-compact open satisfying the
following condition:

(L) For every geometric point x of U , there exists a line bundle L (x) ∈ Σ
whose restriction L (x)∣BAutX(x) is trivial.

Then we have D(U)[Σ−1] = 0.

9Indeed, the functor (3.1) typically does not preserve colimits when X is a stack. In
fact, X ↦ C●

(X) preserves colimits if and only if 1X is a compact object of D(X), an
assertion which fails already for the simplest relevant example X = BGm.
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Definition 2.2. If an open U ⊆X satisfies condition (L), we say simply that
U is Σ-admissible.

Remark 2.3. In fact, the proof of Theorem 2.1 will show that there exists a
single Σ-local equivalence s such that D(U)[s−1] = 0.

Proof of Theorem 2.1. Replacing X by U , Σ by j∗Σ, and j by the identity,
we may assume X = U is Σ-admissible and quasi-compact.

Let us write
F ⟨∗⟩ ∶=⊕

n∈Z

F ⟨n⟩

for any F ∈D(X). We claim that there exists a Σ-local equivalence 1X⟨∗⟩→
1X⟨∗⟩ which is null-homotopic. In particular, for every F ∈ D(X) the
induced endomorphism of 1X⟨∗⟩ ⊗ F ≃ F ⟨∗⟩ is a null-homotopic Σ-local
equivalence, hence LΣ(F ⟨∗⟩) ≃ 0. Since LΣ(F ) is a direct summand of
LΣ(F ⟨∗⟩) (by functoriality), the claim will follow.

Suppose we are given a Σ-local equivalence s ∶ 1X⟨∗⟩ → 1X⟨∗⟩. We begin
with the following observations:

(a) If π ∶X ′ →X is an affine bundle, then π∗ is fully faithful by homotopy
invariance. Thus if π∗(s) is null-homotopic, then s is itself null-
homotopic.

(b) If π ∶ X ′ → X is a projective bundle, then s is a retract of π∗(s) by
(PB2) (see Definition 1.3). Thus if π∗(s) is null-homotopic, then s is
itself null-homotopic.

(c) If X ′ ⊆X is a nonempty open such that s∣X′ is null-homotopic over
X ′, then there exists some Σ-local equivalence t ∶ 1X⟨∗⟩ → 1X⟨∗⟩
which is null-homotopic over X. Indeed, by noetherian induction on
the complement this reduces to the following observation. Suppose
given Σ-local equivalences s′, s′′ ∶ 1X⟨∗⟩ → 1X⟨∗⟩ such that s′ is
null-homotopic over some closed substack Z ⊆ X and s′′ is null-
homotopic over X ∖Z. Then t = s′ ○ s′′ is a Σ-local equivalence which
is null-homotopic over both Z and X ∖Z, and from the localization
triangle

j!j
∗1X⟨∗⟩→ 1X⟨∗⟩→ i∗i

∗1X⟨∗⟩,
where i ∶ Z →X and j ∶X ∖Z →X are the inclusions, we deduce that
t is null-homotopic over X.

Since X has affine stabilizers, there exists a nonempty open with a global
quotient presentation (see [HR, Prop. 2.6]). By (c) we may therefore assume
that X = [X0/G] where G = GLn for some n ⩾ 0 and X0 is a quasi-affine
scheme of finite type over k with G-action.

Let T (resp. B) denote the subgroup of diagonal matrices (resp. upper
triangular matrices) in G = GLn. Since B ⊆ G is a Borel subgroup, so that
G/B is a complete flag, the canonical morphism [X0/B] → [X0/G] = X
factors as a sequence of iterated projective bundles. Moreover, the canonical
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morphism [X0/T ] → [X0/B] is an affine bundle (see the proof of [Tho2,
Thm. 1.13]). By the above observations, it will thus suffice to produce a
Σ-local equivalence s ∶ 1X⟨∗⟩→ 1X⟨∗⟩ which is null-homotopic after ∗-inverse
image to some nonempty open of [X0/T ].

By [Tho1, Thm. 4.10, Rem. 4.11] (where we may assume X0 reduced by
nil-invariance), there exists a nonempty T -invariant affine open V ⊆X0 and
a diagonalizable subgroup T ′ ⊆ T such that

[V /T ] ≃W ×BT ′

with W an affine scheme. Choose a geometric point v of [V /T ] and denote
its image in X by x. The Σ-admissibility of X means that there exists an
invertible sheaf L ∈ Σ with L ∣BAutX(x) trivial. In particular, the further
restriction L ∣BT ′ along BT ′ → BAutX(x) is also trivial (where we identify
T ′ = Aut

[V /T ]
(v)). Using [SGA3, Exp. I, 4.7.3], we can therefore write

L ∣[V /T ] ≃ p∗1(L ′)⊗ p∗2(L ∣BT ′) ≃ p∗1(L ′), (2.4)

where pi denotes the projection of W × BT ′ to the ith factor, and L ′

is an invertible sheaf on W . Since W is a scheme, the endomorphism
c1(L ′) ∶ 1W ⟨∗⟩ → 1W ⟨∗⟩ is nilpotent (see e.g. [Dég, Prop. 2.1.22(1)]). In
other words, there exists an integer n ≫ 0 such that the endomorphism
s ∶= c1(L )n ∶ 1X⟨∗⟩ → 1X⟨∗⟩, which is a Σ-local equivalence since L ∈ Σ,
becomes null-homotopic after ∗-inverse image to [V /T ]. �

2.2. Concentration.

Theorem 2.5 (Categorical concentration). Let X ∈ Stk with affine stabilizers.
Let Σ ⊆ Pic(X) be a subset of line bundles. For any closed immersion
i ∶ Z → X with quasi-compact and Σ-admissible complement X ∖ Z, the
functor

iΣ
∗
∶D(Z)[Σ−1]→D(X)[Σ−1]

is an equivalence.

Proof. We have D(X ∖Z)[Σ−1] = 0 by acyclicity (Theorem 2.1), so the claim
follows from Lemma 1.12. �

3. Cohomological concentration

3.1. Cohomology & Borel–Moore homology. For any X ∈ S, the co-
homology spectrum, resp. with coefficients in F ∈ D(X), is the mapping
spectrum

C●(X) ∶= C●(X;1X), resp. C●(X;F ) ∶= MapsD(X)
(1X ,F ).

For an integer n ∈ Z we set

C●(X;F )⟨n⟩ ∶= C●(X;F ⟨n⟩) = MapsD(X)
(1X ,F ⟨n⟩)

and
C●(X;F )⟨∗⟩ ∶=⊕

n∈Z

C●(X;F )⟨n⟩.
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3.2. Cohomological concentration. GivenX ∈ S and a subset Σ ⊆ Pic(X),
let

SΣ ⊆ π0C●(X)⟨∗⟩
denote the set of first Chern classes c1(L ) for L ∈ Σ. For a C●(X)⟨∗⟩-module
spectrum M , we denote by

M[Σ−1] ≃M ⊗C●(X)⟨∗⟩ C●(X)⟨∗⟩[Σ−1]
its localization at SΣ in the sense of [Lur2, Rem. 7.2.3.18].

Let ModC●(X)⟨∗⟩[Σ−1] denote the ∞-category of C●(X)⟨∗⟩[Σ−1]-module spec-
tra. Given an open U ⊆ X, consider the exact functor F ∶ D(U) →
ModC●(X)⟨∗⟩[Σ−1] sending

F ↦ C●(X; j!F )⟨∗⟩[Σ−1] (3.1)

where j ∶ U →X denotes the inclusion. For every G = g!(1Z), with g ∶ Z →X
a representable finite type morphism, and every L ∈ Σ, the morphism

c1(L ) ∶ C●(X; j!j
∗G )⟨∗⟩[Σ−1]→ C●(X; j!j

∗G )⟨∗⟩[Σ−1]
is invertible by C●(X)⟨∗⟩[Σ−1]-linearity, so F inverts SΣ and thus induces
an essentially unique exact functor

FΣ ∶D(U)[Σ−1]→ModC●(X)⟨∗⟩[Σ−1] (3.2)

with FΣ ○LΣ ≃ F .

Now if F ∈D(U) such that LΣ(F ) ≃ 0, then also F (F ) ≃ FΣ(LΣ(F )) ≃ 0.
In particular, categorical acyclicity (Theorem 2.1) yields:

Corollary 3.3 (Cohomological acyclicity). Let X ∈ Stk with affine stabilizers
and Σ ⊆ Pic(X) a subset of line bundles. If U ⊆ X is a Σ-admissible quasi-
compact open, then we have

C●(X; j!F )⟨∗⟩[Σ−1] ≃ 0

for all F ∈D(U), where j ∶ U →X denotes the inclusion. In particular, we
have C●(U ;F )⟨∗⟩[Σ−1] ≃ 0.

For the second statement, apply the first with X replaced by U (and Σ by
j∗Σ, j by the identity).

Corollary 3.4 (Cohomological concentration). Let X ∈ Stk with affine
stabilizers and Σ ⊆ Pic(X) a subset of line bundles. Let i ∶ Z → X be a
closed immersion such that X ∖Z is Σ-admissible and quasi-compact. Then
for every F ∈ D(X), the unit F → i∗i

∗F and counit i∗i!F → F induce
isomorphisms

C●(X;F )⟨∗⟩[Σ−1]→ C●(Z; i∗F )⟨∗⟩[Σ−1] (3.5)

C●(Z; i!F )⟨∗⟩[Σ−1]→ C●(X;F )⟨∗⟩[Σ−1]. (3.6)

Proof. Consider the localization triangle

C●(X; j!j
∗F )⟨∗⟩→ C●(X;F )⟨∗⟩→ C●(X; i∗i

∗F )⟨∗⟩
where j is the inclusion of U = X ∖ Z. It remains exact after applying the
exact functor (−)[Σ−1]. Since U is Σ-admissible and quasi-compact, the
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left-most term vanishes after localization by Corollary 3.3. This shows the
first isomorphism (3.5).

Similarly, we have the localization triangle

C●(X; i∗i
!F )⟨∗⟩→ C●(X;F )⟨∗⟩→ C●(X; j∗j

∗F )⟨∗⟩
where the right-most term C●(X; j∗j

∗F )⟨∗⟩ ≃ C●(U ; j∗F )⟨∗⟩ vanishes after
localization by Corollary 3.3. �

Remark 3.7. The second isomorphism (3.6) recovers concentration in Borel–
Moore homology (as in [AKLPR]): taking F = a!

X(Λ) where aX ∶ X →
Spec(k) is the projection and Λ ∈D(Spec(k)), we get the isomorphism

i∗ ∶ CBM
●

(Z; Λ)⟨∗⟩[Σ−1]→ CBM
●

(X; Λ)⟨∗⟩[Σ−1]
where CBM

●
(X; Λ) ∶= C●(X;a!

X(Λ)) and similarly for Z.

Variant 3.8. We can replace all occurrences of C●(X;−) = Maps(1X ,−)
above by aX,∗(−), where aX ∶ X → Spec(k) is the projection. In other
words, we can stop short of taking derived global sections RΓ(Spec(k),−) ∶
D(Spec(k)) → Spt. Thus for example when D is the weave of motives (or
cobordism motives), we get isomorphisms

i∗ ∶ M(X)[Σ−1]→M(Z)[Σ−1],
i∗ ∶ MBM(Z)[Σ−1]→MBM(X)[Σ−1]

under the assumptions of Corollary 3.4, where the notation is as in (0.8).

4. Categorical localization formula

In this section we prove a categorification of the Atiyah–Bott–Berline–Vergne
localization formula (see Theorem 4.5). This is a warm-up for the virtual
version, to be proven in Sect. 6.

We fix a diagonalizable group scheme T over k and assume k has no nontrivial
idempotents. We denote by Σ ⊆ Pic(BT ) the set of all nontrivial line bundles;
by abuse of notation, we also write Σ for the set f∗Σ ⊆ Pic(X) for any
f ∶ X→ BT .

4.1. Invertibility of Euler classes. We will use the following corollary of
categorical concentration (Theorem 2.5), which follows just as in [AKLPR,
Thm. 3.1]:

Theorem 4.1 (T -Equivariant categorical concentration). Let X ∈ Stk be
quasi-compact and Z → X a T -equivariant closed immersion such that for
every geometric point x ∈X ∖Z we have10 StTX(x) ⊊ Tx. Denote by i ∶ Z→ X

the induced morphism between Z ∶= [Z/T ] and X ∶= [X/T ]. Then the functor

i∗ ∶D(Z)[Σ−1]→D(X)[Σ−1]
is an equivalence.

10Here Tx is the fibre T ⊗k k(x) and StTX(x) is the T -stabilizer at a geometric point
x ∈ X, defined as the image of the map α ∶ AutX(x) → Tx induced by the T -action. See
[AKLPR, Def. A.4].
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Suppose now that X and Z are smooth, or more generally that the inclusion
Z → X is quasi-smooth (i.e., the relative cotangent complex LZ/X lies in
D

[−1,−1]
perf (Z)). In this case there is a canonical natural transformation

tri ∶ i∗i∗⟨−c⟩→ id (4.2)

called the trace (see [DJK, 4.3.1] and [Kha1, Rem. 3.8]), where c is the rank
of LZ/X[−1]. Recall also the Euler transformation

eulNZ/X ∶ id→ ⟨c⟩ (4.3)

associated with the locally free sheaf NZ/X = LZ/X[−1], which can be described
as the composite

id ≃ π!π
∗⟨c⟩ unitÐÐ→ π!0!0

∗π∗⟨c⟩ ≃ ⟨c⟩
where π ∶ VZ(NZ/X) → Z is the projection of the normal bundle and the
isomorphism comes from homotopy invariance and purity.

By (1.11), tri and eulNZ/X descend to natural transformations

trΣ
i ∶ iΣ∗ i∗Σ⟨−c⟩→ idD(X)[Σ−1], eulΣNZ/X ∶ idD(Z)[Σ−1] → ⟨c⟩.

When Z has finite stabilizers and trivial T -action, the following implies that
eulΣNZ/X is invertible as long as NZ/X has no fixed part (see [AKLPR, Def. 5.2]
for the definitions of the fixed and moving parts of a complex on Z ≃ Z ×BT ).

Corollary 4.4. Let X ∈ Stk be quasi-compact and let E be a connective
coherent complex on X ∶= X × BT , i.e., a coherent complex on X that is
equivariant with respect to the trivial T -action. If X has finite stabilizers and
E has no fixed part, then the zero section of the derived cone E ∶=VX(E )→ X

induces a canonical equivalence

0∗ ∶D(X)[Σ−1]→D(E)[Σ−1].

Proof. By derived invariance, we may assume that E is 0-truncated (i.e.,
a coherent sheaf). Then [AKLPR, Prop. 3.8] shows that the conditions of
Theorem 4.1 are satisfied under our assumptions. �

4.2. Categorical localization formula. When i is quasi-smooth, the “cat-
egorical localization formula” computes the inverses of the isomorphism
id→ iΣ

∗
i∗Σ in terms of the trace:

Theorem 4.5 (Categorical localization formula). Let X ∈ Stk be and Z →X

a T -equivariant closed immersion such that StTX(x) ⊊ Tx for every geometric
point x ∈X∖Z, and such that the T -action on Z is trivial. Denote by i ∶ Z→ X

the induced morphism between Z ∶= [Z/T ] ≃ Z×BT and X ∶= [X/T ]. If Z →X
is quasi-smooth, Z has finite stabilizers, and NZ/X has no fixed part, then the
natural transformation of endofunctors of D(X)[Σ−1]

iΣ
∗
i∗Σ

eul−1

ÐÐÐ→ iΣ
∗
i∗Σ⟨−c⟩

trΣ
iÐÐ→ id,

where eul−1 is an inverse of eulΣNZ/X, is an inverse to the unit id→ iΣ
∗
i∗Σ.
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In view of the invertibility of eulNZ/X on D(Z)[Σ−1], Theorem 4.5 is a
consequence of the following categorification of the self-intersection formula:

Proposition 4.6 (Categorical self-intersection formula). Let i ∶ Z → X

be a quasi-smooth closed immersion in Stk. Then the composite natural
transformation

i∗i
∗⟨−c⟩ triÐ→ id

unitÐÐ→ i∗i
∗

is canonically identified with eulNZ/X ∶ i∗i∗⟨−c⟩→ i∗i
∗.

This statement is easily derived from [Kha1, Cor. 3.17]; see also Corollary 6.4
below.

Corollary 4.7. For i as in Proposition 4.6, the composite

i∗⟨−c⟩ i∗unitÐÐÐ→ i∗i∗i
∗⟨−c⟩ i∗triÐÐ→ i∗

is canonically identified with eulNZ/X ∶ i∗⟨−c⟩→ i∗.

Proof. By the triangle identities, it will suffice to identify the composite

i∗⟨−c⟩ i∗unitÐÐÐ→ i∗i∗i
∗⟨−c⟩ i∗triÐÐ→ i∗

i∗unitÐÐÐ→ i∗i∗i
∗

counit(i∗)ÐÐÐÐÐ→ i∗

since the last two arrows collapse to the identity. By Proposition 4.6 this is
identified with the total composite in the commutative diagram below:

i∗⟨−c⟩ i∗i∗i
∗⟨−c⟩ i∗i∗i

∗

i∗⟨−c⟩ i∗,

i∗unit eul

counit(i∗) counit(i∗)

eul

whence the claim. �

Proof of Theorem 4.5. All operations are considered on D(−)[Σ−1] and we
omit the decorations “Σ” from the notation. Proposition 4.6 yields an
identification between the composite

i∗i
∗ eul−1

ÐÐÐ→ i∗i
∗⟨−c⟩ triÐ→ id

unitÐÐ→ i∗i
∗

and the identity. The other composite

id
unitÐÐ→ i∗i

∗ eul−1

ÐÐÐ→ i∗i
∗⟨−c⟩ triÐ→ id,

which is equivalent to

id
eul−1

ÐÐÐ→ ⟨−c⟩ unitÐÐ→ i∗i
∗⟨−c⟩ triÐ→ id,

is identity after applying i∗ on the left by Corollary 4.7. Since i∗ is an
equivalence (Theorem 4.1), the claim follows. �
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5. Virtual Euler and trace

Our next goal is to extend the categorical localization formula (Theorem 4.5)
to the case of quasi-smooth stacks. Since the closed immersion i ∶ Z → X

need no longer be quasi-smooth, we begin in this section by making sense of
the trace tri as well as the Euler transformation eulNZ/X associated with the
perfect complex

NZ/X = LZ/X[−1] ∈D[−1,0]
perf (X).

We maintain the notation T and Σ ⊆ Pic(BT ) of the previous section.
Throught this section and in the rest of this paper we work under the
assumption that all our stacks have affine stabilizers.

5.1. Quasi-smooth bundles. Given a perfect complex E ∈Dperf(X), the
associated “generalized vector bundle” π ∶ E = VX(E ) → X is the derived
stack with functor of points

(T tÐ→X)↦MapsDperf(X)
(t∗E ,OT ).

In Sect. 4 we made use of the fact that when E is of Tor-amplitude ⩽ 0
and virtual rank r, the projection π is smooth so that we have an invertible
natural transformation

trπ ∶ π!π
∗⟨r⟩→ id,

see [Kha1, Prop. A.10, Thm. A.13, Constr. A.16].

Now suppose E is a perfect complex on X ∶=X ×BT , i.e., a perfect complex
on X which is equivariant with respect to the trivial T -action. Suppose that
E is of Tor-amplitude ⩽ 1, so that π ∶VX(E )→ X is only quasi-smooth. We
still have the trace (see [Kha1, §3.1, Rem. 3.8])

trπ ∶ π!π
∗⟨r⟩→ id

but it is typically not invertible. However, we will show that this becomes
true Σ-locally, as long as the fixed part E fix is of Tor-amplitude ⩽ 0.

Proposition 5.1. Let X ∈ Stk be quasi-compact and X = X × BT . Let
E ∈D⩾−1

perf(X) of virtual rank r with E fix ∈D⩾0perf(X). If X has finite stabilizers,
then the trace of π ∶VX(E )→ X induces an isomorphism

trπ ∶ πΣ
! π

∗

Σ⟨r⟩→ id

of endofunctors of D(X)[Σ−1].

Proof. Note that π ∶ E ∶= VX(E ) → X factors through πmov ∶ Emov → X and
E→ Emov, which is a torsor under the vector bundle stack πfix ∶ Efix → X. By
homotopy invariance for vector bundle stacks [Kha1, Prop. A.10] we may
replace E by E mov and assume that E has no fixed part.

Using the localization triangle and stratifying X by global quotient stacks,
we may assume that X has the resolution property. Arguing as in the proof
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of [Kha1, Prop. A.10] by induction on the Tor-amplitude of E , we reduce to
the case where

E = Cofib(E −1 → E 0) ∈D[−1,0]
perf (X)

with E −1,E 0 ∈D[0,0]
perf (X). We have a commutative diagram

X E X

E0 E1

X

0

0E0

π

s 0E1

p

πE0

πE1

(5.2)

where E0 =VX(E 0) and E1 =VX(E −1) and the square is homotopy cartesian.

All operations below are considered onD(−)[Σ−1] and we omit the decorations
“Σ”. Since E1 has no fixed part and X has finite stabilizers, 0∗E1

and 0E1,! are
equivalences (Corollary 4.4), so it will suffice to show that

trπ ∶ 0E1,!π!π
∗⟨r⟩→ 0E1,!

is invertible. Under the base change isomorphism, this is identified with (see
[DJK, Cor. 2.5.6])

trp ∶ p!p
!0E1,!⟨r⟩→ 0E1,!.

Thus it is sufficient to show that trp ∶ p!p
∗⟨r⟩→ id is invertible.

Since 0∗E1
and 0E1,! are equivalences, the same holds for π∗E1

and πE1,! by
functoriality. Thus it will suffice to show that

πE0,!π
∗

E0
⟨r⟩ ≃ πE1,!p!p

∗π∗E1
⟨r⟩

trpÐ→ πE1,!π
∗

E1

is invertible. By functoriality of the trace, this follows from the invertibility
of trE0

and trE1
(which holds since E0 and E1 are of Tor-amplitude [0, 0], see

the discussion above). �

5.2. Virtual Euler and trace. We use Proposition 5.1 to define gener-
alizations of the Euler and trace transformations at the level of localized
equivariant derived categories.

Construction 5.3 (Euler transformation). LetX ∈ Stk be quasi-compact and
write X =X ×BT . Let E ∈D[−1,0]

perf (X) of virtual rank r, with E fix ∈D[0,0]
perf (X).

The Euler transformation associated with E is the natural transformation

eulΣE ∶ idD(X)[Σ−1] → ⟨r⟩

of endofunctors of D(X)[Σ−1], defined as follows. Denote by π ∶VX(E )→ X

the projection and by 0 ∶ X→VX(E ) the zero section. Note that the latter
is a closed immersion since E ∈D⩽0perf(X), so that the unit of the adjunction
(0Σ

! ,0
∗

Σ) gives rise to a canonical natural transformation

id ≃ πΣ
! π

∗

Σ⟨r⟩ unitÐÐ→ πΣ
! 0Σ

! 0∗Σπ
∗

Σ⟨r⟩ ≃ ⟨r⟩
where the first isomorphism is the inverse of the trace (Proposition 5.1).
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Proposition 5.4. In the situation of Construction 5.3, suppose moreover
that E fix ≃ 0. Then the unit id→ 0Σ

! 0∗Σ is invertible. In particular, the Euler
transformation eulΣE ∶ idD(X)[Σ−1] → ⟨r⟩ is invertible.

Proof. When E is of Tor-amplitude [0, 0], i.e., π ∶ E ∶=VX(E )→ X is a vector
bundle, the zero section 0 ∶ X→ E satisfies the assumptions of Theorem 4.1
by [AKLPR, Prop. 3.8] since E fix ≃ 0 and X has finite stabilizers.

In general, we stratify X by global quotient stacks and use the localization
triangle to reduce to the case where X has the resolution property. We can
then write

E ≃ Cofib(E −1 → E 0) ∈D[−1,0]
perf (X)

with E −1,E 0 ∈ D[0,0]
perf (X). We adopt the notation of (5.2). Since s∗ and s!

are equivalences by Theorem 4.1 (we omit the decorations “Σ” throughout
the proof), it will suffice to show that the lower horizontal arrow below is
invertible:

id 0E0,!0
∗

E0

s!s
∗ s!0!0

∗s∗

unit

unit

unit

But the lower horizontal and right-hand vertical arrows are invertible by
Theorem 4.1, so the claim follows. �

Construction 5.5 (Trace transformation). Let X ∈ Stk be quasi-compact
with T -action, and let Z →X be a T -equivariant closed immersion where the
T -action on Z is trivial. Write Z ∶= [Z/T ] ≃ Z ×BT and X ∶= [X/T ]. Assume
that LZ/X ∈D[−2,−1]

perf (Z), L fix
Z/X

∈D[−1,−1]
perf (Z), and Z has finite stabilizers. Let

i ∶ Z→ X denote the inclusion, π ∶ NZ/X ∶=VZ(NZ/X)→ Z the derived normal
bundle, and c the virtual rank of NZ/X = LZ/X[−1].

Recall that there is a specialization transformation (see [Kha1, Constr. 3.1],
[KR1, Constr. 8.7])

spi ∶ i!π!π
∗i∗ → id

defined by deformation to the derived normal bundle. It gives rise to a natural
transformation spΣ

i on localized functors by (1.11). The trace transformation

trΣ
i ∶ iΣ∗ i∗Σ⟨−c⟩→ id (5.6)

of functors D(X)[Σ−1]→D(X)[Σ−1] is defined as the composite

iΣ
∗
i∗Σ⟨−c⟩ ≃ iΣ

∗
πΣ

! π
∗

Σi
∗

Σ

spΣ
iÐÐ→ id

where the isomorphism πΣ
! π

∗

Σ ≃ ⟨−c⟩ is the inverse of trπ (Proposition 5.1).

Remark 5.7. It is immediate from the constructions that if E ∈D[−1,0]
perf (X)

in fact belongs to D
[0,0]
perf , then the Euler transformation eulE ∶ id → ⟨r⟩ on

D(X)[Σ−1] (Construction 5.3) is the restriction of the usual one on D(X).
Similarly, if i ∶ Z→ X is in fact quasi-smooth (i.e., LZ/X ∈D[−2,−1]

perf (Z) belongs
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to D
[−1,−1]
perf (Z)), then the trace transformations on Σ-localized categories are

the restrictions of the usual ones on unlocalized categories.

6. Categorical virtual localization formula

We now prove the categorical virtual localization formula, extending Theo-
rem 4.5 to the case of quasi-smooth stacks.

Let X ∈ Stk be quasi-compact with T -action, and let Z → X be a T -
equivariant closed immersion such that Z contains all T -fixed points (that is,
for every geometric point x ∈X∖Z we have StTX(x) ≠ Tx). Denote by i ∶ Z→ X

the induced morphism between Z ∶= [Z/T ] and X ∶= [X/T ]. The categorical
concentration theorem (Theorem 4.1) implies that the unit id→ i∗LΣi

∗ and
counit i∗i! → id are invertible on D(X)[Σ−1]. The “categorical localization
formula” computes their inverses in terms of the trace (Construction 5.5), in
the situation where the latter is defined:

Theorem 6.1 (Categorical virtual localization formula). Let X ∈ Stk be quasi-
compact with T -action, and let Z →X be a T -equivariant closed immersion
such that StTX(x) ⊊ Tx for every geometric point x ∈X ∖Z, and such that the
T -action on Z is trivial. Denote by i ∶ Z→ X the induced morphism between
Z ∶= [Z/T ] ≃ Z × BT and X ∶= [X/T ]. Assume that LZ/X ∈ D

[−2,−1]
perf (Z),

L fix
Z/X

≃ 0, and Z has finite stabilizers. Then the natural transformation of
endofunctors of D(X)[Σ−1]

iΣ
∗
i∗Σ

eul−1

ÐÐÐ→ iΣ
∗
i∗Σ⟨−c⟩

trΣ
iÐÐ→ id,

where eul−1 is an inverse of eulΣNZ/X, is an inverse to the unit id→ iΣ
∗
i∗Σ.

The proof of Theorem 6.1 will require the following categorifications of
Proposition 1.15 and Corollary 1.16 in [AKLPR]. A closed immersion i ∶
Z →X is homotopically smooth if its conormal complex NZ/X = LZ/X[−1]
is perfect; its derived normal bundle is NZ/X ∶=VZ(NZ/X)→X.

Proposition 6.2. Suppose given a commutative square

Z ′ X ′

Z X

i′

p q

i

in Stk where i and i′ are homotopically smooth closed immersions, q is
proper, and the square is cartesian on classical truncations. Denote by
π′ ∶ NZ′/X′ → Z ′, π ∶ NZ/X → Z the derived normal bundles to i′ and i,
respectively, and by N∆ ∶ NZ′/X′ → NZ/X the induced (proper) morphism.
Then the diagram

i!π!π
∗i∗ id

i!π!N∆,!N
∗

∆π
∗i∗ q!i

′

!π
′

!π
′∗i′∗q∗ q!q

∗,

spi

unit unit

spi′
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where the lower isomorphism is by functoriality, commutes up to canonical
homotopy.

Proof. The assumptions imply that the induced morphism D∆ ∶ DZ′/X′ →
DZ/X on the derived deformations to the normal bundle is proper. The
commutative diagram of complementary closed/open immersions

NZ′/X′ DZ′/X′ X ′ ×Gm

NZ/X DZ/X X ×Gm

u′

N∆

v′

D∆ q×id

u v

gives rise to the commutative diagram

v!v
∗ id u!u

∗

v!(q × id)!(q × id)∗v∗ D∆,!D
∗

∆ u!N∆,!N
∗

∆u
∗

D∆,!v
′

!v
′∗D∗

∆ D∆,!D
∗

∆ D∆,!u
′

!u
′∗D∗

∆

where the rows are localization triangles and the upper vertical arrows are
unit transformations. Now the claim follows by unravelling the definition of
the specialization transformation. �

Corollary 6.3. Let i ∶ Z →X be a homotopically smooth closed immersion
in Stk. Then the diagram

i!π!π
∗i∗ i!π!0!0

∗π∗i∗

i!π!π
∗i∗ id i!i

∗

unit

spi unit

commutes up to canonical homotopy, where 0 ∶ X → NZ/X denotes the zero
section to the derived normal bundle π ∶ NZ/X →X.

Proof. The self-intersection square

Z Z

Z X

i

i

satisfies the assumptions of Proposition 6.2. �

Corollary 6.4 (Categorical virtual self-intersection formula). Let X ∈ Stk
be quasi-compact with T -action, and let Z → X be a T -equivariant closed
immersion such that the T -action on Z is trivial. Denote by i ∶ Z → X the
induced morphism between Z ∶= [Z/T ] ≃ Z ×BT and X ∶= [X/T ]. Assume
that LZ/X ∈ D

[−2,−1]
perf (Z), L fix

Z/X
∈ D

[−1,−1]
perf (Z), and Z has finite stabilizers.
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Then the composite natural transformation

iΣ
∗
i∗Σ⟨−c⟩

trΣ
iÐÐ→ id

unitÐÐ→ iΣ
∗
i∗Σ

of endofunctors of D(X)[Σ−1], is canonically identified with

eulΣNZ/X ∶ i
Σ
∗
i∗Σ⟨−c⟩→ iΣ

∗
i∗Σ.

Proof. Consider the following diagram of endofunctors of D(X)[Σ−1]

i∗i
!⟨−c⟩ i∗π∗π

!i! i∗π∗0∗0!π!i!

i∗i
!⟨−c⟩ i∗π∗π

!i! id i∗i
!,

trπ unit

trπ spZ/X unit

where we omit the decorations “Σ”. The right-hand square commutes by
Corollary 6.3. By construction of tri and eulNZ/X , the commutativity of the
outer composite rectangle yields the identification desired. �

Proof of Theorem 6.1. Repeat the proof of Theorem 4.5, substituting in
Corollary 6.4 for Proposition 4.6. �

7. Cohomological localization and integration formulas

We now derive from Theorem 6.1 the localization formula in cohomology and
Borel–Moore homology. The latter recovers [AKLPR, Cor. 5.27].

We begin by defining Euler classes and Gysin maps. Recall that for every X

over BT we have a canonical functor (3.2)

FΣ ∶D(X)[Σ−1]→ModC●(X)⟨∗⟩[Σ−1] (7.1)

with the property that FΣ(LΣF ) ≃ C●(X;F )⟨∗⟩[Σ−1] for any F ∈ D(X).
Dually, for any fixed G ∈D(X) there is a canonical functor

GG
Σ ∶D(X)[Σ−1]→ (ModC●(X)⟨∗⟩[Σ−1])op (7.2)

with GG
Σ(LΣF ) ≃ MapsD(X)

(F ,G ⟨∗⟩)[Σ−1].

Construction 7.3 (Euler class). Let X ∈ Stk be quasi-compact with finite
stabilizers. Suppose given a perfect complex

E ∈D[−1,0]
perf (X) with E fix ∈D[0,0]

perf (X)

on X ∶=X ×BT . The Euler transformation eulΣE (Construction 5.3) gives rise
to a morphism

eulE ∶ LΣ1X → LΣ1X⟨r⟩,
where r is the virtual rank of E . Applying FΣ yields a canonical morphism
of the form

C●(X;1X)⟨∗⟩[Σ−1]→ C●(X;1X)⟨∗⟩[Σ−1]
which by C●(X;1X)⟨∗⟩[Σ−1]-linearity amounts to an element

e(E ) ∈ C●

T (X)⟨r⟩[Σ−1] ≃ C●(X)⟨r⟩[Σ−1], (7.4)
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we call the Euler class (or top Chern class). If E fix ≃ 0, then eulΣE is invertible
(Proposition 5.4), hence e(E ) ∈ C●(X)⟨∗⟩[Σ−1] is invertible. By cap product,
e(E ) gives rise for every C●(X)⟨∗⟩-module spectrum M to a map

e(E ) ∶M[Σ−1]→M[Σ−1],

invertible when E fix ≃ 0.

Construction 7.5 (Gysin maps). Let X ∈ Stk be quasi-compact with T -
action, and let Z →X be a T -equivariant closed immersion where the T -action
on Z is trivial. Write Z ∶= [Z/T ] ≃ Z ×BT and X ∶= [X/T ]. Assume that
LZ/X ∈ Dperf(Z)[−2,−1], L fix

Z/X
∈ Dperf(Z)[−1,−1], and Z has finite stabilizers.

Let i ∶ Z→ X denote the inclusion and let c be the virtual rank of LZ/X[−1].

(i) For any object F ∈D(X), consider the morphism

LΣi!i
∗F ⟨−c⟩ ≃ iΣ! i∗ΣLΣF ⟨−c⟩

trΣ
iÐÐ→ LΣF

given by the trace transformation (5.6). Applying FΣ (7.1) yields a canonical
map of C●(X)⟨∗⟩[Σ−1]-module spectra

i! ∶ C●(Z; i∗F )⟨∗⟩[Σ−1] ≃ C●(X; i!i
∗F )⟨∗⟩[Σ−1]

→ C●(X;F )⟨∗⟩[Σ−1].
(7.6)

We call (7.6) the Gysin push-forward along i.

(ii) The trace (5.6) gives rise to a morphism

LΣi!1Z⟨−c⟩→ LΣ1X.

For any F ∈ D(X) we may apply the functor GF
Σ (7.2) to get a canonical

map of C●(X)⟨∗⟩[Σ−1]-modules

MapsD(X)
(i!1Z⟨−c⟩,F ⟨∗⟩)[Σ−1]→MapsD(X)

(1X,F ⟨∗⟩)[Σ−1].

By adjunction, this amounts to a canonical C●(X)⟨∗⟩[Σ−1]-module map

i! ∶ C●(X;F )⟨∗⟩[Σ−1]→ C●(Z; i!F )[Σ−1]. (7.7)

We think of this as a Gysin pull-back in Borel–Moore homology (compare
Remark 3.7).

Corollary 7.8 (Co/homological localization formula). Let X ∈ Stk be quasi-
compact with T -action, and let Z →X be a T -equivariant closed immersion
such that StTX(x) ⊊ Tx for every geometric point x ∈X ∖Z, and such that the
T -action on Z is trivial. Denote by i ∶ Z→ X the induced morphism between
Z ∶= [Z/T ] ≃ Z × BT and X ∶= [X/T ]. Assume that LZ/X ∈ D

[−2,−1]
perf (Z),

L fix
Z/X

≃ 0, and Z has finite stabilizers. Then for every F ∈D(X) we have:

(i) There is a canonical identification

i! (− ∩ e(NZ/X)−1) ≃ (i∗)−1

of maps C●(Z;F )⟨∗⟩[Σ−1]→ C●(X;F )⟨∗⟩[Σ−1].
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(ii) There is a canonical identification

i!(−) ∩ e(NZ/X)−1 ≃ (i∗)−1

of maps C●(X;F )⟨∗⟩[Σ−1]→ C●(Z; i!F )⟨∗⟩[Σ−1].

Proof. Follows immediately from Theorem 6.1 by unravelling definitions. �

Corollary 7.9 (Integration formula). Let the notation be as in Corollary 7.8.
Suppose that X is proper representable over some S ∈ Stk. Denote by f ∶ X→ S
and g ∶ Z→ S the structural morphisms. Then for every F ∈D(S) we have:

(i) If f ∶ X→ S is quasi-smooth, then there is a canonical identification11

f!(−) ≃ f!i!(i∗(−) ∩ e(NZ/X)−1)

of maps C●(X; f∗F )⟨∗⟩[Σ−1]→ C●(S;F )⟨∗⟩[Σ−1].
(ii) There is a canonical identification

f∗(−) ≃ g∗(i!(−) ∩ e(NZ/X)−1)
of maps

C●(X; f !F )⟨∗⟩[Σ−1]→ C●(S;F )⟨∗⟩[Σ−1].

Proof. Since f is proper representable, there is a canonical isomorphism
f! ≃ f∗. In particular, one has a cohomological Gysin push-forward f! (where
f is quasi-smooth) and Borel–Moore homological push-forwards f∗ and g∗,
respectively. �

Remark 7.10. For lisse-extended weaves satisfying proper descent (out of
the examples listed in (1.2.1), this includes the Betti and étale weaves as
well as motives with rational coefficients), Corollary 7.9 holds more generally
without assuming that X→ S is representable. This is because in that case we
have the canonical isomorphism of functors f! ≃ f∗ for any proper morphism
f . See [Kha1, Thm. A.7], [Kha5].
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