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Abstract. We construct a semi-orthogonal decomposition on the cate-
gory of perfect complexes on the blow-up of a derived Artin stack in a
quasi-smooth centre. This gives a generalization of Thomason’s blow-up
formula in algebraic K-theory to derived stacks. We also provide a new
criterion for descent in Voevodsky’s cdh topology, which we use to give
a direct proof of Cisinski’s theorem that Weibel’s homotopy invariant
K-theory satisfies cdh descent.
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1. Introduction

1.1. Let X be a scheme and i ∶ Z → X a regular closed immersion. This
means that Z is, Zariski-locally on X, the zero-locus of some regular sequence
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of functions f1, . . . , fn ∈ Γ(X,OX). Then the blow-up BlZ/X fits into a square

(1.1)

P(NZ/X) BlZ/X

Z X,

iD

q p

i

where the exceptional divisor is the projective bundle associated to the
conormal sheaf NZ/X, which under the assumptions is locally free of rank n.
A result of Thomason [Tho93b] asserts that after taking algebraic K-theory,
the induced square of spectra

K(X) K(Z)

K(BlZ/X) K(P(NZ/X))

i∗

p∗

is homotopy cartesian. Here K(X) denotes the Bass–Thomason–Trobaugh
algebraic K-theory spectrum of perfect complexes on a scheme X. We may
summarize this property by saying that algebraic K-theory satisfies descent
with respect to blow-ups in regularly immersed centres.

Now suppose that i is more generally a quasi-smooth closed immersion
of derived schemes. This means that Z is, Zariski-locally on X, the derived
zero-locus of some arbitrary sequence of functions f1, . . . , fn ∈ Γ(X,OX).
(When X is a classical scheme and the sequence is regular, this is the same
as the classical zero-locus, and we are in the situation discussed above.) In
the derived setting there is still a conormal sheaf NZ/X on Z, locally free of
rank n, and one may still form the blow-up square (1.1), see [KR18a]. Our
goal in this paper is to generalize Thomason’s result above to this situation.
At the same time we also allow X to be a derived Artin stack, and consider
any additive invariant of stable ∞-categories (see Definition 2.6). Examples
of additive invariants include algebraic K-theory K, connective algebraic
K-theory Kcn, topological Hochschild homology THH, and topological cyclic
homology TC.

Theorem A. Let E be an additive invariant of stable ∞-categories. Then
E satisfies descent by quasi-smooth blow-ups. That is, given a derived Artin
stack X and a quasi-smooth closed immersion i ∶ Z→ X of virtual codimension
n ⩾ 1, form the blow-up square (1.1). Then the induced commutative square

E(X) E(Z)

E(BlZ/X) E(P(NZ/X))

i∗

p∗

is homotopy cartesian.

We deduce Theorem A from an analysis of the categories of perfect
complexes on BlZ/X and on the exceptional divisor P(NZ/X). The relevant
notion is that of a semi-orthogonal decomposition, see Definition 2.2.
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Theorem B. Let X be a derived Artin stack. For any locally free OX-module
E of rank n + 1, n ⩾ 0, consider the projective bundle q ∶ P(E)→ X. Then we
have:

(i) For each 0 ⩽ k ⩽ n, the assignment F ↦ q∗(F)⊗O(−k) defines a fully faithful
functor Perf(X)→ Perf(P(E)), whose essential image we denote A(−k).

(ii) The sequence of full subcategories (A(0), . . . ,A(−n)) forms a semi-orthogonal
decomposition of Perf(P(E)).

Theorem C. Let X be a derived Artin stack. For any quasi-smooth closed
immersion i ∶ Z → X of virtual codimension n ⩾ 1, form the blow-up square
(1.1). Then we have:

(i) The assignment F ↦ p∗(F) defines a fully faithful functor Perf(X) →
Perf(BlZ/X), whose essential image we denote B(0).

(ii) For each 1 ⩽ k ⩽ n − 1, the assignment F ↦ (iD)∗(q∗(F) ⊗O(−k)) defines
a fully faithful functor Perf(Z) → Perf(BlZ/X), whose essential image we
denote B(−k).

(iii) The sequence of full subcategories (B(0), . . . ,B(−n + 1)) forms a semi-
orthogonal decomposition of Perf(BlZ/X).

We immediately deduce the projective bundle and blow-up formulas

E(P(E)) ≃
n

⊕
m=0

E(X), E(BlZ/X) ≃ E(X)⊕
n−1
⊕
k=1

E(Z),

for any additive invariant E, see Corollaries 3.6 and 4.4, from which Theo-
rem A immediately follows (see Subsect. 4.5).

1.2. The results mentioned above admit the following interesting special
cases:

(a) Suppose that X is a smooth projective variety over the field of complex
numbers. This case of Theorem B was proven by Orlov in [Orl92]. He also
proved Theorem C for any smooth subvariety Z↪ X.

(b) More generally suppose that X is a quasi-compact quasi-separated classical
scheme. Then the projective bundle formula (Corollary 3.6) for algebraic
K-theory was proven by Thomason [TT90, Tho93a]. Similarly suppose that
i ∶ Z→ X is a quasi-smooth closed immersion of quasi-compact quasi-separated
classical schemes. Then it is automatically a regular closed immersion, and in
this case Thomason also proved Corollary 4.4 for algebraic K-theory [Tho93b].
In fact, the papers [Tho93a] and [Tho93b] essentially contain under these
assumptions proofs of Theorems B and C, respectively, even if the term
“semi-orthogonal decomposition” is not used explicitly. For THH and TC,
these cases of Corollaries 3.6 and 4.4 were proven by Blumberg and Mandell
[BM12].

(c) More generally still, let X and Z be classical Artin stacks. These cases of
Theorems B and C are proven by by Bergh and Schnürer in [BS17]. However
we note that Corollaries 3.6 and 4.4 were obtained earlier by Krishna and
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Ravi in [KR18b], and their arguments in fact prove Theorems B and C for
classical Artin stacks.

(d) Let X be a noetherian affine classical scheme, and let Z be the derived zero-
locus of some functions f1, . . . , fn ∈ Γ(X,OX). Then the canonical morphism
i ∶ Z → X is a quasi-smooth closed immersion. In this case, Theorem A
for algebraic K-theory was proven by Kerz–Strunk–Tamme [KST18] (where
the blow-up BlZ/X was explicitly modelled as the derived fibred product
X×An Bl{0}/An), as part of their proof of Weibel’s conjecture on negative
K-theory.

1.3. Let KH denote homotopy invariant K-theory. Recall that this is the
A1-localization of the presheaf X↦ K(X). That is, it is obtained by forcing
the property of A1-homotopy invariance: for every quasi-compact quasi-
separated algebraic space X, the map

KH(X)→ KH(X ×A1)
is invertible (see [Wei89, Cis13]). As an application of Theorem A, we give a
new proof of the following theorem of Cisinski [Cis13]:

Theorem D. The presheaf of spectra S ↦ KH(S) satisfies cdh descent on
the site of quasi-compact quasi-separated algebraic spaces.

This was first proven by Haesemeyer [Hae04] for schemes over a field of
characteristic zero, using resolution of singularities. Cisinski’s proof over
general bases (noetherian schemes of finite dimension) relies on Ayoub’s
proper base change theorem in motivic homotopy theory. A different proof
of Theorem D (also in the noetherian setting) was recently given by Kerz–
Strunk–Tamme [KST18, Thm. C], as an application of pro-cdh descent and
their resolution of Weibel’s conjecture on negative K-theory. The proof
we give here is more direct and uses a new criterion for cdh descent (see
Theorem 5.6 for a more precise statement):

Theorem E. Let F be a Nisnevich sheaf of spectra on the category of quasi-
compact quasi-separated algebraic spaces. Then F satisfies cdh descent if and
only if it sends closed squares and quasi-smooth blow-up squares to cartesian
squares.

Theorem E can be compared to a similar criterion due to Haesemeyer,
implicit in [Hae04], which applies to Nisnevich sheaves of spectra on the
category of schemes over a field k of characteristic zero. It asserts that for
such a sheaf, cdh descent is equivalent to descent for finite cdh squares and
regularly immersed blow-up squares. Note that the first condition is stronger
than descent for closed squares, while the second is weaker than descent
for quasi-smooth blow-up squares: regularly immersed blow-up squares are
precisely those quasi-smooth blow-up squares where all schemes appearing
are underived. For invariants of stable ∞-categories, a similar cdh descent
criterion was noticed independently by Land and Tamme [LT18, Thm. A.2].

Theorem D was extended to certain nice Artin stacks recently by Hoyois
and Hoyois–Krishna [Hoy16, HK17]. Our cdh descent criterion also applies
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in that setting (Remark 5.11(iii)) and gives another potential approach to
such results.

1.4. The organization of this paper is as follows. We begin in Sect. 2 with
some background on derived algebraic geometry and on semi-orthogonal
decompositions of stable ∞-categories.

Sect. 3 is dedicated to the proof of Theorem B. We first show that the semi-
orthogonal decomposition exists on the larger stable ∞-category Qcoh(P(E))
(Theorem 3.3). Then we show that it restricts to Perf(P(E)) (Subsect. 3.3),
and deduce the projective bundle formula (Corollary 3.6) for any additive
invariant.

We follow a similar pattern in Sect. 4 to prove Theorem C. There is a
semi-orthogonal decomposition on Qcoh(BlZ/X) (Theorem 4.3) which then
restricts to Perf(BlZ/X) (Subsect. 4.4). This gives both the blow-up formula
(Corollary 4.4) as well as Theorem A (4.5.2) for additive invariants. As
input we prove a Grothendieck duality statement for virtual Cartier divisors
(Proposition 4.2) that should be of independent interest.

Sect. 5 contains our results on cdh descent and KH. We first give the
general cdh descent criterion (Theorem 5.6). We apply this criterion to KH
to give our proof of Theorem D (5.4.3).

1.5. I would like to thank Marc Hoyois, Charanya Ravi, and David Rydh
for helpful discussions and comments on previous revisions. I am especially
grateful to David Rydh for pointing out the relevance of the resolution
property in Sect. 5.

2. Preliminaries

Throughout the paper we work with the language of ∞-categories as in
[HTT, HA].

2.1. Derived algebraic geometry. This paper is set in the world of derived
algebraic geometry, as in [TV08, SAG, GR17].

2.1.1. Let SCRing denote the ∞-category of simplicial commutative rings.
A derived stack is an étale sheaf of spaces X ∶ SCRing → Spc. If X is
corepresentable by a simplicial commutative ring A, we write X = Spec(A)
and call X an affine derived scheme. A derived scheme is a derived stack X
that admits a Zariski atlas by affine derived schemes, i.e., a jointly surjective
family (Ui → X)i of Zariski open immersions with each Ui an affine derived
scheme. Allowing Nisnevich, étale or smooth atlases, respectively, gives rise
to the notions of derived algebraic space1, derived Deligne–Mumford stack,
and derived Artin stack. The precise definition is slightly more involved,
see e.g. [GR17, Vol. I, Sect. 4.1].

1That this agrees with the classical notion of algebraic space (at least under quasi-
compactness and quasi-separatedness hypotheses) follows from [RG71, Prop. 5.7.6]. That
it agrees with Lurie’s definition follows from [SAG, Ex. 3.7.1.5].
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Any derived stack X admits an underlying classical stack which we denote
Xcl. If X is a derived scheme, algebraic space, Deligne–Mumford or Artin
stack, then Xcl is a classical such. For example, Spec(A)cl = Spec(π0(A)) for
a simplicial commutative ring A.

2.1.2. Let X be a derived scheme and let f1, . . . , fn ∈ Γ(X,OX) be functions
classifying a morphism f ∶ X→An to affine space. The derived zero-locus of
these functions is given by the derived fibred product

(2.1)

Z X

{0} An.

f

If X is classical, then Z is classical if and only if the sequence (f1, . . . , fn)
is regular in the sense of [SGA 6], in which case Z is regularly immersed.
A closed immersion of derived schemes i ∶ Z→ X is called quasi-smooth (of
virtual codimension n) if it is cut out Zariski-locally as the derived zero-locus
of n functions on X. Equivalently, this means that i is of finite presentation
and its shifted cotangent complex NZ/X ∶= LZ/X[−1] is locally free (of rank
n). A closed immersion of derived Artin stacks is quasi-smooth if it satisfies
this condition smooth-locally.

A morphism of derived schemes f ∶ Y → X is quasi-smooth if it can be
factored, Zariski-locally on Y, through a quasi-smooth closed immersion
i ∶ Y → X′ and a smooth morphism X′ → X. A morphism of derived Artin
stacks is quasi-smooth if it satisfies this condition smooth-locally on Y. We
refer to [KR18a] for more details on quasi-smoothness.

2.1.3. Important for us is the following construction from [KR18a]. Given
any quasi-smooth closed immersion i ∶ Z→ X of derived Artin stacks, there
is an associated quasi-smooth blow-up square:

(2.2)

D BlZ/X

Z X.

iD

q p

i

Here BlZ/X is the blow-up of X in Z, which is a quasi-smooth proper derived
Artin stack over X, and D = P(NZ/X) is the projectivized normal bundle,
which is a smooth proper derived Artin stack over Z. This square is universal
with the following properties: (a) the morphism iD is a quasi-smooth closed
immersion of virtual codimension 1, i.e., a virtual effective Cartier divisor;
(b) the underlying square of classical Artin stacks is cartesian; and (c) the
canonical map q∗NZ/X → ND/BlZ/X is surjective on π0. When X is a derived

scheme (resp. derived algebraic space, derived Deligne–Mumford stack), then
so is BlZ/X.
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2.1.4. Given a derived stack X, the stable ∞-category of quasi-coherent
sheaves Qcoh(X) is the limit

Qcoh(X) = lim←Ð
Spec(A)→X

Qcoh(Spec(A))

taken over all morphisms Spec(A)→ X with A ∈ SCRing. Here Qcoh(Spec(A))
is the stable ∞-category ModA of A-modules2 in the sense of Lurie. In-
formally speaking, a quasi-coherent sheaf F on X is thus a collection of
quasi-coherent sheaves x∗(F) ∈ Qcoh(Spec(A)), for every simplicial commu-
tative ring A and every A-point x ∶ Spec(A)→ X, together with a homotopy
coherent system of compatibilities.

The full subcategory Perf(X) ⊂ Qcoh(X) is similarly the limit

Perf(X) = lim←Ð
Spec(A)→X

Perf(Spec(A)),

where Perf(Spec(A)) is the stable ∞-category Modperf
A of perfect A-modules.

In other words, F ∈ Qcoh(X) belongs to Perf(X) if and only if x∗(F)
is perfect for every simplicial commutative ring A and every morphism
x ∶ Spec(A)→ X.

2.1.5. There is an inverse image functor f∗ ∶ Qcoh(X)→ Qcoh(Y) for any
morphism of derived stacks f ∶ Y → X. It preserves perfect complexes and
induces a functor f∗ ∶ Perf(X) → Perf(Y). Regarded as presheaves of ∞-
categories, the assignments X↦ Qcoh(X) and X↦ Perf(X) satisfy descent
for the fpqc topology ([SAG, Cor. D.6.3.3], [GR17, Thm. 1.3.4]). This means
in particular that given any fpqc covering family (fα ∶ Xα → X)α, the family
of inverse image functors f∗α ∶ Qcoh(X)→ Qcoh(Xα) is jointly conservative.

If f ∶ Y → X is quasi-compact and schematic, in the sense that its fibre over
any affine derived scheme is a derived scheme, then there is a direct image
functor f∗, right adjoint to f∗, which commutes with colimits and satisfies
a base change formula against inverse images ([SAG, Prop. 2.5.4.5], [GR17,
Vol. 1, Chap. 3, Prop. 2.2.2]). If f is proper, locally of finite presentation,
and of finite tor-amplitude, then f∗ also preserves perfect complexes [SAG,
Thm. 6.1.3.2].

2.2. Semi-orthogonal decompositions. The following definitions were
originally formulated by [BK89] in the language of triangulated categories
and are standard.

Definition 2.1. Let C be a stable ∞-category and D a stable full subcat-
egory. An object x ∈ C is left orthogonal, resp. right orthogonal, to D if
the mapping space MapsC(x, d), resp. MapsC(d, x), is contractible for all
objects d ∈ D. We let ⊥D ⊆ C and D⊥ ⊆ C denote the full subcategories of
left orthogonal and right orthogonal objects, respectively.

2Note that if A is discrete (an ordinary commutative ring), then this is not the abelian
category of discrete A-modules, but rather the derived ∞-category of this abelian category
as in [HA, Chap. 1].
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Definition 2.2. Let C be a stable ∞-category and let C(0), . . . ,C(−n) be
full stable subcategories. Suppose that the following conditions hold:

(i) For all integers i > j, there is an inclusion C(i) ⊆ ⊥C(j).
(ii) The ∞-category C is generated by the subcategories C(0), . . . ,C(−n), under

finite limits and finite colimits.

Then we say that the sequence (C(0), . . . ,C(−n)) forms a semi-orthogonal
decomposition of C.

Semi-orthogonal decompositions of length 2 come from split short exact
sequences of stable ∞-categories, as in [BGT13].

Definition 2.3.

(i) A short exact sequence of small stable ∞-categories is a diagram

C′ iÐ→C
pÐ→C′′,

where i and p are exact, the composite p ○ i is null-homotopic, i is fully
faithful, and p induces an equivalence (C/C′)idem ≃ (C′′)idem (where (−)idem
denotes idempotent completion).

(ii) A short exact sequence of small stable ∞-categories

C′ iÐ→C
pÐ→C′′

is split if there exist functors q ∶ C → C′ and j ∶ C′′ → C, right adjoint to i
and p, respectively, such that the unit id → q ○ i and co-unit p ○ j → id are
invertible.

Remark 2.4. Let C be a small stable ∞-category, and let (C(0),C(−1))
be a semi-orthogonal decomposition. Then for any object x ∈ C, there exists
an exact triangle

x(0)→ x→ x(−1),
where x(0) ∈ C(0) and x(−1) ∈ C(−1). To see this, simply observe that
the full subcategory spanned by objects x for which such a triangle exists,
is closed under finite limits and colimits, and contains C(0) and C(−1).
Moreover, the assignments x↦ x(0) and x↦ x(−1) determine well-defined
functors q ∶ C→C(0) and p ∶ C→C(−1), respectively, which are right and
left adjoint, respectively, to the inclusions (see e.g. [SAG, Rem. 7.2.0.2]).
It follows from this that any semi-orthogonal decomposition (C(0),C(−1))
induces a split short exact sequence

C(0)→C
pÐ→C(−1).

Lemma 2.5. Let C be a stable ∞-category, and let (C(0), . . . ,C(−n)) be a
sequence of full stable subcategories forming a semi-orthogonal decomposition
of C. For each 0 ⩽ m ⩽ n, let C⩽−m ⊆ C denote the full stable subcategory
generated by objects in the union C(−m) ∪⋯ ∪C(−n), and let C⩽−n−1 ⊆ C
denote the full subcategory spanned by the zero object. Then there are split
short exact sequences

C(−m)↪C⩽−m →C⩽−m−1
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for each 0 ⩽m ⩽ n.

Proof. It follows from the definitions that for each 0 ⩽m ⩽ n, the sequence
(C(−m),C⩽−m−1) forms a semi-orthogonal decomposition of C⩽−m. There-
fore the claim follows from Remark 2.4. �

2.3. Additive and localizing invariants. The following definition is from
[BGT13], except that we do not require commutativity with filtered colimits.

Definition 2.6. Let A be a stable presentable ∞-category. Let E be an
A-valued functor from the ∞-category of small stable ∞-categories and exact
functors.

(i) We say that E is an additive invariant if for any split short exact sequence

C′ iÐ→C
pÐ→C′′,

the induced map

E(C′)⊕E(C′′) (i,j)ÐÐ→ E(C)
is invertible, where j is a right adjoint to p.

(ii) We say that E is a localizing invariant if for any short exact sequence

C′ iÐ→C
pÐ→C′′,

the induced diagram

E(C′)→ E(C)→ E(C′′)
is an exact triangle.

Remark 2.7. Any localizing invariant is also additive.

Lemma 2.8. Let C be a stable ∞-category, and let (C(0), . . . ,C(−n)) be a
sequence of full stable subcategories forming a semi-orthogonal decomposition
of C. Then for any additive invariant E there is a canonical isomorphism

E(C) ≃
n

⊕
m=0

E(C(−m)).

Proof. Follows immediately from Lemma 2.5. �

3. The projective bundle formula

3.1. Projective bundles. Let X be a derived stack and E a locally free
OX-module of finite rank. Recall that the projective bundle associated to
E is a derived stack P(E) over X equipped with an invertible sheaf O(1)
together with a surjection E → O(1). More precisely, for any derived scheme
S over X, with structural morphism x ∶ S→ X, the space of S-points of P(E)
is the space of pairs (L, u), where L is a locally free OS-module of rank 1,
and u ∶ x∗(E)→ L is surjective on π0. We recall the standard properties of
this construction:

Proposition 3.1.
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(i) If f ∶ X′ → X is a morphism of derived stacks, then there is a canonical
isomorphism P(f∗(E))→ P(E)×X X′ of derived stacks over X′.

(ii) The projection P(E) → X is proper and schematic. In particular, if X is
a derived scheme (resp. derived algebraic space, derived Deligne–Mumford
stack, derived Artin stack), then the same holds for the derived stack P(E).

(iii) The relative cotangent complex LP(E)/X is canonically isomorphic to F ⊗
O(−1), where the locally free sheaf F is the fibre of the canonical map
E → O(1). In particular, the morphism P(E) → X is smooth of relative
dimension equal to rk(E) − 1.

Proposition 3.2 (Serre). Let X be a derived Artin stack, and E a locally free
sheaf of rank n + 1, n ⩾ 0. If q ∶ P(E)→ X denotes the associated projective
bundle, then we have canonical isomorphisms

q∗(O(0)) ≃ OX, q∗(O(−m)) ≃ 0 (1 ⩽m ⩽ n)

in Qcoh(X).

Proof. There is a canonical map OX → q∗(O(0)), the unit of the adjunction
(q∗, q∗), and there is a unique map 0 → q∗(O(−m)) for each m. To show
that these are invertible, we may use fpqc descent and base change to the
case where X is affine and E is free. Then this is Serre’s computation, as
generalized to the derived setting by Lurie [SAG, Thm. 5.4.2.6]. �

3.2. Semi-orthogonal decomposition on Qcoh(P(E)). In this subsec-
tion we will show that the stable ∞-category Qcoh(P(E)) admits a canonical
semi-orthogonal decomposition.

Theorem 3.3. Let X be a derived Artin stack. Let E be a locally free OX-
module of rank n+1, n ⩾ 0, and q ∶ P(E)→ X the associated projective bundle.
Then we have:

(i) For every integer k ∈ Z, the assignment F ↦ q∗(F) ⊗O(k) defines a fully
faithful functor Qcoh(X)→ Qcoh(P(E)).

(ii) For every integer k ∈ Z, let C(k) ⊂ Qcoh(P(E)) denote the essential image
of the functor in (i). Then the subcategories C(k), . . . ,C(k − n) form a
semi-orthogonal decomposition of Qcoh(P(E)).

We will need the following facts (see Lemmas 7.2.2.2 and 5.6.2.2 in [SAG]):

Lemma 3.4. Let R be a simplicial commutative ring and X = Spec(R).
Denote by Pn

R = P(On+1X ) the n-dimensional projective space over R. Then
for every integer m ∈ Z, there is a canonical isomorphism

limÐ→
J⊊[n]

O(m + ∣J∣) ∼Ð→ O(m + n + 1)

in Qcoh(Pn
R), where the colimit is taken over the proper subsets J of the set

[n] = {0,1, . . . , n}, and 0 ⩽ ∣J∣ ⩽ n denotes the cardinality of such a subset.
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Lemma 3.5. Let R be a simplicial commutative ring and X = Spec(R).
Denote by Pn

R = P(On+1X ) the n-dimensional projective space over R. Then
for any connective quasi-coherent sheaf F ∈ Qcoh(Pn

R), there exists a map

⊕
α
O(dα)→ F ,

with dα ∈ Z, which is surjective on π0.

Proof of Theorem 3.3. Since the functors − ⊗O(k) are equivalences, it will
suffice to take k = 0 in both claims. For claim (i) we want to show that the
unit map F → q∗q

∗(F) is invertible for all F ∈ Qcoh(X). By fpqc descent
and base change (2.1.5), we may reduce to the case where X = Spec(R) is
affine and E = On+1S is free. Now both functors q∗ and q∗ are exact and
moreover commute with arbitrary colimits (the latter by 2.1.5 since q is
quasi-compact and schematic), and Qcoh(X) ≃ ModR is generated by OX

under colimits and finite limits. Therefore we may assume F = OX, in which
case the claim holds by Proposition 3.2.

For claim (ii), let us first check the orthogonality condition in Definition 2.2.
Thus take F ,G ∈ Qcoh(X) and consider the mapping space

Maps(q∗(F), q∗(G)⊗O(−m)) ≃ Maps(F , q∗(O(−m))⊗ G)
for 1 ⩽m ⩽ n, where the identification results from the projection formula.
Since q∗(O(−m)) ≃ 0 by Proposition 3.2, this space is contractible.

It now remains to show that every F ∈ Qcoh(P(E)) belongs to the full
subcategory ⟨C(0), . . . ,C(−n)⟩ ⊆ Qcoh(P(E)) generated under finite colimits
and limits by the subcategories C(0), . . . ,C(−n). Set G−1 = F ⊗O(−1) and
define Gm, for m ⩾ 0, so that we have exact triangles

(3.1) q∗q∗(Gm−1 ⊗O(1)) counitÐÐÐ→ Gm−1 ⊗O(1)→ Gm.
For each m ⩾ −1, we claim that Gm is right orthogonal to each of the
subcategories C(0),C(1), . . . ,C(m). For m = −1 the claim is vacuous,
so take m ⩾ 0 and assume by induction that it holds for m − 1. Since
q∗q∗(Gm−1⊗O(1)) is contained in C(0), it follows that Gm is right orthogonal
to C(0). To show that Gm is right orthogonal to C(i), for 1 ⩽ i ⩽m, it will
suffice to show that the left-hand and middle terms of the exact triangle
(3.1) are both right orthogonal to C(i). For the left-hand term this follows
from the inclusion C(0) ⊂ C(i)⊥, demonstrated above. For the middle term
Gm−1 ⊗O(1), the claim follows by the induction hypothesis.

Now we claim that Gn is zero. Using fpqc descent again, we may assume
that X = Spec(R) and E = O⊕n+1X is free (since the sequence (G−1,G0, . . . ,Gn)
is stable under base change). Using Lemma 3.5 we can build a map

ϕ ∶⊕
α
O(mα)[kα]→ Gn

which is surjective on all homotopy groups. From Lemma 3.4 it follows that
Gn is right orthogonal to all C(i), i ∈ Z. Thus ϕ must be null-homotopic, so
Gn ≃ 0 as claimed. Working backwards, we deduce that Gn−1 ∈ C(−1), ..., G0 ∈
⟨C(−1), . . . ,C(−n)⟩, and then finally that F ∈ ⟨C(0),C(−1), . . . ,C(−n)⟩ as
claimed. �
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3.3. Proof of Theorem B. We now deduce Theorem B from Theorem 3.3.
First note that the fully faithful functor F ↦ q∗(F)⊗O(k) of Theorem 3.3(i)
restricts to a fully faithful functor Perf(X)→ Perf(P(E)), since q∗ preserves
perfect complexes. This shows Theorem B(i).

For part (ii) we argue again as in the proof of Theorem 3.3. The point is
that if F ∈ Qcoh(P(E)) is perfect, then so is each Gm ∈ Qcoh(P(E)), since
q∗ and q∗ preserve perfect complexes (the latter because q is smooth and
proper).

3.4. Projective bundle formula. From Theorem B and Lemma 2.8 we
deduce:

Corollary 3.6. Let X be a derived Artin stack, E a locally free OX-module
of rank n+ 1, n ⩾ 0, and q ∶ P(E)→ X the associated projective bundle. Then
for any additive invariant E, there is a canonical isomorphism

E(P(E)) ≃
n

⊕
k=0

E(X)

induced by the functors q∗(−)⊗O(−k) ∶ Perf(X)→ Perf(P(E)).

4. The blow-up formula

4.1. Virtual Cartier divisors. Recall from [KR18a] that a virtual (effec-
tive) Cartier divisor on a derived Artin stack X is a quasi-smooth closed
immersion i ∶ D→ X of virtual codimension 1. For any such i ∶ D→ X, there
is a canonical exact triangle

OX(−D)→ OX → i∗(OD),
where OX(−D) is a locally free sheaf of rank 1, equipped with a canonical
isomorphism i∗(OX(−D)) ≃ ND/X (see 3.2.3 and 3.2.9 in [KR18a]).

Lemma 4.1. Let X be a derived Artin stack and i ∶ D→ X a virtual Cartier
divisor. Then there is a canonical isomorphism

i∗i∗(OD) ≃ OD ⊕ND/X[1].

Proof. Applying i∗ to the exact triangle above (and rotating), we get the
exact triangle

OD → i∗i∗(OD)→ ND/X[1].
The map OD → i∗i∗(OD) is induced by the natural transformation i∗(η) ∶
i∗ → i∗i∗i

∗ (where η is the adjunction unit), so by the triangle identities it
has a retraction given by the co-unit map i∗i∗(OD)→ OD. In other words,
the triangle splits. �

4.2. Grothendieck duality. Let i ∶ Z→ X be a quasi-smooth closed immer-
sion of derived Artin stacks. The functor i∗ admits a right adjoint i!, which
for formal reasons can be computed by the formula

i!(−) ≃ i∗(−)⊗ ωD/X,
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where ωD/X ∶= i!(OX) is called the relative dualizing sheaf. See [SAG,
Cor. 6.4.2.7]. When i is a virtual Cartier divisor, ωD/X can be computed as
follows:

Proposition 4.2 (Grothendieck duality). Let X be a derived Artin stack.
Then for any virtual Cartier divisor i ∶ D→ X, there is a canonical isomor-
phism

N ∨
D/X[−1] ∼Ð→ ωD/X

of perfect complexes on D. In particular, there is a canonical identification
i! ≃ i∗(−)⊗N ∨

D/X[−1].

Proof. Write L ∶= OX(−D) and consider again the exact triangle L→ OX →
i∗(OD). By the projection formula, this can be refined to an exact triangle
of natural transformations id⊗L→ id→ i∗i

∗, or, passing to right adjoints,
an exact triangle i∗i

! → id→ id⊗L∨. In particular we get the exact triangle

(4.1) i∗i
!(OX)→ OX → L∨.

The associated map L∨[−1] → i∗i
!(OX) gives by adjunction a canonical

morphism

N ∨
D/X[−1] ≃ i∗(L∨)[−1]→ i!(OX),

which we claim is invertible. By fpqc descent and the fact that i! commutes
with the operation f∗, for any morphism f [SAG, Prop. 6.4.2.1], we may
assume that X is affine. In this case the functor i∗ is conservative, so it will
suffice to show that the canonical map

i∗(N ∨
D/X)[−1]→ i∗i

!(OX)
is invertible. Considering again the triangle F ⊗L→ F → i∗i

∗(F) above and
taking F = L∨, we get the exact triangle

OX → L∨ → i∗i
∗(L∨) ≃ i∗(N ∨

D/X),
since L is invertible. Comparing with (4.1) yields the claim. �

4.3. Semi-orthogonal decomposition on Qcoh(BlZ/X). In this subsec-
tion we prove:

Theorem 4.3. Let X be a derived Artin stack and i ∶ Z→ X a quasi-smooth
closed immersion of virtual codimension n ⩾ 1. Let X̃ = BlZ/X and consider
the quasi-smooth blow-up square (2.2)

D X̃

Z X

iD

q p

i

Then we have:

(i) The functor p∗ ∶ Qcoh(X)→ Qcoh(X̃) is fully faithful. We denote its essential

image by D(0) ⊂ Qcoh(X̃).

(ii) The functor (iD)∗(q∗(−) ⊗ O(−k)) ∶ Qcoh(Z) → Qcoh(X̃) is fully faithful,

for each 1 ⩽ k ⩽ n − 1. We denote its essential image by D(−k) ⊂ Qcoh(X̃).
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(iii) For each 1 ⩽ k ⩽ n − 1, the full stable subcategory D(−k) ⊂ Qcoh(X̃) is right
orthogonal to each of D(0), . . . ,D(−k + 1).

(iv) The stable ∞-category Qcoh(X̃) is generated by the full subcategories D(0),
D(−1), . . . , D(−n + 1) under finite colimits and finite limits. In partic-
ular, the sequence (D(0),D(−1), . . . ,D(−n + 1)) forms a semi-orthogonal

decomposition of Qcoh(X̃).

4.3.1. Proof of (i). The claim is that for any F ∈ Qcoh(X), the unit map
F → p∗p

∗(F) is invertible. By fpqc descent we may reduce to the case where
X is affine and i fits in a cartesian square of the form (2.1). Since Qcoh(X)
is then generated under colimits and finite limits by OX, and p∗ commutes
with colimits since p is quasi-compact and schematic (2.1.5), we may assume
that F = OX. In other words, it suffices to show that the canonical map
OX → p∗(OX̃) is invertible.

D X̃

Z X

iD

q p

i

Pn−1 Bl{0}/An

{0} An,

p0

i0

Since the left-hand square is the (derived) base change of the right-hand
square along the morphism f ∶ X→An, it follows that the map OX → p∗(OX̃)
is the inverse image of the canonical map OAn → (p0)∗(OBl{0}/An ). Thus we

reduce to the case where i is the immersion {0}→An. This is well-known,
see [SGA 6, Exp. VII].

4.3.2. Proof of (ii). It suffices to show the unit map F → q∗(iD)!(iD)∗q∗(F)
is invertible for all F ∈ Qcoh(Z). As in the previous claim we may assume X
is affine and that F = OZ. Using Proposition 4.2, the canonical identification
ND/X̃ ≃ OD(1), and Lemma 4.1, the unit map is identified with

OZ → q∗((iD)∗(iD)∗(OD)⊗OD(−1))[−1] ≃ q∗(OD(−1))⊕ q∗(OD).
Since q ∶ D → Z is the projection of the projective bundle P(NZ/X), it
follows from Proposition 3.2 that we have identifications q∗(OD(−1)) ≃ 0 and
q∗(OD) ≃ OZ, under which the map in question is the identity.

4.3.3. Proof of (iii). To see that D(−k) is right orthogonal to D(0), observe
that by Theorem 3.3, the mapping space

Maps(p∗(FX), (iD)∗(q∗(FZ)⊗O(−k))) ≃ Maps(q∗i∗(FX), q∗(FZ)⊗O(−k))
is contractible for every FX ∈ Qcoh(X) and FZ ∈ Qcoh(Z).

To see that D(−k) is right orthogonal to D(−k′), for 1 ⩽ k′ < k, consider
the mapping space

Maps((iD)∗(q∗(FZ)⊗O(−k′)), (iD)∗(q∗(F ′Z)⊗O(−k))),
for FZ,F ′Z ∈ Qcoh(Z). Using fpqc descent and base change for (iD)∗ against

f∗ for any morphism f ∶ U→ X̃, we may reduce to the case where X is affine.
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Since Qcoh(Z) is then generated under colimits and finite limits by OZ, we
may assume that FZ = F ′Z = OZ. Then we have

Maps((iD)∗(O(−k′)), (iD)∗(O(−k))) ≃ Maps((iD)∗(iD)∗(O(−k′)),O(−k))
≃ Maps(O(−k′)⊕O(−k′ + 1)[1],O(−k))

by Lemma 4.1 and the projection formula, and this space is contractible by
Theorem 3.3.

4.3.4. Proof of (iv). Denote by D the full subcategory of Qcoh(X̃) generated
by D(0), D(−1), . . . , D(−n + 1) under finite colimits and finite limits. The

claim is that the inclusion D ⊆ Qcoh(X̃) is an equality. Note that OX̃ ∈
D(0) ⊂ D and (iD)∗(OD(−k)) ∈ D(−k) ⊂ D for 1 ⩽ k ⩽ n − 1. Consider the
exact triangle OX̃(−D)→ OX̃ → (iD)∗(OD) and recall that OX̃(−D) ≃ OX̃(1).
Tensoring with O(−k) and using the projection formula, we get the exact
triangle

OX̃(−k + 1)→ OX̃(−k)→ (iD)∗(OD(−k))
for each 1 ⩽ k ⩽ n − 1. Taking k = 1 we deduce that OX̃(−1) ∈ D. Continuing
recursively we find that OX̃(−k) ∈ D for all 1 ⩽ k ⩽ n − 1.

Now let F ∈ Qcoh(X̃). Denote by G0 ∈ Qcoh(X̃) the cofibre of the co-
unit map p∗p∗(F) → F . Note that G0 is right orthogonal to D(0). For
1 ⩽m ⩽ n − 1 define Gm recursively by the exact triangles

(iD)∗(q∗q∗((iD)!(Gm−1)⊗O(m))⊗O(−m)) counitÐÐÐ→ Gm−1 → Gm.
Just as in the proof of Theorem 3.3, a simple induction argument shows that
each Gm is right orthogonal to all of the subcategories D(0), . . . ,D(m − 1).
We now claim that Gn−1 is zero; it will follow by recursion that F belongs to
D, as desired.

Since the objects Gk are stable under base change, we may use fpqc
descent and base change to assume that X is affine. Moreover we may
assume that i ∶ Z → X fits in a cartesian square of the form (2.1). By

[KR18a, 3.3.6], p ∶ X̃→ X factors through a quasi-smooth closed immersion

i′ ∶ X̃→ Pn−1
X . Recall from Lemma 3.4 that there is a canonical isomorphism

limÐ→J⊊[n−1]
O(∣J∣) ≃ O(n) in Qcoh(Pn−1

X ). Applying (i′)∗, we get

limÐ→
J⊊[n−1]

OX̃(∣J∣) ≃ OX̃(n)

in Qcoh(X̃). In particular, every OX̃(k) belongs to D for all k ∈ Z. Recall
also that we may find a map ⊕αO(dα)[nα]→ i′∗(Gn−1) which is surjective
on all homotopy groups (Lemma 3.5). By adjunction this corresponds to a
map ⊕αO(dα)[nα] → Gn−1 (which is also surjective on homotopy groups).
But the source belongs to D, and the target is right orthogonal to D, so this
map is null-homotopic. Thus Gn−1 is zero.

4.4. Proof of Theorem C. We now deduce Theorem C from Theorem 4.3.
First note that the fully faithful functor F ↦ p∗(F) of Theorem 4.3(i)
preserves perfect complexes and therefore restricts to a fully faithful functor
Perf(X)→ Perf(BlZ/X). This shows Theorem C(i).
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Similarly, part (ii) follows from the fact that the functors q∗ and (iD)∗
preserve perfect complexes. For the latter, this is because iD is quasi-smooth
(and hence of finite presentation and of finite tor-amplitude).

For part (iii) we argue again as in the proof of Theorem 4.3(iv). The point
is that if F ∈ Qcoh(BlZ/X) is perfect, then so is each Gm ∈ Qcoh(P(E)), since

q∗, q∗, (iD)∗ and (iD)! all preserve perfect complexes. For the latter this
follows from Proposition 4.2.

4.5. Blow-up formula.

4.5.1. By Theorem C and Lemma 2.8 we get:

Corollary 4.4. Let X be a derived Artin stack and i ∶ Z → X a quasi-
smooth closed immersion of virtual codimension n ⩾ 1. Then for any additive
invariant E, there is a canonical isomorphism

E(BlZ/X) ≃ E(X)⊕
n−1
⊕
k=1

E(Z).

4.5.2. Proof of Theorem A. Combine Corollaries 4.4 and 3.6 (with E =
NZ/X).

5. The cdh topology

5.1. The cdh topology. The following notion was introduced by Voevodsky
[Voe10b] for noetherian schemes:

Definition 5.1. Suppose given a cartesian square Q of algebraic spaces

(5.1)

B Y

A X.

p

e

(i) We say that Q is a Nisnevich square if e is an open immersion, and p is an
étale morphism inducing an isomorphism (Y ∖B)red ≃ (X ∖A)red.

(ii) We say that Q is a proper cdh square, or abstract blow-up square, if e is a
closed immersion of finite presentation, and p is a proper morphism inducing
an isomorphism (Y ∖B)red ≃ (X ∖A)red.

(iii) We say that Q is a cdh square if it is either a Nisnevich square or a proper
cdh square.

5.1.1. Given any class of commutative squares of algebraic spaces, we say
that a presheaf satisfies descent for this class if it sends all such squares to
homotopy cartesian squares, and the empty scheme to a terminal object. In
case of the three classes considered in Definition 5.1, it follows from a theorem
of Voevodsky [Voe10a, Cor. 5.10] that descent in this sense is equivalent to
Čech descent with respect to the associated Grothendieck topology.
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Example 5.2. Every localizing invariant E satisfies Nisnevich descent when
regarded as a presheaf on quasi-compact quasi-separated algebraic spaces
with E(X) = E(Perf(X)). This is essentially due to Thomason [TT90] and in
the asserted generality is a consequence of the study of compact generation
properties of the ∞-categories Qcoh(X) carried out by Bondal–Van den
Bergh [BVdB03].

Example 5.3. Any quasi-smooth blow-up square (2.2) induces a proper cdh
square

P(NZ/X∣Zcl
) (BlZ/X)cl

Zcl Xcl

on underlying classical algebraic spaces.

Example 5.4. Consider the class of proper cdh squares (5.1) where the
proper morphism p is a closed immersion (with quasi-compact open com-
plement). The associated Grothendieck topology is the same as the one
generated by closed squares, i.e. cartesian squares as in (5.1) such that e and
p are closed immersions, e is of finite presentation and p has quasi-compact
open complement, and A ⊔ Y → X is surjective on underlying topological
spaces.

Example 5.5. Note that for any algebraic space X, the square

∅ Xred

∅ X

is a closed square as in Example 5.4.

5.2. A cdh descent criterion.

Theorem 5.6. Let F be a presheaf on the category C of algebraic spaces,
with values in a stable ∞-category. Then F satisfies cdh descent if and only
if it satisfies the following conditions:

(i) It sends the empty scheme to a zero object.

(ii) It sends Nisnevich squares to cartesian squares.

(iii) It sends closed squares to cartesian squares.

(iv) For every X ∈ C and every quasi-smooth closed immersion Z→ X, it sends
the square (Example 5.3)

P(NZ/X∣Zcl
) (BlZ/X)cl

Zcl X

to a cartesian square.
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Moreover, the same holds if C is replaced by the full subcategory of (a) quasi–
compact quasi-separated (qcqs) algebraic spaces, (b) schemes, (c) or qcqs
schemes.

Remark 5.7. Any presheaf F on algebraic spaces can be trivially extended
to derived algebraic spaces, by setting Γ(X,F) = Γ(Xcl,F) for every derived
algebraic space X. The condition (iv) in Theorem 5.6 is equivalent to
requiring this extension to satisfy descent for quasi-smooth blow-up squares
(2.2).

Example 5.8. Let E be a localizing invariant of stable ∞-categories. Then
it satisfies Nisnevich descent on qcqs algebraic spaces (Example 5.2) and
quasi-smooth blow-up descent (Theorem A). Assume that E also satisfies
derived nilpotent invariance, i.e., that the canonical map E(X)→ E(Xcl) is
invertible for every derived algebraic space X. Then the condition (iv) in
Theorem 5.6 holds. Therefore, E satisfies cdh descent if and only if it satisfies
closed descent. Moreover, by Nisnevich descent it suffices to consider closed
squares of affine schemes.

Example 5.9. In the presence of A1-homotopy invariance, the Morel–
Voevodsky localization theorem [MV99, Theorem 3.2.21] provides the fol-
lowing sufficient condition for closed descent. Let F be an A1-invariant
Nisnevich sheaf on the category of algebraic spaces. Suppose that, for every
algebraic space S, its restriction FS to the site of smooth algebraic spaces
over S is stable under arbitrary base change. That is, for every morphism
of algebraic spaces f ∶ T→ S, the canonical map f∗(FS)→ FT is invertible.
Then F satisfies closed descent. This follows immediately from the closed
base change formula (cf. [Kha19, Prop. 3.3.2]).

Remark 5.10. Let E be a localizing invariant and suppose that it is moreover
truncating in the sense of [LT18]. That is, if R is a connective E1-ring

spectrum and Modperf
R denotes the stable ∞-category of left R-modules, then

the canonical map E(Modperf
R ) → E(Modperf

π0(R)) is invertible. Then Land–

Tamme have recently proven that E has closed descent, at least if we restrict
to noetherian algebraic spaces (see Step 1 in the proof of [LT18, Thm. A.2]).

Remark 5.11. There are a few variants of Theorem 5.6 with the same proof.
For example:

(i) On the category of (qcqs) schemes, descent with respect to the rh topology
(generated by Zariski squares and proper cdh squares) can be checked with
the same criteria, except that Nisnevich squares are replaced by Zariski
squares in condition (ii).

(ii) If we do not assume either Nisnevich or Zariski descent, descent for the proper
cdh topology is still equivalent to conditions (i), (iii), and (iv), as long as
we restrict to a full subcategory of algebraic spaces or schemes which satisfy
Thomason’s resolution property. For example, this holds on the category of
quasi-projective schemes.

(iii) One can extend the criterion to qcqs Artin stacks as follows. The definition of
Nisnevich square extends without modification (cf. [HK17, Subsect. 2.3]). In
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the definition of proper cdh square, we add the requirement that the proper
morphism p is representable (cf. op. cit.). Then the criterion of Theorem 5.6
holds for stacks which admit the resolution property Nisnevich-locally, see
(5.3.4). This condition is relatively mild. For example, many quotient stacks
have the resolution property ([Tho87, Lem. 2.4], [HR17, Exam. 7.5]). By the
Nisnevich-local structure theorem of Alper–Hall–Rydh [HK17, Thm. 2.9], any
stack with linearly reductive and almost multiplicative stabilizers satisfies
the resolution property Nisnevich-locally.

5.3. Proof of Theorem 5.6. Since Nisnevich squares, closed squares, and
quasi-smooth blow-up squares are all cdh squares, the conditions are clearly
necessary. Conversely suppose that F is a presheaf satisfying the conditions
and let Q be a proper cdh square of algebraic spaces of the form

(5.2)

E Y

Z X.

p

i

It will suffice to show that the induced square Γ(Q,F) is homotopy cartesian.

5.3.1. Assume first that Q is a blow-up square, i.e., that Y = BlZ/X is the
blow-up of X centred in Z (and E = P(CZ/X) is the projectivized normal
cone). By Nisnevich descent we may assume that X satisfies the resolution
property (e.g. X is affine). Since i ∶ Z→ X is of finite presentation, the ideal
of definition I ⊂ OX is of finite type. Thus by the resolution property there
exists a surjection u ∶ E → I with E a locally free OX-module of finite rank.
Denote by V = VX(E) = SpecX(SymOX

(E)) the associated vector bundle and
0 ∶ X→ V the zero section. The OX-module homomorphism u ∶ E → I ⊂ OX

induces a section of V, whose derived zero-locus Z̃ fits in the homotopy
cartesian square

Z̃ X

X V.

ĩ

u

0

By construction, ĩ ∶ Z̃→ X is a quasi-smooth closed immersion and there is a
canonical morphism Z→ Z̃ which induces an isomorphism Z ≃ Z̃cl. Regarding
F as a presheaf on derived algebraic spaces as in Remark 5.7, the square
Γ(Q,F) now factors as follows:

Γ(X,F) Γ(Z̃,F) Γ(Z,F)

Γ(BlZ̃/X,F) Γ(P(NZ̃/X),F)

Γ(BlZ/X,F) Γ(P(CZ/X),F)

The upper square is induced by a quasi-smooth blow-up square, hence is
cartesian. The lower square is induced by a closed square, hence is also
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cartesian. Therefore it follows that the outer composite square is also
cartesian. This shows that F satisfies descent for blow-up squares.

5.3.2. Slightly more generally, suppose that Y = BlZ′/X is a blow-up centred

in some closed immersion Z′ → X with ∣Z′∣ ⊆ ∣Z∣ on underlying topological
spaces, and let E′ → Y denote the exceptional divisor. Since F is invariant
under nilpotent extensions (Example 5.5) we may assume that i′ ∶ Z′ → X
actually factors through a closed immersion Z′ → Z (see Example 5.5).
Applying descent for blow-up squares (5.3.1), it will suffice to show that F
satisfies descent for the square

E′ E

Z′ Z.

Note that the blow-up BlZ′/Z is equipped with a canonical closed immersion

into E so that E′ → E and BlZ′/Z → E form a closed covering. Applying closed

descent and descent for the blow-up square associated to Z′ → Z (5.3.1), we
conclude.

5.3.3. For the case of an arbitrary proper cdh square, we recall the standard
argument using Raynaud–Gruson’s technique of platification par éclatements
[RG71, I, Cor. 5.7.12] to reduce to the case considered above (see e.g. [KST18,
Subsect. 5.2]).

Construction 5.12. Let Q be a proper cdh square of the form (5.2). Assume
that X is quasi-compact and quasi-separated and that the open subspace
X∖Z is quasi-compact and dense in X. Then there exists a proper cdh square
Q′ sitting above Q such that the composite Q′ ○Q

E′ Y′

E Y

Z X

Q′

Q p

i

is of the form considered in (5.3.2). That is, Y′ is a blow-up of X centred in
some closed immersion Z′ → X with ∣Z′∣ ⊆ ∣Z∣. This follows from Raynaud–
Gruson just as in the proof of [HK17, Cor. 2.4].

Let Q be a proper cdh square of the form (5.2). Since F is a Nisnevich
sheaf, we may assume that X is quasi-compact and quasi-separated. Since
i ∶ Z → X is of finite presentation, its open complement U = X ∖ Z is quasi-
compact. Using closed descent, we can ensure that U is dense in X. Now
apply the construction above to get a proper cdh square Q′ such that Q′ ○Q
is of the form considered in (5.3.2). Applying the construction again, this
time to Q′, we end up with a third square Q′′ such that the composite Q′′ ○Q′

is also of the form considered in (5.3.2). Then we know that Γ(Q′ ○Q,F)
and Γ(Q′′ ○Q′,F) are both homotopy cartesian. It follows that the square
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Γ(Q′,F) is also homotopy cartesian (since F takes values in a stable ∞-
category, it suffices to check that the induced map on homotopy fibres is
invertible), and hence so is Γ(Q,F).

5.3.4. We now discuss the extension to stacks mentioned in Remark 5.11(iii).
The precise statement is as follows. Let C be a category of qcqs Artin stacks
such that (a) every stack X ∈ C admits a Nisnevich atlas by stacks with the
resolution property; (b) for every stack X ∈ C and every blow-up Y → X, the
qcqs Artin stack Y also belongs to C. Then the statement of Theorem 5.6
holds for presheaves on C.

The proof for the case of a blow-up square (5.3.1) has been presented in
such a way that it holds mutatis mutandis under the above assumptions.
The argument of [KST18, Claim 5.3] also goes through, using descent for
closed squares and blow-up squares, to deal with the slightly more general
case where Y = BlZ′/X is a blow-up centred in some closed immersion Z′ → X
that factors through Z. To reduce a general proper cdh square to that
case, we use Rydh’s extension of Raynaud–Gruson [HK17, Thm. 2.2]. First,
closed descent allows us to assume that X ∖ Z is dense in X. Then we apply
Rydh–Raynaud–Gruson just as in the proof of [HK17, Cor. 2.4]. The only
difference with the case of schemes or algebraic spaces is that in general we
get a sequence of (X ∖ Z)-admissible blow-ups X̃→ X which factors through
p ∶ Y → X. The addition of a simple induction is then the only modification
required to run the same argument.

5.4. Homotopy invariant K-theory.

5.4.1. For any qcqs algebraic space X, its homotopy invariant K-theory
spectrum is given by the formula

(5.3) Γ(X,KH) = limÐ→
[n]∈∆op

K(X ×An).

In other words, Γ(X,KH) is the geometric realization of the simplicial diagram
K(X ×A●), where A● is regarded as a cosimplicial scheme in the usual way
(see e.g. [MV99, p. 45]). This extends the usual definition [Wei89, TT90],
and is a way to formally impose the property of A1-homotopy invariance:
for any qcqs algebraic space X, the projection p ∶ X ×A1 → X induces an
isomorphism of spectra

p∗ ∶ Γ(X,KH)→ Γ(X ×A1,KH).

5.4.2. As the previous paragraph makes sense when X is derived, we may
regard KH as a presheaf on qcqs derived algebraic spaces. Given a Nisnevich
square of the form (5.1), Nisnevich descent for K-theory (Example 5.2) yields
homotopy cartesian squares of spectra

K(X ×An) K(A ×An)

K(Y ×An) K(B ×An)
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for every [n] ∈ ∆op. Passing to the colimit over n, we deduce that KH also
satisfies Nisnevich descent. We have:

Theorem 5.13. For every qcqs derived algebraic space S, the canonical
morphism of spectra

Γ(S,KH)→ Γ(Scl,KH)
is invertible.

Proof. By Nisnevich descent, we may as well assume S is an affine derived
scheme. Let KHS denote the restriction of KH to the site of affine derived
schemes that are smooth and of finite presentation over S. This is still an
A1-homotopy invariant Nisnevich sheaf, and it is equipped with a canonical
morphism

Kcn
S → KS → KHS,

where Kcn
S and KS are the respective restrictions of connective and non-

connective K-theory. By Cisinski, this morphism exhibits KHS as the Bott
periodization of the A1-localization of Kcn

S , i.e., the periodization with respect
to the Bott element b ∈ K1(Gm,S) (the proof is the same as in the case where
S is classical [Cis13, Cor. 2.12]). It follows from this description that for
any morphism of affine derived schemes f ∶ T → S, there is a canonical
isomorphism f∗(KHS) ≃ KHT, where f∗ denotes the functor of inverse image
of A1-invariant Nisnevich sheaves. Indeed, we reduce to checking the same
property for Kcn

S , which is clear as this is identified up to Zariski localization
with the group completion of the presheaf ∐nBGLn,S.

In particular, we get a canonical isomorphism i∗(KHS) ≃ KHScl , where
i ∶ Scl → S is the inclusion of the underlying classical scheme. Moreover, i∗

induces an equivalence between the ∞-categories of A1-invariant Nisnevich
sheaves on S and Scl, respectively, by [Kha16, Cor. 1.3.5]. We deduce that
the canonical morphism

Γ(S,KH) ≃ Γ(S,KHS)→ Γ(Scl,KHScl) ≃ Γ(Scl,KH)

is invertible. �

5.4.3. Proof of Theorem D. We use the criterion of Theorem 5.6. Condition (i)
is obvious. Nisnevich descent (condition (ii)) was verified above (5.4.2). For
condition (iv), it will suffice by Theorem 5.13 and Remark 5.7 to show
that KH sends quasi-smooth blow-up squares of derived algebraic spaces
to homotopy cartesian squares. This follows from the same property for K-
theory (Theorem A) using the formula (5.3) (just as in the proof of Nisnevich
descent). For closed descent (condition (iii)), we may restrict our attention
to closed squares of affine schemes (by Nisnevich descent). This is classical,
see [TT90, Exer. 9.11(f)] or [Wei89, Cor. 4.10]. Alternatively, it follows from
the criterion of Example 5.9.

Remark 5.14. By continuity for KH (e.g. [HK17, Thm. 4.9(5)]), once
we have descent for proper cdh squares as in Definition 5.1(ii), we can
immediately drop the finite presentation hypothesis on e.
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