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Abstract. Let X be the canonical bundle of a smooth algebraic surface
S. We construct the (sheaf-level) 3d or critical cohomological Hall algebra
of X. This refines the 2d cohomological Hall algebra of S constructed
by Kapranov–Vasserot, and may be regarded as an instance of Joyce’s
conjecture for Lagrangians in (−1)-shifted symplectic spaces, which we
prove in the conormal case. The proof uses a new theory of derived
microlocalization. This is a research announcement; details of some
proofs will appear in a forthcoming work.
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Introduction

The aim of this paper is to introduce a derived-geometric generalization
of microlocal sheaf theory à la Kashiwara–Schapira [KS] and apply it to
geometric representation theory of the moduli stack of compactly supported
coherent sheaves on a local surface (i.e., the canonical bundle of a smooth
algebraic surface). In particular, we will construct a structure called the
3-dimensional or critical cohomological Hall product on the categorified
Donaldson–Thomas invariants of local surfaces, confirming expectations of
Kontsevich–Soibelman [KSo] and Joyce [JS]. We begin by motivating the
study of the cohomological Hall algebra.

0.1. 2d cohomological Hall algebras. Let S be a smooth algebraic sur-
face. Denote by Cohcpt(S) the abelian category of compactly supported
coherent sheaves on S and by MS the moduli stack of objects in Cohcpt(S).
The 2d cohomological Hall algebra (2d CoHA for short) is an associative
algebra structure introduced by Kapranov–Vasserot [KV] on the Borel–Moore
homology HBM

∗ (MS).
We briefly recall the definition. Let M ext

S be the moduli stack of short
exact sequences in Cohcpt(S) and consider the following correspondence:

M ext
S

(ev′,ev′′)

yy

ev

""

MS ×MS MS ,

(0.1)

where ev′ sends [0 → E′ → E → E′′ → 0] to E′, and ev, ev′′ are defined
similarly. The morphism (ev′, ev′′) is quasi-smooth and ev is proper on each
connected component of M ext

S . The 2d CoHA product

∗Hall
2d ∶HBM

∗ (MS)⊗HBM
∗ (MS) = HBM(MS ×MS)→ HBM

∗+2⋅rel.dim(ev′,ev′′)(MS)
(0.2)

is defined as the composite ev∗ ○ (ev′, ev′′)! where (ev′, ev′′)! is the virtual
pull-back [Kha1] and ev∗ is the proper push-forward.

The 2d CoHA has striking applications in geometric representation the-
ory. For example, Davison–Hennecart–Schlegel Mejia [DHS2, §10.2] recently
showed that it can be used to recover the Heisenberg algebra action on the
homology of Hilbert schemes of A2 [Nak, Gro].

0.2. 3d cohomological Hall algebras. String theory predicts the existence
of a certain graded associative algebra called the algebra of BPS states asso-
ciated with a smooth Calabi–Yau threefold [HM]. Kontsevich and Soibelman
[KSo] have proposed a mathematical definition in terms of a certain cohomo-
logical Hall algebra on a categorification of the Donaldson–Thomas invariants.
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However, such an algebra structure has yet to be constructed in general. We
now explain the state of the art.

0.2.1. 3d CoHA for quivers with potentials. Let Q be a quiver (i.e., an oriented
finite graph). A potential W of a quiver is a formal finite sum of oriented
cycles of Q. A quiver with potential (Q,W ) can be thought of as a local
model for a Calabi–Yau threefold (see e.g. [Tod2, Thm. 1.1] for a precise
statement). For example, one can construct from (Q,W ) a 3-Calabi–Yau
dg-algebra Γ(Q,W ) called the Ginzburg dg-algebra [Gin].

Let MQ be the moduli stack of representations of Q. The potential W
defines a function fW ∶MQ → A1 by taking the trace, whose critical locus
coincides with the moduli stack of representations over the Jacobi algebra
Jac(Q,W ) = H0(Γ(Q,W )). Kontsevich–Soibelman defined the cohomological
Donaldson–Thomas invariant (or CoDT invariant for short) for (Q,W ) to
be the vanishing cycle cohomology

H∗(MQ, φfW (QMQ
))[dimMQ].

They also considered an algebra structure on the CoDT invariant called the
critical cohomological Hall algebra (or critical CoHA for short). By virtual
pull-back along ev, we have a sheaf-level CoHA product for Q

(ev′, ev′′)∗QMQ×MQ
[2rel.dim ev]→ ev!QMQ

, (0.3)

where ev, ev′ and ev′′ denote the evaluation maps as in Subsect. 0.1. Then
the critical CoHA product is defined by applying the vanishing cycles functor
with respect to the function fW ○ ev = (fW ⊞ fW ) ○ (ev′, ev′′).

Critical CoHAs for quivers with potentials play an essential role in the
interplay between representation theory and Donaldson–Thomas (DT) theory.
For example, Davison and Meinhardt [DM] used the critical CoHA product to
construct a categorification of the wall-crossing identity of DT invariants for
quivers with potentials. They also explained in the same paper that a PBW-
type statement for the critical CoHA may be interpreted as a categorification
of an integrality statement for the DT invariants.

0.2.2. 3d CoHA for Calabi–Yau threefolds. Let X be a Calabi–Yau threefold
andMX be the derived moduli stack of compactly supported coherent sheaves
on X. Fixing an orientation o, i.e, a choice of a line bundle L ∈ Pic(M red

X )
and an isomorphism o∶L⊗2 ≃ det(LMX

∣Mred
X

), we have the Donaldson–Thomas
perverse sheaf (or DT perverse sheaf for short)

φMX
= φMX ,o ∈ Perv(MX).

defined by Joyce and his collaborators [BBBJ, BBDJS] and independently by
Kiem–Li [KL]. When there is no ambiguity about the choice of orientation,
we write φMX

= φMX ,o for simplicity. The cohomology of the DT perverse
sheaf

H∗(MX , φMX
)

is called the CoDT invariant for X.
Let us briefly recall the construction of the DT perverse sheaf. Using the

(−1)-shifted symplectic structure [PTVV] on MX , it is shown in [BBBJ] that
the moduli stack MX can be written smooth-locally as the derived critical
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locus of a function on a smooth scheme (see [BBBJ, Cor. 2.11]). The DT
perverse sheaf is then defined by gluing the complexes of vanishing cycles for
these locally defined functions (up to certain twists to guarantee compatibility
on overlaps).

For a choice of orientation o compatible with direct sum (see e.g., [Kin3,
Example 5.7]), it is expected that H∗(MX , φMX

) carries the structure of an
algebra called the critical CoHA. More generally, it is expected that there
exists a canonical map

(ev′, ev′′)∗(φMX
⊠ φMX

)[vdimM ext
X ]→ ev!φMX

(0.4)

satisfying an associativity property. Here ev, ev′ and ev′′ denote the evalua-
tion map as in Subsect. 0.1. We call this map the sheaf-level critical CoHA
product.

At the moment, the construction of the critical CoHA product for a general
Calabi–Yau threefold is an open problem. Given the definition of the DT
perverse sheaves by gluing locally defined perverse sheaves, the obvious
approach to defining a sheaf-level critical CoHA product is to glue morphisms
locally defined as in (0.3). However, since the latter involves complexes that
do not live in the perverse heart, performing such a gluing would require
constructing an infinite system of homotopy coherence data in the derived
∞-category. From our perspective, the main difficulty is therefore the lack of
a global construction of the DT perverse sheaf.

Because of the absence of the critical CoHA for Calabi–Yau threefolds, the
CoDT theory for Calabi–Yau threefolds is still in its infancy compared to the
case of quivers with potentials. Once the critical CoHA and its sheaf-level
upgrade is constructed, it would be possible to globalize the work of Davison–
Meinhardt [DM] and apply it to categorify some celebrated wall-crossing
formulae such as the DT/PT correspondence [Bri, Tod1].

0.3. Dimensional reduction for CoDT invariants. Let S be a smooth
algebraic surface and X = TotS(ωS) the total space of the canonical bundle.
In this case there exists a canonical choice of orientation for MX and we have
a dimensional reduction isomorphism [Dav1, Kin1]:

H∗(MX , φMX
) ≃ HBM

−∗+vdimMS
(MS). (0.5)

This theorem enables us to apply CoDT theory to the study of moduli stacks
of objects in 2-Calabi–Yau categories. See e.g. [Dav2, DHS1, DHS2, KKo]
for some applications in this direction1.

One can construct an algebra structure on H∗(MX , φMX
) by combining

the isomorphism (0.5) and using the 2d CoHA we have recalled in §0.1.
However, it is not satisfactory for applications for several reasons. One reason
is, that when we consider enumerative invariants, we often pick an ample
divisor H on X and work with the moduli stack of H-semistable objects
MH-ss
X ⊆ MX . When KS is positive, the projection map MX → MS does

1The works [Dav2, DHS1, DHS2] only use the local dimensional reduction theorem of
[Dav1] along with results from the CoDT theory of quivers with potentials. The work
[KKo] partly develops CoDT theory for local curves and applies it to the study of the
topology of the moduli space of Higgs bundles by using global dimensional reduction [Kin1].
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not preserve H-semistability in general, and hence dimensional reduction
does not apply. Similarly, dimensional reduction cannot be applied directly
to study the categorification of closed subscheme invariants and stable pair
invariants [PT] for local surfaces.

Therefore, a sheaf-level critical CoHA product would be necessary for
applications to enumerative geometry of local surfaces.

0.4. Main result. Our main result is the construction of sheaf-level critical
CoHA products for local surfaces. We take a smooth surface S and set
X ∶= TotS(ωS). We consider the following correspondence

M ext
X

(ev′,ev′′)

yy

ev

##

MX ×MX MX .

(0.6)

similarly to (0.6). Note that the map ev is proper on the connected component
of the source.

Theorem A. There exists a canonical map

ν∶ (ev′, ev′′)∗(φMX
⊠ φMX

)→ ev!φMX
[−vdimM ext

X ]

which induces a map

∗Hall
3d ∶H∗(MX , φMX

)⊗2 → H∗−vdimMext
X (MX , φMX

)

on hypercohomology. It satisfies the property that the following diagram
commutes:

H∗(MX , φMX
)⊗2

≃ (0.5)
��

∗Hall
3d // H∗−vdimMext

X (MX , φMX
)

≃ (0.5)
��

HBM
−∗+vdimMS

(MS)⊗2
∗Hall

2d // HBM
−∗+vdimMext

X +vdimMS
(MS).

Here ∗Hall
2d is the 2d CoHA product recalled in (0.2).

As we will see below in Theorem D, we prove a much more general statement
which may be regarded as an instance of the Joyce conjecture [JS, Conj. 1.1].

By adopting an argument of Toda [Tod3, §4], one can construct a right
action of the CoHA for zero-dimensional sheaves on the cohomological closed
subscheme invariants and a left action on the cohomological stable pair
invariants. We also note that the construction of the sheaf-level critical CoHA
plays an important role in forthcoming work of Davison and the second author
[DK] on the construction of a bialgebra upgrade of 2d CoHA for Calabi–Yau
surfaces.

0.5. Derived microlocal sheaf theory. The proof of Theorem A involves
a global, or rather microlocal, definition of the DT perverse sheaf φMX

(for
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X a local surface). To do this, we introduce a generalization of microlocal
sheaf theory [KS] to the setting of derived algebraic geometry.2

Let f ∶Y1 → Y2 be a morphism of lhfp3 derived Artin stacks of relative
virtual dimension d. We let

N∗
Y1/Y2

=V(L∨Y1/Y2
[1])

be the conormal bundle and let πY1/Y2
∶N∗

Y1/Y2
→ Y1 be the projection. The

following theorem generalizes the microlocalization functor for a regular
embedding defined in [KS] to arbitrary lhfp morphisms between derived Artin
stacks:

Theorem B. There exists a functor µY1/Y2
∶Dc(Y2) → Dc(N∗

Y1/Y2
) on con-

structible derived categories with the following property:

πY1/Y2,∗ ○ µY1/Y2
≃ f !, πY1/Y2,! ○ µY1/Y2

≃ f∗[2d].

In particular, we have a canonical isomorphism

H∗(N∗
Y1/Y2

, µY1/Y2
(QY2)) ≃ H∗(Y1, f

!QY2). (0.7)

See Theorem 3.22 for further properties of the microlocalization functor. As
in the classical case, it is defined as the Fourier–Sato dual of a specialization
functor.

Now let Y be quasi-smooth and 1-Artin. Microlocalizing the constant
sheaf along the projection Y → pt produces a canonical sheaf on N∗

Y /pt which
is perverse up to a shift. On the other hand, N∗

Y /pt admits a canonical
(−1)-shifted symplectic structure (see [Cal]) and a canonical orientation, so
we also have the DT perverse sheaf φN∗

Y /pt
. We have (see Theorem 4.2):

Theorem C. For a quasi-smooth derived 1-Artin stack Y , we have

φN∗

Y /pt
≃ µY /pt(Qpt)[−2 vdimY ]. (0.8)

0.6. Proof of Theorem A. Let S be a smooth algebraic surface and set
X = TotS(ωS). We explain how derived microlocalization is used to construct
the 3d CoHA product for X.

There exists a canonical isomorphism of (−1)-shifted symplectic derived
stacks MX ≃ N∗

MS/pt, under which Theorem C yields an identification

φMX
≃ µMS/pt(Qpt)[−vdimMS]. (0.9)

Then Theorem B recovers the dimensional reduction theorem (0.5).
Derived microlocalization allows us to prove the following generalization

of Theorem A. Consider a correspondence of lhfp derived Artin stacks of the

2This is based on mostly unpublished work of the first author on a derived microlo-
calization functor for arbitrary topological weaves in the sense of [Kha2], using a derived
generalization of the homogeneous Fourier–Laumon transform [Kha4]. For our applications
here, it is important to use a derived Fourier–Sato transform instead.

3locally homotopically of finite presentation, see Subsect. 0.7
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form
Y

f1

~~

f2

  

Y1 Y2.

(0.10)

This gives rise to the conormal correspondence

N∗
Y /Y1×Y2

[−1]
f̃1

xx

f̃2

&&

N∗
Y1/pt N∗

Y2/pt,

(0.11)

where N∗
Y /Y1×Y2

[−1] = V(L∨Y /Y1×Y2
[2]). One can show that the correspon-

dence (0.6) is identified with the conormal correspondence associated with
(0.1). Therefore Theorem A follows from (0.9) and the following theorem (see
Theorems 4.18 and 4.32):

Theorem D. There exists a canonical map

ν∶ f̃∗1 µY1/pt(Qpt)[2 vdim f1]→ f̃ !
2µY2/pt(Qpt).

If f1 is quasi-smooth and f2 is proper, the map f̃2 is proper and the map
induced on hypercohomology

H∗+2 vdim f1(N∗
Y1/pt, µY1/pt(Qpt))→ H∗(N∗

Y2/pt, µY2/pt(Qpt))
is identified with the composite

HBM
−∗−2 vdim f1

(Y1)
f !
1Ð→ HBM

−∗ (Y )
f2,∗ÐÐ→ HBM

−∗ (Y2)
under the isomorphism (0.7).

Under the identification (0.8) between the DT perverse sheaf and the
absolute microlocalization, the above theorem may be considered as an
instance of the Joyce conjecture [JS, Conj. 1.1] in the conormal case. See
Corollary 4.20.

0.7. Conventions and notation. We work over the field C of complex
numbers. All (derived) schemes and stacks are implicitly defined over C. We
write pt = Spec(C) and let A1 denote the affine line over C and Gm the
complement of the zero section.

0.7.1. Artin stacks. A stack is an étale hypersheaf of ∞-groupoids4 on the
category of schemes.

A stack X is 0-Artin if its diagonal is a monomorphism representable by
schemes, and there exists a scheme U with a morphism U →X which is étale
surjective (i.e., whose base changes U ×X V → V are étale surjective for every
scheme V over X).

A stack is n-Artin for n > 0 if it has (n − 1)-representable diagonal and
admits a smooth and surjective morphism from a scheme. A stack is Artin if
it is n-Artin for some n. See [Toë, §3.1] for details.

4our stacks are implicitly “higher”
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Replacing the category of schemes above by the ∞-category of derived
schemes, we obtain the notion of derived Artin stacks. We refer to [Toë, §5.2]
for details.

We say that a morphism of derived Artin stacks is lhfp if it is locally
homotopically of finite presentation, or equivalently if its relative cotangent
complex is perfect and the induced morphism on classical truncations is
locally of finite presentation (see e.g. [Kha3, Thm. 8.7.6]).

0.8. Acknowledgments. We would like to thank Sasha Minets and Pavel
Safronov for helpful discussions. AAK would like to thank Mikhail Kapranov
for the invitation to Kavli IPMU in Feb. 2020, where he first discussed derived
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think about Joyce conjecture for conormal correspondences.
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and 112-2628-M-001-0062030. TK is supported by JSPS KAKENHI 23K19007.

1. Sheaves on stacks

1.1. Sheaves on Artin stacks.

1.1.1. Sheaves. Let S denote the category of locally of finite type schemes.
Given X ∈ S we denote by D(X) the stable presentable ∞-category of
sheaves on the topological space X(C) with values in the derived ∞-category
of Q-vector spaces.

Proposition 1.1. The presheaf D∗∶Sop → Cat∞ determined by the assign-
ment

X ↦D(X), f ↦ f∗ (1.2)
satisfies descent for the étale topology. In particular, for every smooth surjec-
tion p∶U ↠X, the Čech descent diagram

D(X)→D(U)⇉D(U ×
X
U)→→→D(U ×

X
U ×
X
U)→→→→ ⋯ (1.3)

exhibits D(X) as the limit.

Proof. If (Uα → X)α is a jointly surjective family of étale morphisms of
schemes, then (Uα(C) → X(C))α is a jointly surjective family of local
homeomorphisms. For the second claim, note that a smooth surjection
p∶U ↠X admits étale-local sections, hence generates a covering in the étale
topology. �

1.1.2. Sheaves on Artin stacks.

Construction 1.4. Let S+ denote the ∞-category of locally of finite type
Artin stacks. Consider the right Kan extension of (1.2) along the inclusion S↪
S+. By Proposition 1.1, the result is the unique étale sheaf D∗∶ (S+)op → Cat∞
extending (1.2). One can show that for X ∈ S+ it is the stable presentable
∞-category given by the limit

D(X) ≃ lim←Ð
(T,t)

D(T )
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over the ∞-category of pairs (T, t) where T ∈ S and t∶T → X is a smooth
morphism. Alternatively, if p∶U ↠X is a smooth surjection from a scheme
U then we may describe D(X) as the limit of the Čech diagram as in (1.3).

Remark 1.5. If X is a derived scheme, then the topological space X(C)
only depends on the classical truncation Xcl. Therefore, we may as well
define D(X) ∶=D(Xcl) for any derived Artin stack X.

1.1.3. Six operations.

Theorem 1.6. We have the following operations on the ∞-categories D(X):
(i) For every locally of finite type derived Artin stack X, an adjoint pair of

bifunctors

⊗ ∶D(X) ×D(X)→D(X),
Hom ∶D(X)op ×D(X)→D(X).

(ii) For every morphism f ∶X → Y , an adjoint pair

f∗∶D(Y )→D(X), f∗∶D(X)→D(Y ).
(iii) For every morphism f ∶X → Y , an adjoint pair

f!∶D(X)→D(Y ), f !∶D(Y )→D(X).
These operations are subject to the following compatibilities:

(SO1) Base change formula: For every cartesian square

X ′ Y ′

X Y

g

p q

f

there are canonical isomorphisms

q∗f! ≃ g!p
∗, p∗g

! ≃ f !q∗.

(SO2) Projection formula: For every morphism f ∶X → Y there are canoni-
cal isomorphisms

f!(−)⊗ (−) ≃ f!(− ⊗ f∗(−)),
HomY (f!(−),−) ≃ f∗HomX(−, f !(−)),
f !HomY (−,−) ≃ HomX(f∗(−), f !(−)).

(SO3) Forgetting supports: If f ∶X → Y is separated (has proper diagonal),
there is a canonical morphism

fsuppf ∶ f! → f∗, (1.7)

which is invertible when f is proper representable.

(SO4) Gysin: If f ∶X → Y is quasi-smooth of relative virtual dimension d,
there is a canonical morphism

gysf ∶ f∗[2d]→ f !, (1.8)

which is invertible when f is smooth (Poincaré duality).
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(SO5) Localization: If i∶Z ↪X is a closed immersion with complementary
open immersion j∶U ↪X, then there are canonical exact triangles

j!j
∗ → id→ i!i

∗

i∗i
! → id→ j∗j

!.

This theorem is essentially proven in [LZ]5, aside from the Gysin transfor-
mation (SO4). We briefly sketch the construction of the operations. We have
f∗ and ⊗ by construction, hence also f∗ and Hom by adjunction. Consider
the presheaf D!∶Sop → Cat∞ given by

X ↦D(X), f ↦ f !, (1.9)

which can indeed be promoted to a functor of ∞-categories by the work of
[LZ] or [GR]. The key observation is that its right Kan extension to S+ is,
on objects, equivalent to D∗∶ (S+)op → Cat∞. This is because the limits can
be taken over smooth morphisms, for which we have the Poincaré duality
isomorphisms f ! ≃ f∗[2d]. In this way we also get the operation f !, as well
as its left adjoint f! by formal reasons.

The Gysin transformation of (SO4) is constructed in [Kha1, §3.1, Rem. 3.8].
We recall that, for f ∶X → Y quasi-smooth of relative virtual dimension d,
evaluating gysf ∶ f∗[2d]→ f ! on the constant sheaf gives rise to a canonical
morphism

[X/Y ]vir ∶= [f]vir∶QX[2d]→ f !(QY ) (1.10)
called the relative virtual fundamental class in [Kha1]. When Y = pt this
amounts to a morphism QX[2d]→ f !(Q) = ωX , i.e., a Borel–Moore homology
class

[X]vir ∈ HBM
2d (X;Q).

When X is Deligne–Mumford, this recovers the virtual fundamental class of
[BF].

1.2. Constructible complexes. Recall that for a locally finite type (derived)
C-scheme X, a sheaf F of Q-vector spaces on X(C) is called constructible
if, for some stratification X = ∐αXα by locally closed subschemes, each
restriction F∣Xα is locally constant of finite rank. A complex F ∈ D(X) is
called constructible if it has bounded and constructible cohomologies. See
e.g. [Ach, Chap. 2].

Definition 1.11. Let X be a derived Artin stack. A complex F ∈ D(X)
is constructible if for every smooth morphism t∶T → X where T is a quasi-
compact scheme, t∗(F) ∈ D(T ) is constructible. This is equivalent to the
existence of a single smooth surjection p∶U ↠X where U is a scheme such
that p∗(F) ∈D(U) is constructible.

We denote by Dc(X) ⊆ D(X) the full (stable) subcategory spanned by
constructible complexes. For schemes it is well-known that the six operations
preserve constructibility. For stacks one has the following:

5Although they consider the derived∞-category of étale sheaves with torsion coefficients,
their construction applies much more generally. This is explained for example in [Kha1,
App. A].
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Theorem 1.12.

(i) For every morphism f ∶X → Y of derived Artin stacks, the functors f∗

and f ! preserve constructible complexes.

(ii) For every quasi-compact quasi-separated representable morphism f ∶X →
Y of derived Artin stacks, the functors f∗ and f! preserve constructible
complexes.

(iii) For every derived Artin stack X, the functors (−)⊗ (−) and Hom(−,−)
preserve constructibility in each argument.

1.2.1. Verdier duality. Given a derived Artin stack X, we denote by

ωX ∶= a!
X(Q)

the dualizing complex, where aX ∶X → pt is the projection. We set

DX ∶= Hom(−, ωX)∶D(X)op →D(X).
The following assertions reduce easily to the well-known case of schemes:

Theorem 1.13.

(i) The canonical morphism

F → DXDX(F)
is invertible for every constructible complex F ∈Dc(X).

(ii) There are canonical isomorphisms

DX(F ⊗DX(G)) ≃ Hom(F,G)
for all constructible complexes F,G ∈Dc(X).

(iii) For every morphism f ∶X → Y , there are canonical isomorphisms

DX(f∗G) ≃ f !(DY G),
DY (f∗F) ≃ f!(DXF),

for all constructible complexes F ∈Dc(X), G ∈Dc(Y ).

1.3. Perverse sheaves. Given a (derived) scheme X, we write

(pD⩽0(X), pD⩾0(X))
for the perverse t-structure on the stable ∞-category Dc(X). We refer to
[BBDG] or [Ach, Chap. 3] for a textbook account.

Proposition 1.14. Let X be a derived Artin stack. There exists a unique
t-structure on the stable ∞-category D(X) such that F ∈ D(X) belongs to
pD⩽0(X), resp. pD⩾0(X), if and only if for every derived scheme T and
every smooth morphism t∶T →X of relative dimension d, t∗(F)[d] belongs to
pD⩽0(T ), resp. pD⩾0(X).

Proof. It is enough to prove that for any object F ∈ Dc(X), we can find a
fiber sequence F ′ →F →F ′′ such that F ′ ∈ pD⩽0(X) and F ′′ ∈ pD⩾1(X),
since other axioms of t-structure can be checked locally. By definition, we
have equivalences

D(X) ≃ lim←Ð
t

D(T ), pD⩽0(X) ≃ lim←Ð
t

pD⩽0(T )
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where the limits are taken over pairs (T, t∶T →X) with T a derived scheme
and t smooth of relative dimension dt, and the transition functors are t∗[dt].
Since the perverse truncation functor pτ⩽0∶Dc(T ) → pD⩽0(T ) commutes
with transition functors, it descends to a functor

pτ⩽0∶Dc(X)→ pD⩽0(X).
which makes pD⩽0(X) a reflective subcategory of Dc(X). For each F ∈
Dc(X), it follows from the construction that

cofib(pτ⩽0(F )→F ) ∈D⩾1(X),
so we are done. �

Definition 1.15. Let X be a derived Artin stack. The t-structure on the
stable ∞-category D(X) defined in Proposition 1.14 is called the perverse
t-structure. A perverse sheaf is a constructible complex that belongs to the
heart of this t-structure, which we denote Perv(X).

The following statements follow easily from the case of schemes:

Proposition 1.16. Let X be a derived Artin stack.

(i) The Verdier duality functor D∶Dc(X)op →Dc(X) is perverse t-exact.

(ii) If f ∶X → Y is smooth of relative dimension d, then f∗[d] ≃ f ![−d] is
perverse t-exact.

(iii) If f ∶X → Y is proper representable with fibres of dimension ⩽ d, then
f! ≃ f∗ is of perverse amplitude [−d, d].

1.4. Monodromic complexes. Let X be a derived Artin stack with an
action of Gm.

Definition 1.17. We say that F ∈D(X) is monodromic6 if for every point
x ∈ X, the complex act∗x(F) is locally constant, where actx denotes the
restricted action map

actx∶Gm × {x}→Gm ×X actÐ→X.

We let Dmon(X) ⊆ D(X) denote the full subcategory consisting of mon-
odromic complexes.

The following is well-known in the case of a separated morphism of schemes;
see [DG, Thm. C.5.3] for an argument that works in this generality.

Proposition 1.18 (Contraction lemma). Let p∶X → S be a morphism of
derived Artin stacks and s∶S → X a section. Suppose there exists an A1-
homotopy h∶A1 ×X →X between idX and s ○ p, so that the two composites

X
i0Ð→X ×A1 hÐ→X,

X
i1Ð→X ×A1 hÐ→X

6Arguing as in [KS, Proposition 3.7.2], one can show that this is equivalent to the
existence of an isomorphism ãct

∗

(F) ≃ p̃r∗2(F), where G̃m →Gm is the universal cover and
ãct, p̃r2∶ G̃m×X →X denote the action and the projection maps, respectively. This requires
the extension of D(−) to complex-analytic stacks, which we avoid here for simplicity.
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are identified with idX and s ○ p, respectively. Then the canonical morphisms

p∗
unitÐÐ→ p∗s∗s

∗ ≃ s∗,

s! ≃ p!s!s
! counitÐÐÐ→ p!

are invertible on monodromic complexes.

1.5. Nearby and vanishing cycles. We let π∶ G̃m →A1 denote the natural
projection map from the universal cover of Gm and set7

Kψ ∶= π!QG̃m
, Kφ ∶= cofib(π!QG̃m

counitÐÐÐ→QA1) in D(A1).

Given a derived Artin stack X and a morphism t∶X →A1, we let i0∶X0 ↪X
denote the inclusion of the zero locus:

X0 X

{0} A1.

i0

t

The functors of nearby and vanishing cycles along t are defined respectively
by

ψt ∶= i∗0 ○RHom(t∗Kψ,−)∶D(X)→D(X0),
φt ∶= i∗0 ○RHom(t∗Kφ,−)∶D(X)→D(X0).

Note also that there is a canonical isomorphism ψt ○ i0,∗ ≃ 0; equivalently, the
canonical morphisms ψt ○ j0,!j∗0 → ψt and ψt ○ j0,! → ψt ○ j0,∗ are invertible,
where j0 is the inclusion of the complement of X0.

Theorem 1.19. Let X be a derived Artin stack and t∶X →A1 a morphism.
We have:

(NC1) Monodromicity: Suppose X admits a Gm-action for which t is
equivariant (with respect to the scaling action on A1), and regard
X0 with the induced action. Then the functors ψt and φt preserve
monodromic complexes.

(NC2) Triangles: There are canonical exact triangles

φt → i∗0 → ψt, (1.20)

ψt → i!0 → φt. (1.21)

(NC3) Proper base change: Given a morphism f ∶X ′ →X, form the carte-
sian square

X ′
0 X ′

X0 X

f0 f

7This is an abuse of notation: π is just the universal cover C̃∗ → C∗
↪ C, as a

morphism of topological spaces, and π! is the compactly supported direct image functor
D(C̃∗)→D(C).
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and let t′ = t ○ f ∶X ′ →A1. Then there are canonical natural trans-
formations

Exψ,∗ ∶ ψtf∗ → f0,∗ψt′ , (1.22)
Ex!,ψ ∶ f0,!ψt′ → ψtf!, (1.23)

which are invertible if f is proper representable. Similarly for φt.

(NC4) Smooth base change: With notation as in (NC3), there are canonical
natural transformations

Ex∗,ψ ∶ f∗0 ψt → ψt′f
∗, (1.24)

Exψ,! ∶ ψt′f ! → f !
0ψt, (1.25)

which are invertible if f is smooth. Similarly for φt.

(NC5) Constructibility: The functors ψt and φt preserve constructible com-
plexes.

(NC6) Perversity: The functors ψt[−1] and φt are perverse t-exact; in
particular, they preserve perverse sheaves.

(NC7) Duality: For every constructible complex F ∈D(X), there are canon-
ical natural isomorphisms

φt(DF)→ Dφt(F), (1.26)
ψt(DF)[−1]→ Dψt(F)[−1]. (1.27)

(NC8) Normalization: Let u∶X ×A1 → A1 denote the projection. Then
there are canonical isomorphisms

ψu ○ p∗ ≃ ψu ○ j! ○ q∗ ≃ id (1.28)

where j∶X ×Gm ↪X ×A1 is the inclusion and p∶X ×A1 →X and
q∶X ×Gm →X are the projections.

1.5.1. Monodromicity (NC1). The proof is the same as in the case of schemes,
see [Ver, Prop. 7.1].

1.5.2. Triangles (NC2). As in [KS, §8.6], there are canonical exact triangles

∆1∶QA1 →Kφ →Kψ[1],
∆2∶Kψ[1]→Kφ →Q0.

The exact triangles (1.20) and (1.21) are obtained by applying i∗0RHom(∆1,−)
and i∗0RHom(∆2,−) respectively.

1.5.3. Proper base change (NC3) and smooth base change (NC4). They are
direct consequences of exchange properties between six-operations.

1.5.4. Constructibility (NC5). Since constructibility is local for smooth covers,
this follows from the case of schemes.

1.5.5. Perversity (NC6). The perverse t-structure is local for smooth covers,
this follows from the case of schemes.

1.5.6. Duality (NC7). The proof is the same as in the case of schemes: see
[Mas].
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1.5.7. Normalization (NC8). The first isomorphism in (1.28) comes from
ψt ○ j!j∗ ≃ ψt. Let i0∶X ↪X ×A1 denote the zero section. By the contraction
lemma (Proposition 1.18) we have

ψf ○ p∗(F) ≃ i∗0Hom(u∗Kψ, p
∗F)

≃ p∗Hom(u∗Kψ, p
∗F)

≃ Hom(p!u
∗Kψ[2],F),

where the second isomorphism is the standard identity p∗Hom(−, p!(−)) ≃
Hom(p!(−),−), adjoint to the projection formula, combined with p! ≃ p∗[2]
(Poincaré duality). By the base change formula we compute

p!u
∗Kψ[2] ≃ a∗XaA1,!Kψ[2] ≃ a∗XaG̃m,!

(QG̃m
)[2],

where aY ∶Y → pt denotes the projection for any Y . Since G̃m is contractible,
we have aG̃m,!

(Q) ≃ aG̃m,!
a!
G̃m

(Q)[−2] ≃Q[−2] by homotopy invariance. We
get the canonical isomorphism ψf ○ p∗(F) ≃ Hom(QX ,F) ≃ F as claimed.

2. The Fourier–Sato transform

2.1. Derived vector bundles. Let X be a derived Artin stack over C.
Given a perfect complex E ∈ Perf(X), we denote by V(E) the stack of
cosections of E, or equivalently sections of E∨. That is, given a derived
scheme T over X, the T -points of V(E) over X are morphisms E∣T → OT in
Perf(T ). This agrees with Grothendieck’s convention for vector bundles.

The derived stack V(E) is Artin, in fact affine if E is connective and
n-Artin if E is (−n)-connective for n > 0. It is also lhfp and quasi-compact
quasi-separated.

Definition 2.1. For a fixed base X, the assignment E↦V(E) determines
a fully faithful contravariant functor from Perf(X) to the ∞-category of
derived stacks over X with Gm-action. The stable ∞-category DVect(X) of
derived vector bundles over X is its essential image.

Example 2.2. Let X be an lhfp derived Artin stack. The n-shifted tangent
and n-shifted cotangent bundles of X are the derived vector bundles

TX[n] ∶=V(LX[−n]), T ∗X[n] ∶=V(L∨X[−n]),
respectively. Similarly, given an lhfp morphism f ∶X → Y , the relative n-
shifted tangent and cotangent bundles are the derived vector bundles

TX/Y [n] ∶=V(LX/Y [−n]), T ∗X/Y [n] ∶=V(L∨X/Y [−n]),
over X. The n-shifted normal and n-shifted conormal bundles are

NX/Y [n] ∶= TX/Y [n + 1] ∶=V(LX/Y [−n − 1]),
N∗
X/Y [n] ∶= T ∗X/Y [n − 1] ∶=V(L∨X/Y [−n + 1]),

respectively.

To avoid confusion with the dual convention using the assignment E ↦
V(E∨), we will work with derived vector bundles directly and avoid referring
to the corresponding perfect complexes.
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Definition 2.3. We say E = V(E) ∈ DVect(X) is of amplitude ⩽ n, resp.
⩾ n, if E is of Tor-amplitude ⩾ −n, resp. ⩽ −n (using homological grading).
Similarly, E is of amplitude [a, b], for integers a ⩽ b, if E is of Tor-amplitude
[−b,−a].
Notation 2.4. Given a derived vector bundle E over a derived Artin stack
X, we denote by πE ∶E →X the projection and 0E ∶X → E the zero section.
The morphism πE is affine if and only if it is representable, if and only if 0E
is a closed immersion, if and only if E is of amplitude ⩽ 0. The morphism
πE is smooth if and only if E is of amplitude ⩾ 0, if and only if πE∨ is affine.

Corollary 2.5. For every derived Artin stack X and every derived vector
bundle E over X, the natural transformations

πE,∗
unitÐÐ→ πE,∗0E,∗0∗E ≃ 0∗E

0!
E ≃ πE,!0E,!0!

E
counitÐÐÐ→ πE,!

are invertible on monodromic complexes. In particular, the functors π∗E and
0E,! are fully faithful on monodromic complexes.

Proof. The main assertion is a special case of the contraction lemma (Propo-
sition 1.18). For the second part, note that for every monodromic F ∈D(X)
the composite

F
unitπEÐÐÐÐ→ πE,∗π

∗
E(F)

unit0EÐÐÐ→ 0∗Eπ
∗
E(F) ≃ F

is identity and the second arrow is invertible by the first claim. This shows
that unit∶ id→ πE,∗π

∗
E is invertible on monodromic complexes. Similarly, the

unit id→ 0!
E0E,! is identified on monodromic complexes with the tautological

isomorphism id ≃ πE,!0E,!. �

2.2. The Fourier–Sato transform. Let E be a derived vector bundle over
an lhfp derived Artin stack X. We let πE ∶E →X denote the projection and

evE ∶E ×X E∨ →A1, pr1∶E ×X E∨ → E, pr2∶E ×X E∨ → E∨

the pairing function, and respective projections. We consider the closed
half-space A1

⩽0 ∶= {z ∈A1 ∣ R(z) ⩽ 0} and set Pφ ∶= ev∗EQA1
⩽0
.

Definition 2.6. The Fourier–Sato transform is the functor FSE ∶Dmon(E)→
D(E∨) defined by the formula

FSE(F) = pr2,!(pr∗1(F)⊗Pφ)
for a monodromic complex F ∈Dmon(E).
Theorem 2.7. Let X be a derived Artin stack and E ∈ DVect(X). We have:

(FS1) Monodromicity: For every monodromic complex F ∈Dmon(E), the
complex FSE(F) is monodromic. In particular, FSE determines a
functor FSE ∶Dmon(E)→Dmon(E∨).

(FS2) Involutivity: For every monodromic complex F ∈ D(E), there is a
canonical natural isomorphism

involE ∶FSE∨FSE(F) ≃ a∗E(F)[−2r]
where r = rk(E) and aE ∶E → E is the antipodal map.
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(FS3) Base change: For every morphism f ∶X ′ → X, FSE commutes with
the four operations f∗, f∗, f!, and f !. More precisely, there are
canonical isomorphisms

f∗E∨ ○ FSE ≃ FSE′ ○ f∗E , (2.8)
fE∨,∗ ○ FSE′ ≃ FSE ○ fE,∗, (2.9)
fE∨,! ○ FSE′ ≃ FSE ○ fE,! (2.10)

f !
E∨ ○ FSE ≃ FSE′ ○ f !

E (2.11)

where fE ∶E′ → E and fE∨ ∶E′∨ → E∨ are the base changes of f .

(FS4) Functoriality: For every morphism of derived vector bundles φ∶E′ →
E over X, there are canonical isomorphisms

Ex∗,FS ∶ φ∨,∗ ○ FSE′ → FSE ○ φ! (2.12)

ExFS,! ∶ FSE′ ○ φ! → φ∨∗ ○ FSE (2.13)

Ex!,FS ∶ φ∨,! ○ FSE′[2r′]→ FSE ○ φ∗[2r] (2.14)

ExFS,∗ ∶ FSE′ ○ φ∗[2r′]→ φ∨! ○ FSE[2r] (2.15)

where r = rk(E) and r′ = rk(E′).
(FS5) Constructibility: The functor FSE ∶Dmon(E) → Dmon(E∨) is con-

structible.

(FS6) Perversity: The functor FSE[r]∶Dmon(E)→Dmon(E∨) is perverse
t-exact where r = rk(E); in particular, it preserves perverse sheaves.

(FS7) Duality: For every derived vector bundle E over X and every mon-
odromic constructible complex F ∈D(E), there is a canonical natural
isomorphism

FSE(DF)→ D(FSE(F))[−2r]
where r = rk(E).

Remark 2.16. See also [Kha4] for a variant of the derived Fourier–Sato
transform, which generalizes Laumon’s homogeneous Fourier transform.

2.3. Proof of Theorem 2.7. The proofs of all claims except involutivity
(FS2) are either standard, or straightforward consequences of involutivity.
We will only prove (FS2) here and defer the remaining proofs to [KK].

2.3.1. Additive vs. multiplicative. Our goal is to compute the composite
FSE∨ ○ FSE ∶Dmon(E) → Dmon(E). We first note that FSE∨ ○ FSE can be
described as an integral transform with respect to a “multiplicative” kernel
P′′mult ∈D(E ×X E∨ ×X E). Indeed, define

P′′mult ∶= Ev∗(QA1
⩽0×A1

⩽0
)

where
Ev∶E ×X E∨ ×X E →A1 ×A1

is the morphism Ev = (evE ○ pr12, evE∨ ○ pr23). Then we have

P′′mult ≃ pr∗12Pφ ⊗ pr∗23P
′
φ
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where P′φ ∶= ev∗E∨QA1⩽0 and prij denotes the projection from E ×X ×E∨ ×X E
to the i-th and j-th components. By the proper base change theorem,
the integral transform with respect to the right-hand side is precisely the
composite FSE∨ ○ FSE . That is,

FSE∨ ○ FSE(F) ≃ FS′′mult(F) ∶= pr3,!(pr∗1F ⊗P′′mult).

Now considering instead the subspace A2
∆−⩽0 ∶= {(z,w) ∈A2 ∣ R(z+w) ⩽ 0}

we have also the “additive” kernel

P′′add ∶= Ev∗(QA2
∆−⩽0

).

We denote by FS′′add∶Dmon(E)→Dmon(E) the associated integral transform

F ↦ pr3,!(pr∗1F ⊗P′′add).

We have by restriction a natural morphism of kernels P′′add → P′′mult, whence
a natural transformation of integral transforms

σ∶FS′′add → FS′′mult ≃ FSE∨ ○ FSE .

Lemma 2.17. The natural transformation σ is invertible.

Proof. Fix a monodromic complex F ∈ Dmon(E) and a point v ∈ E. It is
enough to prove the following restriction map is invertible:

RΓc(pr−1
3 (v), (pr∗1F ⊗P′′add)∣pr−1

3 (v))→ RΓc(pr−1
3 (v), (pr∗1F ⊗P′′mult)∣pr−1

3 (v))

By considering the projection to A2 by Ev, it suffices to check invertibility
of the following map:

RΓc(A2,Gv ⊗QA2
∆−⩽0

)→ RΓc(A2,Gv ⊗QA1
⩽0×A1

⩽0
).

where Gv ∶= Ev!(pr∗1F⊗Qpr−1
3 (v)). By further pushing along π = (R,R)∶A2 →

R2, we reduce to checking invertibility of the map

RΓc(R2,GR
v ⊗QR2

∆−⩽0
)→ RΓc(R2,GR

v ⊗QR⩽0×R⩽0)

where we set GR
v ∶= π!Gv and R2

∆−⩽0 ∶= {(a, b) ∈R2 ∣ a+b ⩽ 0}. By construction,
GR
v is R+-equivariant with respect to the R+-action on the first coordinate.

Hence the claim follows from Lemma 2.18 below. �

Lemma 2.18. For any R+-equivariant complex H on R2, the natural map

pr2,!(H ⊗QR2
∆−⩽0

)→ pr2,!(H ⊗QR⩽0×R⩽0)

is invertible.

Proof. It will suffice to show that the map in question is an isomorphism on
stalks at all points a ∈R.

Assume first that a > 0. Then it is enough to prove the vanishing

RΓc(R⩽−a,H∣{a}×R⩽−a) = 0. (2.19)

Since H∣{a}×R<0 is R+-equivariant, there exists an object Ma ∈ D(pt) such
that we have an equivalence H∣{a}×R<0 ≃ ({a} ×R<0 → pt)∗Ma. Therefore
the vanishing (2.19) follows from

RΓc(R⩽−a,QR⩽−a) = 0.
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Assume now that a ⩽ 0. Then it is enough to prove that the following
restriction map is an equivalence

RΓc(R⩽−a,H∣{a}×R⩽−a)→ RΓc(R⩽0,H∣{a}×R⩽0),
which is equivalent to the vanishing

RΓc((0,−a],H∣{a}×(0,−a]) = 0.

Similarly to the case a < 0, this follows from the vanishing

RΓc((0,−a],Q(0,−a]) = 0.

We conclude. �

2.3.2. Fourier–Sato of the constant sheaf. Set L E ∶= (0E)!FSE∨(QE∨).

Lemma 2.20. There exists a natural isomorphism

αE ∶L E ≃QX[−2 rkE].

Proof. When E has a global resolution E● by a complex of vector bundles,
we can construct a natural isomorphism ηE● ∶ (0E)!FSE∨(QE∨) ≃QX[−2 rkE]
by reducing to the case of classical vector bundles; see the proof of [FYZ,
Lemma A.14]. One can show that

αE● ∶= (−1)(
rkE

2
)+(rkE0

2
)+∑i<0 rkEi ⋅ ηE●

does not depend on the choice of the global resolution, using [Kin2, Prop. 2.3];
details will be given in [KK]. In general, we may choose a smooth affine
cover of the base over which E admits a resolution, and glue the above
isomorphisms (the gluing can be reduced to the heart of the t-structure, so
only requires checking a cocycle condition for these isomorphisms). �

Lemma 2.21. The following map is an isomorphism:

(0E)!L
E = (0E)!(0E)!FSE∨(QE∨)→ FSE∨(QE∨).

Proof. The proof is identical to the proof of [FYZ, Lemma A.12] or [Kha4,
Prop. 1.29], so we omit the details here. �

2.3.3. Conclusion of proof of (FS2). By Lemma 2.17 and Lemma 2.20, it is
enough to show the equivalence

FS′′add ≃ a∗E(− ⊗ pr∗EL E). (2.22)

Consider the following cartesian diagram

E ×X E∨ ×X E
ãddE //

p̃r13

��

E ×X E∨

prE
��

E ×E addE // E

where p̃r13 denotes the projection to the first and third components, addE
denotes the addition map, and ãddE ∶= (pr1 + pr3,pr2). Note that we haved
a natural isomorphism

P′′add ≃ ãddE
∗
Pφ.
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Therefore for F ∈Dmon(E), we have a natural isomorphisms

FS′′add(F) ≃ p̃r3,!(p̃r∗1F ⊗ ãddE
∗
Pφ)

≃ pr2,!p̃r13,!(p̃r∗13pr∗1F ⊗ ãddE
∗
Pφ)

≃ pr2,!(pr∗1F ⊗ p̃r13,!ãddE
∗
Pφ)

≃ pr2,!(pr∗1F ⊗ add∗EprE,!Pφ).

Here p̃ri denotes the i-th projection from E ×X E∨ ×X E and pri denotes the
i-th projection from E ×X E. Now we claim an isomorphism

add∗EprE,!Pφ ≃ ∆−
! π

∗
EL E (2.23)

where we set ∆− ∶= (idE ,−idE)∶E → E ×X E and πE ∶E → X denotes the
projection. Assuming this, the isomorphism (2.22) follows from the following
isomorphisms

FS′′add(F) ≃ pr2,!(pr∗1F ⊗ add∗EprE,!Pφ)
≃ pr2,!(pr∗1F ⊗∆−

! pr∗EL E)
≃ pr2,!∆

−
! (F ⊗ pr∗EL E) ≃ a∗E(F ⊗ pr∗EL E).

Now we prove the isomorphism (2.23). Consider the following cartesian
diagram

E
∆−

//

πE

��

E ×X E
addE
��

X
0E // E.

Using the proper base change theorem, the isomorphism (2.23) is reduced to
proving

prE,!Pφ ≃ 0E,!L
E .

which follows from Lemma 2.21 and Lemma 2.20.

2.4. An adjunction identity. The involutivity property (FS2) shows that
the functor a∗EFSE∨[2 rkE] provides a canonical inverse to FSE ; in partic-
ular, there is an adjunction (FSE , a

∗
EFSE∨[2r]). However, the respective

involutivity isomorphisms

involE ∶FSE∨FSE(−) ≃ a∗E(−)[−2 rkE],
involE∨ ∶FSEFSE∨(−) ≃ a∗E∨(−)[−2 rkE]

do not define a unit and counit for this adjunction on the nose, but only up
to a sign. Indeed, we have the following triangle identity:

Proposition 2.24. The following diagram commutes up to the sign (−1)rkE:

a∗E∨FSE[−2 rkE]
FSE(invol−1

E )
//// FSE ○ FSE∨ ○ FSE

involE∨FSE
��

a∗E∨FSE[−2 rkE].
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In particular, the tuple

(FSE , a
∗
EFSE∨[2 rkE], a∗E invol−1

E [2 rkE], (−1)rkEa∗E∨ involE∨)
defines an adjoint equivalence.

Proof. We define a map Ẽv∶E ×E∨ ×E ×E∨ →A3 by

Ẽv(v0,w0, v1,w1)↦ (⟨v0,w0⟩, ⟨v1,w0⟩, ⟨v1,w1⟩).
The functor FSE ○ FSE∨ ○ FSE is the integral transform with respect to the
kernel pr14,!Ẽv

∗
Q⊠3

A1
⩽0
. We claim the existence of an isomorphism

pr14,!Ẽv
∗
Q⊠3

A1
⩽0
≃ (aE × idE∨)∗Pφ ⊗ π∗E×XE∨L E∨

. (2.25)

To prove this, we first note that there exists an isomorphism:

pr14,!Ẽv
∗
Q⊠3

A1
⩽0
≃ pr14,!Ẽv

∗(QA2
∆−⩽0

⊠QA1
⩽0
)

This can be proved in the same manner as Lemma 2.17. Now by arguing as
the proof of (FS2), we obtain an isomorphism in D(E ×X E ×X E∨)

pr134,!Ẽv
∗(QA2

∆−⩽0
⊠QA1

⩽0
) ≃ pr∗12(∆−

! π
∗
EL E)⊗ pr∗23Pφ.

Therefore we obtain the isomorphism (2.25).
We can also construct a natural isomorphism

pr14,!Ẽv
∗
Q⊠3

A1
⩽0
≃ (aE × idE∨)∗Pφ ⊗ π∗E×XE∨L E∨

. (2.26)

by using the isomorphism

pr14,!Ẽv
∗
Q⊠3

A1
⩽0
≃ pr14,!Ẽv

∗(QA1
⩽0
⊠QA2

∆−⩽0
).

By construction, the isomorphism FSE∨(invol−1
E ) corresponds to the iso-

morphism (2.25) and involEFSE corresponds to the isomorphism (2.26).
Therefore it is enough to show that the automorphism of (aE × idE∨)∗Pφ
constructed by (2.25), (2.26) and Lemma 2.20, is multiplication by (−1)rkE .
Let q∶E ×X E∨ →X be the projection. Then we have an isomorphism

q∗Hom((aE × idE∨)∗Pφ, (aE × idE∨)∗Pφ) ≃QX

which can be checked for example by taking a local resolution. In particular,
any endomorphism of the object (aE × idE∨)∗Pφ is scalar multiplication by
some locally constant function. Therefore we can reduce to the case where
X is a point.

We first treat the case when E is a classical vector bundle over the point.
We need to show that the following composite is multiplication by (−1)rkE :

(aE × idE∨)∗Pφ[−2 rkE] ≃ (aE × idE∨)∗Pφ ⊗ π∗E×XE∨L E

≃ pr14,!Ẽv
∗
Q⊠3

A1
⩽0

≃ (aE × idE∨)∗Pφ ⊗ π∗E×XE∨L E∨

≃ (aE × idE∨)∗Pφ[−2 rkE].
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As we have already seen that this map is given by a scalar multiplication, it is
enough to show that the map induced on the stalk at (0, 0) is multiplication
by (−1)rkE . Note that we have an isomorphism

pr14,!Ẽv
∗(Q⊠3

A1
⩽0
)(0,0) ≃ RΓc(Pφ).

where Pφ ∶= {{w, v} ∈ E∨ ×E ∣ ⟨v,w⟩ ⩽ 0}. The inclusion i0∶E∨ × {0} ↪ Pφ
induces the first isomorphism on the stalk and the inclusion i1∶{0} ×E ↪
Pφ induces the latter. We take a trivialization E ≃ Ar and define maps
F ′, F ′′∶E × [0,1]↪ Pφ by

F ′∶ (z1, . . . , zr, t)↦ (z1, . . . , zr,−tz̄1, . . . ,−tz̄r)
F ′′∶ (z1, . . . , zr, t)↦ ((1 − t)z1, . . . , (1 − t)zr,−z̄1, . . . ,−z̄r).

These maps define a proper homotopy between i0 and −ī1. Therefore the
trivializations RΓc(Pφ) ≃ Q[r] defined by i0 and i1 differ by (−1)r where
r = rkE.

The general case can be reduced to the case of a classical vector bundle
since we are working over a point. Note that we need a sign modification as
in the proof of Lemma 2.20. �

2.5. Forgetting supports vs. Gysin. Let φ∶E1 → E2 be a morphism
between derived vector bundles. Assume that its fibre is of amplitude ⩽ 0.
This implies that φ is separated and its dual φ∨∶E∨

2 → E∨
1 is quasi-smooth.

Thus we have the natural transformations

fsuppφ∶φ! → φ∗, gysφ∨ ∶φ∨,∗[−2d]→ φ∨,!,

see (1.7) and (1.8), where d = rk(E∨
1 ) − rk(E∨

2 ) = rk(E1) − rk(E2).
For F1 ∈Dmon(E1) we can consider the following diagram:

FSE2(φ!F1)

(2.12) ≃
��

FSE2
(fsuppφ)

// FSE2(φ∗F1)

(2.14) ≃
��

φ∨,∗FSE∨

1
(F1)

gysφ∨
// φ∨,!FSE∨

1
(F)[2d]

which we expect to commute. We have the following partial results:

Proposition 2.27. If φ is a closed immersion, the above diagram commutes.

Proof. This is established in the `-adic setting in [FYZ, Prop. 6.8]. The same
argument works in our setting. �

Proposition 2.28. Let πE ∶E → X be the projection of a derived vector
bundle of amplitude ⩽ 0. For every F ∈ Dmon(E), the following diagram
commutes:

FSE(πE,!F)

(2.12) ≃
��

FSE(fsuppπ) // FSE(πE,∗F)

(2.14) ≃
��

0∗E∨F
gys0E∨ // 0!

E∨F[2 rkE].

This can be proven using Proposition 2.27. Details will be given in [KK].
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3. Specialization and microlocalization

3.1. Co/normal bundles.

3.1.1. Let f ∶X → Y be an lhfp morphism of derived Artin stacks. The
normal bundle NX/Y ∶= TX/Y [1] is the 1-shifted tangent bundle, and the
conormal bundle N∗

X/Y ∶= T ∗X/Y [−1] is the (−1)-shifted cotangent bundle. We
denote by

τX/Y ∶NX/Y →X, πX/Y ∶N∗
X/Y →X

the projections. We denote both zero sections by 0X/Y ∶X → NX/Y , 0X/Y ∶X →
N∗
X/Y .

3.1.2. Functoriality. Given a commutative square

X ′ Y ′

X Y

f ′

p q

f

where f and f ′ are lhfp, we denote by Nq∶NX′/Y ′ → NX/Y the composite

Nq∶NX′/Y ′

dqÐ→ NX/Y ×
X
X ′ qτÐ→ NX/Y (3.1)

where dq is the canonical morphism of derived vector bundles over X ′ with
fibre NX′/X ×Y Y ′ , and qτ is the base change of p.

On conormals we have the correspondence

N∗
X′/Y ′

dq∨←ÐÐ N∗
X/Y ×

X
X ′ qπÐ→ N∗

X/Y (3.2)

where dq∨ is the canonical morphism of derived vector bundles over X ′ with
cofibre N∗

X′/X ×Y Y ′ , and qπ is the base change of p.

3.1.3. Normal deformation. According to [HKR] there is a Gm-equivariant
deformation diagram:

X X ×A1 X ×Gm

NX/Y DX/Y Y ×Gm

pt A1 Gm

0

0X/Y f̂ f

iD jD

t pr2

0

(3.3)

where the vertical composites are the obvious projections, and each square
is homotopy cartesian. By definition, DX/Y is the derived Weil restriction
of X × {0} → Y × {0} along Y × {0} → Y ×A1, or equivalently the derived
mapping stack

DX/Y = MapY ×A1(Y × {0},X ×A1).
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This is Artin, specifically (n + 1)-Artin if X and Y are n-Artin, by the main
result of [HKR]8. Its T -points for a scheme T over Y are commutative squares

D T

X Y
f

where D ↪ T is a virtual Cartier divisor in the sense of [KR].
Given a commutative square

X ′ Y ′

X Y

f ′

q

f

(3.4)

where f and f ′ are lhfp, we have a Gm-equivariant commutative diagram

NX′/Y ′ DX′/Y ′ Y ′ ×Gm

NX/Y DX/Y Y ×Gm

pt A1 Gm

Nq

i′D

Dq

j′D

q×id

iD jD

t

0

(3.5)

which factorizes the lower rectangle (3.3) for the morphism f ′∶X ′ → Y ′. We
recall the following fact from [HKR]:

Proposition 3.6.

(i) Suppose q and Nq are lhfp of Tor-amplitude ⩽ n. Then Dq∶DX′/Y ′ →
DX/Y has the same property. In particular, if q and Nq are smooth
(resp. quasi-smooth), then so is Dq.

(ii) Suppose q is proper and the square (3.4) is excessive: it is cartesian
on classical truncations and the morphism NX′/Y ′ → NX/Y ×X X ′ is a
closed immersion. Then Dq∶DX′/Y ′ →DX/Y is proper.

3.2. Specialization.

Definition 3.7. Let f ∶X → Y be an lhfp morphism of derived Artin stacks.
The functor of specialization along f ∶X → Y is defined by

spX/Y = ψt ○ jD,! ○ pr∗1 ∶D(Y )→D(NX/Y ),
using the normal deformation (3.3), where pr1∶Y ×Gm → Y is the projection.

Note that we could have taken jD,∗ in the definition, as the canonical
morphism ψt ○ jD,! → ψt ○ jD,∗ is invertible. Note also that spX/Y preserves
constructible objects, since all functors involved in its definition do.

Theorem 3.8. Let f ∶X → Y be an lhfp morphism of derived Artin stacks.
Then we have:

8If X and Y are 1-Artin and Y has affine diagonal, we can alternatively appeal to [HP,
Thm. 5.1.1].
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(SP0) Identity: For f = idX , there is a canonical isomorphism spX/X ≃ id.

(SP1) Monodromicity: For every F ∈ D(Y ), the complex spX/Y (F) is
monodromic. In other words, spX/Y determines a functor D(Y )→
Dmon(NX/Y ).

(SP2) Proper base change: For any commutative square

X ′ Y ′

X Y

f ′

q

f

where f and f ′ are lhfp, there are canonical natural transformations

Exsp,∗∶ spX/Y ○ q∗ → Nq∗ ○ spX′/Y ′ , (3.9)
Ex!,sp∶Nq! ○ spX′/Y ′ → spX/Y ○ q!. (3.10)

If q is proper and the square is excessive (Proposition 3.6), then both
Exsp,∗ and Ex!,sp are invertible.

(SP3) Smooth base change: For any commutative square

X ′ Y ′

X Y

f ′

q

f

where f and f ′ are lhfp, there is a canonical natural transformation

Ex∗,sp∶Nq∗ ○ spX/Y → spX′/Y ′ ○ q∗, (3.11)

Exsp,!∶ spX′/Y ′ ○ q! → Nq! ○ spX/Y . (3.12)

If q and Nq are smooth, then both Ex∗,sp and Exsp,! are invertible.

(SP4) Perversity: The functor spX/Y is perverse t-exact; in particular, it
preserves perverse sheaves.

(SP5) Duality: For every constructible F ∈ Dc(Y ), there is a canonical
isomorphism

spX/Y (DF)→ D(spX/Y (F)).
(SP6) Restriction to zero: Consider the canonical morphisms

Ex∗,sp∶0∗X/Y ○ spX/Y → spX/X ○ f∗ ≃ f∗, (3.13)

Exsp,!∶ f ! ≃ spX/X ○ f ! → 0!
X/Y ○ spX/Y . (3.14)

Then (3.13) is invertible and (3.14) is invertible on constructible
complexes.

Remark 3.15. The derived specialization functor exists in the context of
any topological weave [Kha2] with a formalism of nearby/vanishing cycles.
Proofs of the above properties in that context will appear in forthcoming
work of the first-named author.
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3.2.1. Identity (SP0). For f = idX ∶X →X, the vertical arrows in the upper
half of the diagram (3.3) are invertible. Thus we have

spX/X ∶= ψpr2
○ j! ○ pr∗1 ≃ id

by (NC8), where j∶X ×Gm ↪X ×A1 is the inclusion, and pr1∶X ×Gm →X
and pr2∶X ×A1 →A1 are the projections.

3.2.2. Monodromicity (SP1). Since t∶DX/Y → A1 is Gm-equivariant, this
follows from (NC1).

3.2.3. Proper base change (SP2). We consider the diagram (3.5) and write
t′ = t ○Dq for the canonical Gm-equivariant function on DX′/Y ′ .

The natural transformation Exsp,∗∶ spX/Y ○ q∗ → Nq∗ ○ spX′/Y ′ (3.9) is
induced by Exψ,∗∶ψtDq∗ → Nq∗ψt′ as follows:

ψtjD,∗pr∗1q∗ ≃ ψtjD,∗(q × id)∗pr∗1 ≃ ψtDq∗j′D,∗pr∗1
Exψ,∗ÐÐÐ→ Nq∗ψt′j

′
D,∗pr∗1

Similarly, Ex!,sp∶Nq!○spX′/Y ′ → spX/Y ○q! (3.10) is induced by Ex!,ψ ∶Nq!ψt,! →
ψtDq! as follows:

Nq! ○ ψt′j′D,!pr∗1
Ex!,ψÐÐÐ→ ψtDq!j

′
D,!pr∗1 ≃ ψtjD,!(q × id)!pr∗1 ≃ ψtjD,!pr∗1q!.

For the second claim, the assumptions imply that Dq∶DX′/Y ′ →DX/Y and
Nq∶NX′/Y ′ → NX/Y are proper (Proposition 3.6), so that Exψ,∗ and Ex!,ψ

are both invertible.

3.2.4. Smooth base change (SP3). We consider the diagram (3.5) and write
t′ = t ○Dq for the canonical Gm-equivariant function on DX′/Y ′ .

The natural transformation Ex∗,sp∶Nq∗ ○ spX/Y → spX′/Y ′ ○ q∗ (3.11) is
induced by Ex∗,ψ ∶Nq∗ψt → ψt′Dq

∗ as follows:

Nq∗ψtjD,!pr∗1
Ex∗,ψÐÐÐ→ ψt′Dq

∗jD,!pr∗1 ≃ ψt′j′D,!(q × id)∗pr∗1 ≃ ψt′j′D,!pr∗1q
∗.

Similarly, Exsp,!∶ spX′/Y ′○q! → Nq!○spX/Y (3.12) is induced by Exψ,!∶ψt′Dq! →
Nq!ψt as follows:

ψt′j
′
D,∗pr∗1q

! ≃ ψt′j′D,∗(q × id)!pr∗1 ≃ ψt′Dq!jD,∗pr∗1
Exψ,!ÐÐÐ→ Nq!ψtjD,∗pr∗1 .

The second claim follows from Proposition 3.6 because Ex∗,ψ and Exψ,!

are both invertible when Nq and Dq are smooth.

3.2.5. Perversity (SP4). Since the functor jD,! is right perverse t-exact and
ψt is perverse t-exact by (NC6), we conclude that spX/Y = ψt ○ jD,! is right
perverse t-exact. Similarly, the formula spX/Y ≃ ψt ○ jD,∗ implies the left
t-exactness of spX/Y .
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3.2.6. Duality (SP5). We have the following isomorphisms:

ψt ○ jD,! ○ pr∗1 ○D→ ψt ○ jD,! ○D ○ pr!
1

→ ψt ○D ○ jD,∗ ○ pr!
1

→ D ○ ψt ○ jD,∗ ○ pr!
1[−2]

≃ D ○ ψt ○ jD,∗ ○ pr∗1

≃ D ○ ψt ○ jD,! ○ pr∗1 .

using the canonical isomorphisms ψ ○ D → [1] ○ D ○ ψ[−1] ≃ D ○ ψ[−2],
ψ ○ jD,! ≃ ψ ○ jD,∗, and pr∗1[2]→ pr!

1.

3.2.7. Restriction to zero (SP6). The morphisms in question are the exchange
transformations Ex∗,sp and Exsp,! (see (SP3)) associated with the square

X X

X Y.

f

f

We first consider Ex∗,sp (3.13). Note that the claim is local on X and Y .
Indeed, suppose given a commutative square

U V

X Y

f0

u v

f

(3.16)

where u and v are smooth. The induced map NU/V → NX/Y is the composite

NU/V → u∗NX/Y → NX/Y (3.17)

where the second arrow is a base change of u, hence is smooth. The first arrow
is also smooth, as a torsor under NU/X ×Y V , which is a vector bundle stack
since U →X ×Y V is quasi-smooth (as both source and target are smooth over
X). Thus the smooth base change formula (SP3) implies that the natural
transformation u∗Ex∗,sp∶u∗0∗X/Y spX/Y → u∗f∗ is identified with

Ex∗,spv∗∶0∗U/V spU/V v
∗ → f∗0 v

∗.

Note that it is always possible to choose a square as in (3.16) where f0 is
a closed immersion:

Lemma 3.18. Let f ∶X → Y be an lhfp morphism of derived Artin stacks.
Then there exists a family of commutative squares

Uα Vα

X Y

fα

uα vα

f

with (uα)α and (vα)α jointly surjective families of smooth morphisms and
each fα an lhfp closed immersion of affine derived schemes.
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Proof. Choose a jointly surjective family (V ′
β → Y )β of smooth morphisms

with V ′
β affine. Replacing Y by V ′

β (andX byX ×Y V ′
β) we may assume that Y

is affine. Choose a jointly surjective family (Uα →X)α with Uα affine. Each
Uα → X → Y is lhfp, hence induces a finitely presented morphism of affine
schemes on classical truncations. Choose a surjection π0OY [T1, . . . , Tn]↠
π0OUα . Lifting the images of Ti to points of OUα , we get a closed immersion
Uα ↪ Vα ∶=Anα

Y over Y . �

We are thus reduced to the case where i ∶= f ∶X ↪ Y is a closed immersion.
Using the localization triangle we may assume that F ≃ i∗i∗(F) or F ≃ j!j∗(F)
where j∶X∖Y ↪X. For the first case, note that Ex∗,spi∗∶ 0∗spX/Y i∗ → i∗i∗ is
identified by proper base change (SP2) with the isomorphism 0∗X/Y 0X/Y,∗ → id.

Suppose F ≃ j!j∗(F). Consider the derived blow-up square

E Y ′

X Y

iE

p q

i

(3.19)

defined as in [Hek] (see also [HKR]): the square is excessive in the sense of
Proposition 3.6, iE is a virtual Cartier divisor, q is proper and induces an
isomorphism Y ′∖E → Y ∖X. Up to the latter isomorphism we have j! ≃ q!jE,!
where jE ∶Y ′ ∖E ↪ Y ′, so F is in the essential image of q!. By proper base
change (SP2) we may further replace i by iE and assume i is a virtual Cartier
divisor. Localizing further on Y , we may moreover assume that it is globally
cut out as the derived zero locus of a function s∶Y →A1.

Since Ycl is locally of finite presentation, we may assume Y ≃ Spec(A)
where π0(A) = k[x1, . . . , xn]/(f1, . . . , fm). Let a1, . . . , an ∈ A be points lifting
x1, . . . , xn in π0(A). Together with s ∈ A, these determine a closed immersion
Y ↪An ×A1 such that the square

X Y

An An ×A1

f

x (x,s)
(id,0)

(3.20)

is homotopy cartesian. By proper base change we are thus reduced to the
case of the inclusion (id,0)∶An ↪ An ×A1 for any n ⩾ 0. Since this is a
regular closed immersion between schemes, the derived specialization functor
in this case agrees with the classical one from [Ver], hence the claim now
follows from the property (SP5) proven there.

We have shown that (3.13) is invertible. By Verdier duality (SP5) we
deduce that (3.14) is invertible on constructible objects.

3.3. Microlocalization.

Definition 3.21. Let f ∶X → Y be an lhfp morphism of derived Artin stacks.
The functor of microlocalization along f ∶X → Y is defined by

µX/Y = FSNX/Y ○ spX/Y ∶D(Y )→D(N∗
X/Y ),

i.e., the Fourier-Sato transform of the specialization.
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Theorem 3.22. Let f ∶X → Y be an lhfp morphism of derived Artin stacks.
Then we have:

(M1) Conicity: For every F ∈D(Y ), the complex µX/Y (F) is monodromic.
In other words, µX/Y determines a functor D(Y )→Dmon(N∗

X/Y ).

(M2) Proper base change: For any commutative square

X ′ Y ′

X Y

f ′

q

f

where f and f ′ are lhfp of relative virtual dimension d and d′, respec-
tively, there are canonical natural transformations

Exµ,∗ ∶ µX/Y ○ q∗[−2d] → qπ,∗ ○ dq∨,! ○ µX′/Y ′[−2d′] (3.23)

Ex!,µ ∶ qπ,! ○ dq∨,∗ ○ µX′/Y ′ → µX/Y ○ q! (3.24)

where dq∨∶N∗
X/Y ×X X

′ → N∗
X′/Y ′ and qπ ∶N∗

X/Y ×X X
′ → N∗

X/Y are
as in Subsect. 3.1. If q is proper and the square is excessive (Proposi-
tion 3.6), then Exµ,∗ is invertible.

(M3) Smooth base change: For any commutative square

X ′ Y ′

X Y

f ′

q

f

where f and f ′ are lhfp of relative virtual dimension d and d′, respec-
tively, there are canonical natural transformations

Ex∗,µ∶ dq∨! ○ q∗π ○ µX/Y [−2d] → µX′/Y ′ ○ q∗[−2d′], (3.25)

Exµ,!∶ µX′/Y ′ ○ q! → dq∨∗ ○ q!
π ○ µX/Y . (3.26)

If q and Nq are smooth, then Ex∗,µ and Exµ,! are both invertible.

(M4) Perversity: The functor µX/Y [−d] is perverse t-exact; in particular,
it preserves perverse sheaves. Here d denotes the relative virtual
dimension of f .

(M5) Duality: For every constructible complex F ∈ Dc(Y ), there is a
canonical natural isomorphism

µX/Y (DF)→ D(µX/Y (F))[2d].
(M6) Restriction to zero: Consider the canonical morphisms

Ex∗,µ∶πX/Y,! ○ µX/Y [−2d]→ f∗, (3.27)

Exµ,!∶ f ! → πX/Y,∗ ○ µX/Y . (3.28)

The map (3.27) is invertible and (3.28) is invertible on constructible
complexes. In particular, there is a canonical isomorphism9

0!
X/Y ○ µX/Y [−2d]→ f∗ (3.29)

9by Corollary 2.5
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and a canonical morphism

f ! → 0∗X/Y ○ µX/Y (3.30)

which is invertible on constructible complexes.

3.3.1. Monodromicity (M1). Combine (SP1) and (FS1).

3.3.2. Proper base change (M2). This follows by combining (SP2) with (FS3)
and (FS4).

The natural transformation Ex!,µ∶ qπ,! ○ dq∨,∗ ○ µX′/Y ′ → µX/Y ○ q! (3.24) is
defined, up to the identifications

qπ,! ○ dq∨,∗ ○ FSNX′/Y ′
≃ FSNX/Y ○ qτ,! ○ dq!

≃ FSNX/Y ○Nq!

coming from Ex∗,FS (2.12) and (2.10), as the exchange transformation

Ex!,sp∶FSNX/Y ○Nq! ○ spX′/Y ′ → FSNX/Y ○ spX/Y ○ q!

of (3.10).
Similarly, Exµ,∗∶µX/Y ○ q∗[−2d] → qπ,∗ ○ dq∨,!µX′/Y ′[−2d′] (3.23) is the

exchange transformation

Exsp,∗∶FSNX/Y ○ spX/Y ○ q∗[−2d]→ FSNX/Y ○Nq∗ ○ spX′/Y ′[−2d]

up to the identifications

FSNX/Y ○Nq∗[−2d] ≃ FSNX/Y ○ qτ,∗ ○ dq∗[−2d]
≃ qπ,∗ ○ FSNX/Y ×X X′ ○ dq∗[−2d]
≃ qπ,∗ ○ dq∨,! ○ FSNX′/Y ′

[−2d′].

coming from (2.9) and Ex!,FS (2.14).

3.3.3. Smooth base change (M3). This follows by combining (SP3) with (FS3)
and (FS4).

The natural transformation Ex∗,µ∶dq∨! ○q∗π ○µX/Y [−2d]→ µX′/Y ′ ○q∗[−2d′]
(3.25) is defined, up to the identifications

dq∨! ○ q∗π ○ FSNX/Y [−2d] ≃ dq∨! ○ FSNX/Y ×X X′ ○ q∗τ [−2d]
≃ FSNX/Y ○ dq

∗ ○ q∗τ [−2d′]
≃ FSNX/Y ○Nq

∗[−2d′]

coming from ExFS,∗ (2.15) and (2.8), as the exchange transformation

Ex∗,sp∶FSNX′/Y ′
○Nq∗ ○ spX/Y [−2d′]→ FSNX′/Y ′

○ spX′/Y ′ ○ q∗[−2d′]

of (3.11).
Similarly, Exµ,!∶µX′/Y ′ ○ q! → dq∨∗ ○ q!

π ○ µX/Y (3.26) is the exchange trans-
formation

Exsp,!∶FSNX′/Y ′
○ spX′/Y ′ ○ q! → FSNX′/Y ′

○Nq! ○ spX/Y
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up to the identifications

FSNX′/Y ′
○Nq! ≃ FSNX′/Y ′

○ dq! ○ q!
τ

≃ dq∨∗ ○ FSNX/Y ×X X′ ○ q!
τ

≃ dq∨∗ ○ q!
π ○ FSNX/Y ×X X′

coming from (2.11) and ExFS,! (2.14).

3.3.4. Perversity (M4). Combine (SP4) and (FS6).

3.3.5. Duality (M5). Combine (SP5) and (FS7).

3.3.6. Restriction to zero (M6). The morphisms are induced by Ex∗,µ and
Exµ,! of (M3) with q = f and f ′ = idX . The claim follows by combining (SP6)
and (FS4).

3.4. Virtual fundamental classes via the specialization functor. Let
f ∶X → Y be a quasi-smooth morphism between derived Artin stacks. Re-
call that the Gysin transformation (SO4) gives rise to a relative virtual
fundamental class (1.10)

[f]vir∶QX[2 vdim f]→ f !(QY ),
which recovers the virtual fundamental class [X]vir in the absolute case
Y = pt.

We describe an alternative construction of (1.10) in terms of the special-
ization sheaf spX/Y (QY ) ∈ Dmon(NX/Y ). Consider the canonical natural
transformation

Ex∗!
⊗ ∶0∗X/Y (−)⊗ 0!

X/Y (QY )→ 0!
X/Y (−)

adjoint to the projection formula (SO2). We have a canonical isomorphism

0!
X/YQNX/Y ≃ 0!

X/Y τ
!
X/YQX[2 vdim f] ≃QX[2 vdim f]

by Poincaré duality for τX/Y ∶NX/Y →X. Indeed, NX/Y is of amplitude ⩾ 0,
hence smooth over X, since f is quasi-smooth. The following will be proven
in [KK]:

Theorem 3.31. The following diagram commutes:

0∗X/Y spX/Y (QY )⊗ 0!
X/YQNX/Y

Ex∗!
⊗
//

≃ (3.13)
��

0!
X/Y spX/Y (QY )

≃ (3.14)
��

QX[2 vdim f]
[f]vir

// f !QY .

4. Applications

In this section, we discuss some applications of the results in the previous
sections. Among other things, we prove a conjecture of Joyce [JS, Conj. 1.1] in
the shifted conormal case and use it to construct a 3-dimensional refinement
of the CoHA product.
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4.1. DT perverse sheaves via microlocalization. Given a derived 1-Artin
stack X with a (−1)-shifted symplectic structure [PTVV] and an orientation
in the sense of [BBBJ, Def. 3.6], Joyce and collaborators have constructed
the DT perverse sheaf

φX ∈ Perv(X),
whose study forms the subject of cohomological Donaldson–Thomas theory.
See [BBBJ, Cor. 4.9], as well as [Kin3] for a survey. Informally speaking,
φX is constructed by gluing vanishing cycle complexes defined on Darboux
charts.

We study the DT perverse sheaf in the following situation. For a derived
Artin stack Y , the conormal bundle N∗

Y /pt = T ∗Y [−1] admits a canonical
(−1)-shifted symplectic structure (see [Cal, Thm. 2.2]). Moreover, from the
exact triangle

π∗LY → LN∗

Y /pt
→ LN∗

Y /pt
/Y ≃ π∗TY [1]

where π ∶= πY /pt∶N∗
Y /pt → Y is the projection, we deduce a natural isomor-

phism
π∗ det(LY )⊗2 ≃ det(LN∗

Y /pt
), (4.1)

which gives an orientation for N∗
Y /pt. When Y is quasi-smooth and 1-Artin,

N∗
Y /pt is of amplitude ⩽ 0, hence affine over Y and in particular also 1-Artin.

Thus we have the DT perverse sheaf

φN∗

Y /pt
∈ Perv(N∗

Y /pt).

It admits the following microlocal description:

Theorem 4.2. Let Y be a quasi-smooth derived 1-Artin stack. Then there
exists a natural isomorphism

φN∗

Y /pt
≃ µY /pt(Qpt)[−vdimY ].

Sketch of Proof. Assume first that Y is a quasi-smooth derived scheme with
a global embedding i∶Y ↪ U into a smooth scheme U . Since U is smooth,
the canonical morphism γ2∶N∗

Y /pt → N∗
Y /U is a closed immersion. Then

the smooth base change theorem for the microlocalization (M3) yields an
isomorphism

(γ2)∗µY /pt(Qpt) ≃ µY /U(QU [dimU]).
In [Sch1, Thm. 6.1] it is shown that there exists an isomorphism10

(γ2)∗φN∗

Y /pt
≃ µY /U(QU [dimU − vdimY ]).

Combining these isomorphisms and restricting along γ2 yields the claimed
isomorphism in this case.

For a general quasi-smooth derived Artin stack Y , we may adapt the
arguments of [Kin1, §5] to construct the desired isomorphism of perverse
sheaves by gluing the above isomorphism. We refer to [KK] for the details. �

10In the case of quasi-smooth closed immersions, such as Y ↪ U , the derived microlo-
calization functor was defined independently by K. Schefers in [Sch1, Def. 4.19].
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As a consequence of Theorem 4.2 and the isomorphisms (3.27) and (3.28)
of (M6), we recover the dimensional reduction theorem in cohomological
Donaldson–Thomas theory (see [Kin1, Thm. 4.14]):

Corollary 4.3 (Dimensional reduction). There are canonical isomorphisms

ρ∶π∗(φN∗

Y /pt
) ≃ ωY [−vdimY ],

Dρ∶π!(φN∗

Y /pt
) ≃QY [vdimY ]

in D(Y ).
Remark 4.4. The morphism ρ (resp. Dρ) differs from the one constructed in
[Kin1, Thm. 4.14] by the sign (−1)(

vdimY
2

)+1 (resp. −1). See [Kin2, Prop. 4.5]
and the paragraph after (2.17) in [Kin1].

Combining Theorem 4.2 with Proposition 2.28 and Theorem 3.31, we
obtain the following new construction of the virtual fundamental class (1.10),
as conjectured in [Kin1, Conj. 5.4]:

Corollary 4.5. The following diagram commutes:

π!(φN∗

Y /pt
) //

Dρ≃
��

π∗(φN∗

Y /pt
)

ρ≃
��

QY [vdimY ]
⋅[Y ]vir

// ωY [−vdimY ].

4.2. Quasi-smooth correspondences and 2d CoHAs.

4.2.1. Correspondences. Suppose given a correspondence of derived Artin
stacks

X
f1

~~

f2

  

Y1 Y2

(4.6)

where f1 is quasi-smooth.
Via the Gysin transformation (SO4), such a correspondence gives rise to a

cohomological correspondence (in the sense of [SGA5, Exp. III, §3]):

f∗1 ωY1[2 vdim f1]
gysf1ÐÐÐ→ f !

1ωY1 = ωX = f !
2ωY2 . (4.7)

We call this the Gysin correspondence associated with (4.6).
Any such cohomological correspondence, or rather its right transpose

ωY1[2 vdim f1]→ f1,∗f !
2ωY2 , gives rise on derived global sections to a canonical

morphism

RΓ(Y1, ωY1)[2 vdim f1]→ RΓ(Y1, f1,∗f
!
2ωY2) = RΓ(X,f !

2ωY2).
If f2 is moreover proper representable, there exists a canonical map from the
last term

RΓ(X,f !
2ωY2) = RΓ(Y2, f2,∗f

!
2ωY2) = RΓ(Y2, f2,!f

!
2ωY2)

counitÐÐÐ→ RΓ(Y2, ωY2),
so we get the canonical morphism

RΓ(Y1, ωY1)[2 vdim f1]→ RΓ(Y2, ωY2). (4.8)
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4.2.2. 2d CoHA. We recall how the cohomological Hall algebra of a sur-
face, as constructed by [KV], may be regarded as an instance of the above
constructions.

Let S be a smooth algebraic surface and MS be the derived moduli stack
of compactly supported coherent sheaves on S. For a compactly supported
cohomology class γ ∈ H∗

c(S), we letMS,γ ⊆MS be the open substack consisting
of compactly supported sheaves whose Chern character coincides with γ. It is a
union of connected components ofMS . For cohomology classes γ′, γ′′ ∈ H∗

c(S),
we let M ext

S,γ′,γ′′ denote the moduli stack of short exact sequences of compactly
supported coherent sheaves

0→ E′ → E → E′′ → 0

with ch(E′) = γ′ and ch(E′′) = γ′′.
We may now consider the following correspondence of derived Artin stacks:

M ext
S,γ′,γ′′

(ev′,ev′′)

ww

ev

%%

MS,γ′ ×MS,γ′′ MS,γ′+γ′′ ,

where ev′ sends [0 → E′ → E → E′′ → 0] to E′, and ev, ev′′ are defined
similarly. The morphism ev is proper representable and (ev′, ev′′) is quasi-
smooth (see [KV, Props. 4.2.3, 4.3.2], [PS, Prop. 3.10]).

The construction (4.8) in this case yields, after taking hypercohomology,
the canonical morphism

HBM
∗ (MS,γ′)⊗HBM

∗ (MS,γ′′) ≃ HBM
∗ (MS,γ′ ×MS,γ′′)

→ HBM
∗+2 vdim(ev′,ev′′)(MS,γ′+γ′′).

(4.9)

Unravelling the definitions, we see that this is given by composing the virtual
pull-back (ev′, ev′′)! with the proper push-forward ev∗:

HBM
∗ (MS,γ′ ×MS,γ′′)

(ev′,ev′′)!

ÐÐÐÐÐ→ HBM
∗+2 vdim(ev′,ev′′)(M

ext
S,γ′,γ′′)

(ev)∗ÐÐÐ→ HBM
∗+2 vdim(ev′,ev′′)(MS,γ′+γ′′).

(4.10)

It is shown in [KV, Thm. 4.4.2] that this defines the structure of an an
associative algebra on ⊕γ HBM

∗ (MS,γ).

4.3. Conormal correspondences and 3d CoHAs.

4.3.1. The Joyce conjecture. Let M be an oriented (−1)-shifted symplectic
derived 1-Artin stack and τ ∶L→M an oriented Lagrangian. The following
conjecture was proposed by Joyce [JS, Conj. 1.1]:

Conjecture 4.11. There exists a canonical morphism

ν∶QL[vdimL]→ τ !φM (4.12)

in D(L).
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We call (4.12) the Lagrangian cycle morphism. To make the conjecture
precise, one should require some properties of this morphism. For example,
on a Darboux chart it is supposed to coincide with the construction of [AB,
Prop. 5.20]. We refer to [Kin3, §5] for a survey of the Joyce conjecture and
further expected properties.

For our purposes it is convenient to reformulate Conjecture 4.11 as a
cohomological correspondence, analogously to (4.7).

Conjecture 4.13. Suppose given an oriented Lagrangian correspondence

L
τ1

~~

τ2

  

M1 M2

(4.14)

Then there exists a canonical morphism

ν̂∶ τ∗1 φM1[vdimL]→ τ !
2φM2 (4.15)

in D(L).

We call (4.15) the Lagrangian Gysin correspondence associated with (4.14).
Its existence follows directly from Conjecture 4.11 and the Verdier self-duality
of the perverse sheaf φM1 . Conversely, it is clear that Conjecture 4.13 implies
Conjecture 4.11.

4.3.2. Conormal correspondences. Given a correspondence of derived Artin
stacks

X
f1

~~

f2

  

Y1 Y2,

(4.16)

we consider the conormal correspondence

N∗
X/Y [−1]

f̃1

yy

f̃2

%%

N∗
Y1/pt N∗

Y2/pt,

(4.17)

which is a Lagrangian correspondence by [Cal, Thm. 2.8]. One can moreover
show that it admits a canonical orientation, so this fits into the situation of
Conjecture 4.13. (We omit the construction of the orientation, since for our
purposes here it will not play any role.)

Theorem 4.18. For every correspondence of the form (4.16), there exists a
canonical morphism

f̃∗1 µY1/pt(Qpt)[2 vdim f1]→ f̃ !
2µY2/pt(Qpt). (4.19)

We will prove Theorem 4.18 in (4.3.4) below. Under the identification of
the DT perverse sheaf φN∗

X/pt
with the microlocalization µX/pt(Qpt) (Theo-

rem 4.2), it gives a candidate for the Lagrangian Gysin correspondence of
Conjecture 4.13 associated with the conormal correspondence (4.17).
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Corollary 4.20. For every correspondence of the form (4.16) where Y1, Y2,
and X are quasi-smooth 1-Artin, there exists a canonical morphism

f̃∗1 φN∗

Y1/pt
[2 vdim f1]→ f̃ !

2φN∗

Y2/pt
. (4.21)

4.3.3. 3d CoHA. We now consider the total space of the canonical bundle
X ∶= TotS(ωS). Consider the following correspondence:

M ext
X,γ′,γ′′

(ẽv′,ẽv′′)

ww

ẽv

&&

MX,γ′ ×MX,γ′′ MX,γ′+γ′′ .

(4.22)

It is shown in [BD, Corollary 6.9] that this correspondence is naturally
equipped with a structure of Lagrangian correspondence. We have the
following propopsition:

Proposition 4.23. The Lagrangian correspondence (4.22) is identified with
the conormal Lagrangian correspondence:

N∗
Mext
S,γ′,γ′′

/MS,γ′×MS,γ′′
[−1]

tt ))

N∗
MS,γ′/pt ×N

∗
MS,γ′′/pt N∗

MX,γ′+γ′′/pt.

This statement can be proved using the theory of relative Calabi–Yau
completion and using the work [BCS]. The detail will be given in [KK].

We let φMX,γ
∈ Perv(MX,γ) be the DT perverse sheaf [BBBJ, Corollary 4.9]

which is identified w ith the canonical orientation (4.1) under the isomorphism
MX,γ ≃ N∗

MS,γ/pt. The Lagrangian Gysin correspondence (Corollary 4.20)
gives in this case, in view of Proposition 4.23, a canonical morphism

((ẽv′)∗φMX ,γ′ ⊗ (ẽv′′)∗φMX ,γ′′)[2 vdimM ext
S,γ′,γ′′]→ ev!φMX,γ′+γ′′

. (4.24)

This cohomological correspondence gives rise to the 3d CoHA product for X,
see [Kin3, 5.3.3] and (4.4.2) below.
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4.3.4. Proof of Theorem 4.18. Consider the following commutative diagram:

N∗
X/Y1×Y2

[−1]

γ∨1ww γ∨2 ''

f̃1

��

f̃2

��

N∗
Y1/pt ×Y1 X

f ′1xx

η∨1

''

πXY1

��

N∗
Y2/pt ×Y2 X

f ′2 &&

η∨2

ww

πXY2

��

N∗
Y1/pt

πY1

��

N∗
X/pt

πX

��

N∗
Y2/pt

πY2

��

X
f1

ww

X
f2

''
Y1 X Y2

Note that the upper middle diamond is cartesian. Our goal is to construct a
morphism of the form

(γ∨1 )∗(f̃ ′1)∗µY1/pt(Qpt)[2 vdim f1]→ (γ∨2 )!(f̃ ′2)!µY2/pt(Qpt). (4.25)

We will construct this by a Fourier–Sato transform. Dualizing the diagram
above, we have a commutative diagram:

NX/Y1×Y2
[1]

NY1/pt ×Y1 X

f ′1xx

γ1

77

τXY1

��

f∗2NY2/pt

f ′2 %%

γ2

ff

τXY2

��

NY1/pt

τY1

��

NX/pt

η1

gg
η2

77

τX

��

NY2/pt

τY2

��

X
f1

ww

X
f2

&&
Y1 X Y2

Under the Fourier–Sato transform, and using the isomorphisms (2.8) (2.11),
(2.12) and (2.14), it is enough to construct a morphism

(γ1)!(f ′1)∗spY1/pt(Qpt)→ (γ2)∗(f ′2)!spY2
(Qpt) (4.26)

Note that using the exchange properties of the specialization functor (3.11)
and (3.12), we have a canonical morphism

(η1)∗(f ′1)∗spY1/pt(Qpt)→ spX/pt(Qpt)→ (η2)!(f ′2)!spY2/pt(Qpt).

Its left transpose is a morphism

(η2)!(η1)∗(f ′1)∗spY1/pt(Qpt)→ (f ′2)!spY2/pt(Qpt).
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By the base change formula (SO1) for the middle diamond of the above
diagram, we obtain the canonical map

(γ2)∗(γ1)!(f ′1)∗spY1/pt(Qpt)→ (f ′2)!spY2/pt(Qpt).

By transposing (γ2)∗ to the right, we obtain the desired map (4.26).

4.4. 2d vs. 3d CoHAs of a surface.

4.4.1. Comparison of Gysin correspondences. Given a quasi-smooth corre-
spondence (4.6), we explain the compatibility between the associated Gysin
correspondence (4.7)

f∗1 ωY1[2 vdim f1]→ f !
2ωY2 .

and the cohomological correspondence associated with the conormal corre-
spondence (4.17), i.e., the morphism (4.19)

f̃∗1 µY1/pt(Qpt)[2 vdim f1]→ f̃ !
2µY2/pt(Qpt)

in D(N∗
X/Y [−1]).

Consider the projection π ∶= πN∗

X/Y
[−1]∶N∗

X/Y [−1]→X. We claim there is
a commutative diagram

f∗1 ωY1[2 vdim f1] f !
2ωY2

π∗f̃∗1 µY1/pt(Qpt)[2 vdim f1] π∗f̃ !
2µY2/pt(Qpt)

(4.7)

π∗(4.19)

(4.27)

where the vertical morphisms are to be defined below.
We adopt the notation from the proof of Theorem 4.18. The left-hand

vertical morphism is the composite

f∗1 ωY1[2 vdim f1] ≃ f∗1 (πY1)∗µY1/pt(Qpt)[2 vdim f1]
→ (πXY1

)∗f ′1
∗
µY1/pt(Qpt)[2 vdim f1]

→ (πXY1
)∗(γ∨1 )∗(γ∨1 )∗f ′1

∗
µY1/pt(Qpt)[2 vdim f1]

≃ π∗f̃∗1 µY1/pt(Qpt)[2 vdim f1],

(4.28)

where the first isomorphism is (M6).
The right-hand vertical morphism is the composite

π∗f̃
!
2µY2/pt(Qpt) = (πXY2

)∗(γ∨2 )!(γ∨2 )!(f ′2)!µY2/pt(Qpt)
→ (πXY2

)∗(f ′2)!µY2/pt(Qpt)
≃ f !

2(πN∗

Y2/pt
)∗µY2/pt(Qpt)

≃ f !
2ωY2 .

(4.29)

where we use the fact that γ2 is a closed immersion (since f1 is quasi-smooth).

Theorem 4.30. The diagram (4.27) commutes.

We defer the proof to [KK].
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4.4.2. Comparison of 2d and 3d CoHAs. We assume now that in the cor-
respondence (4.6), Y1, Y2 and X are all quasi-smooth. We set Ỹ1 ∶= N∗

Y1/pt,
Ỹ2 ∶= N∗

Y2/pt and X̃ ∶= N∗
X/Y1×Y2

[−1]. Under the assumptions, one sees that
the morphism f̃2∶N∗

X/Y [−1]→ N∗
Y2/pt is proper.

In this situation the morphism (4.19) takes the form

f̃∗1 φỸ1
[2d − d1 − d2]→ f̃ !

2φỸ2
(4.31)

as in Corollary 4.20, where we set d1 ∶= vdimY1, d2 ∶= vdimY2, d ∶= vdimX.

Corollary 4.32. The following diagram commutes:

H∗ (Ỹ1, φỸ1
) ≃

H∗(Ỹ1,ρ)
//

��

HBM
−∗+d1

(Y1)

f !
1

��

H∗(X̃, f̃∗1 φỸ1
)

(4.31)

��

HBM
−∗−d1+2d(X)

f2,∗

��

H∗−d1−d2+2d(X̃, f̃ !
2φỸ2

)

��

H∗−d1−d2+2d(Ỹ2, φỸ2
) ≃

H∗(Ỹ2,ρ)
// HBM

−∗−d1+2d(Y2)

where the horizontal arrows are the dimensional reduction isomorphisms
(Corollary 4.3).

Proof. This is a direct consequence of the comparison of cohomological
correspondences (Theorem 4.30). �

Now let S be a smooth algebraic surface and adopt again the notation of
(4.2.2) and (4.3.3). In this situation, Corollary 4.32 shows that the morphism
(4.24) gives a 3d refinement of the Kapranov–Vasserot CoHA product (4.9).
More precisely, the following composite

HBM
∗ (MS,γ′)⊗HBM

∗ (MS,γ′′)
≃H−∗+d′(MX,γ′ , φMX,γ′

)⊗H−∗+d′′(MX,γ′′ , φMX,γ′′
)

≃H−∗+d′+d′′(MX,γ′ ×MX,γ′′ , φMX,γ′
⊠ φMX,γ′′

)

Ð→H−∗+d′+d′′(M ext
X,γ′,γ′′ , (ev′)∗φMX,γ′

⊗ (ev′′)∗φMX,γ′′
)

(4.24)ÐÐÐ→H−∗+d′+d′′−2dext(M ext
X,γ′,γ′′ , ev!φMX,γ′+γ′′

)

→H−∗+d′+d′′−2dext(MX,γ′+γ′′ , φMX,γ′+γ′′
)

≃HBM
∗+2 vdim(ev′,ev′′)(MS,γ′+γ′′)

coincides with the map (4.9). Here we set d′ ∶= vdimMS,γ′ , d′′ ∶= vdimMS,γ′′

and dext ∶= vdimM ext
S,γ′,γ′′ .
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4.5. Microlocal virtual pull-back. Let Y be a quasi-smooth derived Artin
stack and Λ ⊆ N∗

Y /pt be a closed conic subset. Following [Sch1, Def. 1.10], we
define

µΛ
Y ∶= 0∗Y i

!
ΛµY /pt(Qpt).

where iΛ∶Λ↪ N∗
Y /pt denotes the inclusion map. We set

H∗
Λ(Y ) ∶= H−∗(Y,µΛ

Y )

and call it the microlocal homology of Y with prescribed singular support in
Λ. This object can be seen as a decategorified version of the singular support
for Ind-coherent sheaves introduced in [AG, Def. 4.1.4]. More precisely, the
periodic cyclic homology HP∗(IndCohΛ(X)) of the category of ind-coherent
sheaves with prescribed singular support in Λ is expected to coincide with
the microlocal homology H∗

Λ(Y ) after 2-periodization. See [Sch2, Thm. 9.1]
for the precise statement and the proof in the case of derived global complete
intersections.

By (M6) we have canonical isomorphisms

µ
N∗

Y /pt

Y ≃ ωY , µYY ≃QY [2 vdimY ].

Therefore the microlocal homology interpolates the Borel–Moore homology
and the cohomology. Note that if there is an inclusion of subsets Λ1 ⊆ Λ2, we
have a natural map

µΛ1
Y → µΛ2

Y .

We will apply Theorem 4.18 to study the functoriality of microlocal homology.
Assume that we are given a morphism of quasi-smooth derived Artin stacks

f ∶Y1 → Y2. We do not assume that f itself is quasi-smooth. Consider the
following correspondence

f∗N∗
Y2/pt

f ′

zz

η∨

$$

N∗
Y2/pt N∗

Y1/pt

as in the proof of Theorem 4.18, which is naturally identified with the
conormal Lagrangian correspondence for

Y1

f

~~

Y2 Y1.

Definition 4.33. Given closed subsets Λ1 ⊆ N∗
Y1

and Λ2 ⊆ N∗
Y2
, we say that

Λ1 and Λ2 are f -admissible if:

(i) There is an inclusion (f ′)−1(Λ2) ⊆ (η∨)−1(Λ1).
(ii) The morphism η∨ restricts to a closed immersion

η∨∣(f ′)−1(Λ2)∶ (f
′)−1(Λ2)→ Λ1.
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These conditions are satisfied when f1 is quasi-smooth and Λ1 = N∗
Y1
. Note

that Theorem 4.18 yields a canonical map

(f ′)∗µY2/pt(Qpt)[2 vdim f1]→ (η∨)!µY1/pt(Qpt).
By the condition (i) of f -admissibility, it induces a map

(f ′∣(f ′)−1(Λ2))
∗(µY2/pt(Qpt)∣!Λ2

)[2 vdim f1]→ (η∨∣(f ′)−1(Λ2))
!(µY1/pt(Qpt)∣!Λ1

).
The condition (ii) of f -admissibility implies that this induces a map on
Borel–Moore homology

(f !)micro
Λ1,Λ2

∶HΛ2
∗ (Y2)→ HΛ1

∗+2 vdim f1
(Y1)

which we call the microlocal virtual pull-back.
By Corollary 4.32, when f is quasi-smooth we have the following identity:

f ! = (f !)micro
N∗

Y1/pt
,N∗

Y2/pt
,

so the microlocal virtual pull-back may be regarded as a generaliztion of the
virtual pull-back to non-quasi-smooth morphisms (satisfying the admissibility
condition).

By a similar argument, say Λ1,Λ2 are f -coadmissible if there is an inclusion
(η∨)−1(Λ1) ⊆ (f ′)−1(Λ2) and f ′ restricts to a proper morphism

f ′(η∨)−1(Λ1)∶ (η
∨)−1(Λ1)→ Λ2.

We can then define the microlocal virtual push-forward

(f∗)micro
Λ1,Λ2

∶HΛ1
∗ (Y1)→ HΛ2

∗ (Y2).
By Corollary 4.32, when f is proper we have the following identity:

f∗ = (f∗)micro
N∗

Y1/pt
,N∗

Y2/pt
.
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