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Abstract. We introduce a notion of Milnor square of stable ∞-categories and prove a criterion
under which algebraic K-theory sends such a square to a cartesian square of spectra. We apply

this to prove Milnor excision and proper excision theorems in the K-theory of algebraic stacks
with affine diagonal and nice stabilizers. This yields a generalization of Weibel’s conjecture on

the vanishing of negative K-groups for this class of stacks.
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Introduction

A Milnor square of rings, following [Mil71, Sect. 2], is a cartesian square

A A/I

B B/J
(0.0.a)

where I ⊆ A and J ⊆ B are two-sided ideals. The starting point of this paper is the following
result of Land and Tamme, building on work of Morrow, Geisser and Hesselholt, and Suslin (see
Corollaries 2.10 and 2.33 in [LT19], as well as [Tam18], [Mor18], [GH06] and [Sus95]):

Theorem 0.0.1.

(i) If the square (0.0.a) is Tor-independent, i.e., the group TorAi (A/I,B) vanishes for all i > 0,
then the square

K(A) K(A/I)

K(B) K(B/J)

is cartesian.

(ii) If the pro-system {TorAi (A/In,B)}n>0 vanishes for all i > 0, then the square of pro-spectra

{K(A)} {K(A/In)}n>0

{K(B)} {K(B/Jn)}n>0

is cartesian.

Remark 0.0.2. A sufficient condition for the pro-Tor-independence in (ii) is pro-Tor-unitality
of I (see e.g. [LT19, Lem. 2.14]). As observed by Morrow, the latter condition is equivalent to

the vanishing of {TorAi (A/In,A/In)}n>0 for all i > 0 (see [Mor18, Thm. 0.2]). Moreover, this is
automatic in the case of noetherian commutative rings (see [Mor18, Thm. 0.3]).

Our first goal in this paper is to prove a categorical version of Theorem 0.0.1.

Definition 0.0.3.



CATEGORICAL MILNOR SQUARES AND K-THEORY OF ALGEBRAIC STACKS 3

(i) Let ∆ be a commutative square of presentable stable ∞-categories and colimit-preserving
functors of the form

A B

A′ B′.

f∗

p∗ q∗

g∗
(0.0.b)

(a) We say ∆ is a precartesian if the canonical functor (p∗, f∗) ∶ A → A′ ×B′ B is fully
faithful.

(b) We say ∆ is a Milnor square if it is precartesian, and each of the functors f∗, g∗, p∗

and q∗ is compact and generates its codomain under colimits.
(c) We say ∆ satisfies base change if it is vertically right-adjointable; that is, the base

change transformation f∗p∗ → q∗g
∗ is invertible (where p∗ and q∗ are the right adjoints

of p∗ and q∗, respectively).

(ii) Let ∆ be a commutative square of pro-systems in the ∞-category of presentable stable
∞-categories and compact colimit-preserving functors. We say ∆ is a pro-Milnor square,
resp. satisfies pro-base change, if it can be represented by a cofiltered system {∆n}n where
each ∆n is a Milnor square, resp. satisfies base change.

Given a presentable stable ∞-category A, we write simply K(A) for the nonconnective algebraic
K-theory spectrum of the full subcategory Aω of compact objects. Our first main result is as
follows (see Theorems 3.4.3 and 3.5.11):

Theorem A (Categorical Milnor excision).

(i) Suppose ∆ is a Milnor square of compactly generated stable ∞-categories. If ∆ satisfies
base change, then the induced square

K(A) K(B)

K(A′) K(B′).

f∗

p∗ q∗

g∗

is cartesian.

(ii) Suppose ∆ is a pro-Milnor square satisfying the projective generation and boundedness
hypotheses of 3.5.11. If ∆ satisfies pro-base change, then the induced square of pro-spectra
K(∆) is cartesian.

Example 0.0.4. Let D(A) denote the derived ∞-category of left A-modules over a ring A. For
any Milnor square as in (0.0.a), the induced square

D(A) D(A/I)

D(B) D(B/J)

is a Milnor square of stable ∞-categories. It satisfies base change precisely when TorAi (A/I,B) = 0
for all i > 0, and the induced square of pro-∞-categories (formed by taking the ideal In for n > 0)

satisfies pro-base change precisely when {TorAi (A/In,B)}n>0 = 0 for all i > 0. Thus Theorem A
may be regarded as a generalization of Theorem 0.0.1.

Remark 0.0.5. Land and Tamme prove Theorem 0.0.1 as a consequence of a more general result
[LT19, Thm. A] which applies to cartesian squares of E1-ring spectra. Theorem A also recovers
this result when applied to stable ∞-categories of module spectra.
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Remark 0.0.6. In Theorem A, nonconnective algebraic K-theory can be replaced by any localizing
invariant of stable ∞-categories (which is not required to preserve filtered colimits).

Theorem A allows us to prove excision statements in the K-theory of algebraic stacks. For a
(quasi-compact quasi-separated) algebraic stack X, we let D(X) denote the derived ∞-category
of quasi-coherent sheaves on X, Perf(X) ⊆ D(X) the full subcategory of perfect complexes, and
K(X) the nonconnective algebraic K-theory spectrum of Perf(X). If Z is a closed substack, we
regard the formal completion X∧

Z as an ind-algebraic stack so that there is naturally associated to

it a “continuous K-theory” pro-spectrum K̂(X∧
Z). For example, for I an ideal in a noetherian

commutative ring A, the continuous K-theory of the formal completion of Spec(A) along the
vanishing locus of I is the pro-spectrum {K(A/In)}n. We then have:

Theorem B (Milnor excision). Let ∆ be a commutative square

Z′ X′

Z X

f

i

of noetherian ANS stacks (algebraic stacks with affine diagonal and nice stabilizers). Assume
that ∆ is a Milnor square: that is, it is cartesian and cocartesian, f is an affine morphism, and i
is a closed immersion.

(i) If ∆ is Tor-independent, then the square

K(X) K(Z)

K(X′) K(Z′)

is cartesian.

(ii) The induced square of pro-spectra

{K(X)} K̂(X∧
Z)

{K(X′)} K̂(X′∧
Z′)

is cartesian.

Theorem C (Proper excision). Consider a cartesian square of ANS noetherian algebraic stacks

Z′ X′

Z X

f

i

where i is a closed immersion and f is a proper representable morphism which is an isomorphism
away from Z. Then the induced square of pro-spectra

{K(X)} K̂(X∧
Z)

{K(X′)} K̂(X′∧
Z′)

is cartesian.
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Remark 0.0.7. Theorem C can be viewed as a generalization of [KST17, Thm. A], with the
minor caveat that a scheme is ANS if and only if it has affine diagonal. However, the statement
for arbitrary noetherian schemes can be deduced from the case of schemes with affine diagonal
using Zariski descent.

Remark 0.0.8. Theorems B and C also hold for arbitrary localizing invariants of stable ∞-
categories. This is an improvement on documented results even in the case of schemes. In
particular, we find that Theorem 0.0.1(ii) generalizes to arbitrary localizing invariants.

Remark 0.0.9. The condition on nice stabilizers in Theorem B, and in the finite case of
Theorem C, can be relaxed. In fact, Theorem B(i) holds for all perfect stacks in the sense of
Definition A.3.1. In Theorem B(ii) and the finite case of Theorem C, it suffices to assume that
X admits a scallop decomposition (Ui,Vi, ui)i as in [KR21, Def. 2.7] where Vi are quotients of
affines by actions of embeddable group schemes that are linearly reductive (but not necessarily
nice; compare Theorem A.1.8, Proposition A.1.9). The stronger condition of niceness of all
stabilizers is important in our proof of the general case of Theorem C because it ensures that
linear reductivity of the stabilizers is preserved under blow-ups.

Finally, we apply Theorem C to generalize to stacks the proof in [KST17] of Weibel’s conjecture
on negative K-theory (see [Wei80, 2.9]).

Theorem D (Weibel’s conjecture). Let X be a noetherian ANS stack of covering dimension d.

(i) The negative K-groups K−n(X) vanish for all n > d.

(ii) For every vector bundle π ∶ E→ X, the map

π∗ ∶ K−n(X)→ K−n(E)

is bijective for all n ⩾ d.

Remark 0.0.10. For Deligne–Mumford stacks, the covering dimension coincides with the Krull
dimension and with the usual dimension as in [Stacks, Tag 0AFL]. In general, the latter can be
negative and so is not suitable for the purposes of Theorem D. See Subsect. A.4 for the definitions.

Example 0.0.11 (Equivariant K-theory). Let k be a field and G a group scheme over k acting
on a noetherian finite-dimensional k-scheme X with affine diagonal. If G is finite of order prime
to the characteristic of k, or if G is a torus, then the quotient stack X = [X/G] is noetherian

and ANS (see Subsect. A.1 for more examples) and K(X) is the algebraic K-theory KG(X) of
G-equivariant perfect complexes on X as in [KR18b] (see also [Tho87]). Thus Theorem D implies

that KG
−n(X) vanishes for all n > dim(X).

The following example was pointed out to us by B. Antieau.

Example 0.0.12 (Twisted K-theory). Let X be a noetherian ANS stack of covering dimension
d and let Y → X be a Gm-gerbe over X. Then Y is also of covering dimension d, since Y → X is
smooth and Y is étale-locally on X a trivial Gm-gerbe. Therefore by Theorem D, K−n(Y) vanishes
for all n > d. For any Azumaya algebra A over a d-dimensional noetherian scheme X, we may
apply this to the Gm-gerbe Y over X associated to the Brauer class representing the Azumaya
algebra A. Then Perf(Y) is equivalent to the stable ∞-category of A-twisted perfect complexes

on X, and in particular we find that the A-twisted K-groups KA
−n(X) of X vanish for all n > d.

This recovers the main result of [Sta20] for Azumaya algebras.

Remark 0.0.13. To our knowledge, Theorem D is the first result in the literature about negative
K-groups of singular stacks, or even negative equivariant K-groups of singular schemes with group
action. Recall that in the nonsingular case, all the groups K−n(X) vanish for n > 0. See [Ker18]
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for some discussion about the relationship between negative K-groups and singularities in the
setting of schemes.

Outline. We define categorical Milnor squares, and their pro-versions, in Sect. 1.

In Sect. 2 we give many examples of categorical Milnor and pro-Milnor squares of derived ∞-
categories of (derived) algebraic stacks. The appearance of pro-∞-categories comes from the
key observation that failure of the base change property can often be rectified by passing to
formal completions. Let D̂(X) denote the canonical pro-∞-categorical refinement of the derived
∞-category D(X) of a formal stack (or ind-algebraic stack) X. Then we prove, for instance, that
if

Z′ X′

Z X

is either a Milnor square or finite cdh square of noetherian algebraic stacks, then the induced
square of pro-∞-categories

{D(X)} D̂(X∧
Z)

{D(X′)} D̂(X′∧
Z′)

is not only a pro-Milnor square but also satisfies pro-base change (see Corollaries 2.4.2 and 2.4.3).
These results can be viewed as pro-refinements of some results of Halpern-Leistner and Preygel
[HLP14].

Sect. 3 deals with the proof of Theorem A. Our main tool is a categorical version of the ⊙-
construction introduced in [LT19]. For every categorical Milnor square ∆ of the form (0.0.b), we
construct a new square ∆0

A B

A′ A′ ⊙B′
A B,

f∗

p∗ q∗0
g∗0

which is isomorphic to ∆ precisely when the latter satisfies base change (Theorem 3.3.1). This
is the generalization of [LT19, Main Theorem] in this setting. The proof of the pro-variant is
somewhat involved, as it requires a user-friendly criterion for a cofiltered system of compact
colimit-preserving functors of presentable stable ∞-categories to induce a pro-equivalence (see
Corollary 3.5.10). This question is surprisingly subtle and forces us to impose strong projective
generation hypotheses on our categories, which roughly puts us in the situation of “weighted”
∞-categories (see Remark 3.5.7). The reader willing to accept Theorem A as a black box can
safely skip this section.

Theorems B and C are proven in Sect. 4. This involves three main steps:

● Applying Theorem A to the categorical pro-Milnor squares constructed in Corollaries 2.4.2
and 2.4.3, we get Theorem B as well as Theorem C in the case of finite morphisms. See
Corollaries 4.2.2 and 4.2.3.

● Next we prove a formally completed version of [Kha20, Thm. A], which yields formal
excision for blow-ups in quasi-smooth derived centres (Proposition 4.3.2). Combining this
with finite excision yields the case of blow-ups (in arbitrary centres).
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● For the general case of Theorem C, we use a generalization of the arguments of [KST17]
to reduce to the case of a blow-up. The key ingredient, as in [HK19] and [Kha20, 5.3.4],
is Rydh’s stacky extension of the flatification theorem of Raynaud and Gruson. See
Theorem 4.4.1.

The proof of Theorem D is accomplished in Sect. 5. As in [KST17], the proof is a relatively
straightforward consequence of proper excision (Theorem C) and a “killing lemma” that allows
one to kill negative K-classes by blowing up (see [KS17, Prop. 5], [HK19, Prop. 7.3] for stacks, and
Proposition 5.2.1 for our version with supports). To use the latter, we also need a nil-invariance
result for low enough K-groups (Corollary 5.1.4).

Appendices A and B develop some preliminary material on (derived) algebraic and formal stacks.
In appendix C, we study a “weak” version of categorical pro-Milnor squares, where pro-∞-
categories are not regarded up to isomorphism but rather only up to weak pro-equivalence. This
can be used to drop the boundedness condition imposed in Theorem A, and hence also the
boundedness conditions on the structure sheaves of derived stacks in some statements in Sects. 2
and 4.

Related work. Theorem A can be contrasted with a recent result of [Tam18, Thm. 18] (cf.
[Hoy18, Cor. 13]), which provides a different criterion for a square of compactly generated stable
∞-categories as in (0.0.b) to induce a cartesian square in algebraic K-theory: namely, it suffices
that the square be cartesian and the functor p∗ fully faithful. Our base change condition can
be regarded as a generalization of this, since for a Milnor square with p∗ fully faithful, the base
change property is automatic (see Lemma 1.3.4). However, Theorem A is not strictly more
general than Tamme’s criterion because the definition of Milnor square also requires that the
functors f∗ and g∗ generate under colimits (or equivalently, that their right adjoints f∗ and g∗
are conservative).

The idea of passing to formal completions to prove excision statements for derived ∞-categories
of quasi-coherent sheaves is present in the work of Halpern-Leistner and Preygel (compare
Corollary 2.4.3 with [HLP14, Lem. 3.3.4], for example). To our knowledge, the more refined

invariant D̂(X∧
Z) (see Subsect. B.2) has not been considered in the literature before.

The analogue of Theorem C in homotopy invariant K-theory was obtained recently by Hoyois
and Krishna [HK19], under slightly weaker hypotheses. Another proof in homotopy invariant
K-theory (that applies more generally to truncating invariants in the sense of [LT19]) was given in
[Kha20, Thm. 5.6, Rmk. 5.11(iii)], modulo a derived invariance property that was later established
independently in [ES20] and [KR21, Cor. F]. Our proof combines the arguments of [KST17] and
[Kha20].

Hoyois and Krishna also proved a variant of Theorem D in homotopy invariant K-theory (see
[HK19, Thm. 1.1]). Compared to their result, our Theorem D applies to a larger class of stacks at
the cost of a possibly less sharp bound (using covering dimension instead of blow-up dimension).

Notation and conventions. We freely use the language of ∞-categories and derived algebraic
geometry. We generally follow the notation of [HTT, HA], [GR17] and [HLP14]. Some exceptions
are as follows:

● In an ∞-category C, we write MapsC(C,D) for the mapping space between any two
objects C and D.

● We write Spc and Spt for the ∞-categories of spaces and spectra, respectively. The
∞-category of presentable ∞-categories and colimit-preserving functors (see [HTT,
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Defn. 5.5.3.1]) will be denoted Pres. The (non-full) subcategory of Pres where the
morphisms are compact colimit-preserving functors will be denoted Presc. Recall that a
colimit-preserving functor is compact if its right adjoint preserves filtered colimits (see
e.g. [SAG, Defn. C.3.4.2]).

● A derived commutative ring is an object of the nonabelian derived ∞-category of ordinary
commutative rings. This ∞-category can be realized as the localization of the category of
simplicial commutative rings. See [SAG, 25.1] for details. The reader may also choose to
read the term “derived commutative ring” as “connective E∞-ring” as in [HA, Chap. 7].

● We write LModR for the stable ∞-category of left modules over an E1-ring spectrum R.
If R is a derived commutative ring, we write ModR for the stable ∞-category of modules
over the underlying E∞-ring spectrum.

● Given a derived commutative ring R and a collection of elements f1, . . . , fn ∈ π0(R), we
write R//(f1, . . . , fn) for the derived commutative ring of functions on the derived zero
locus of f1, . . . , fn. That is, R//(f1, . . . , fn) is the derived tensor product of R and Z over
Z[T1, . . . , Tn] as in [KR18a, 2.3.1].

● A derived algebraic stack is a derived 1-Artin stack as in [GR17, Chap. 2, 4.1]. All derived
algebraic stacks are assumed quasi-compact and quasi-separated. A derived algebraic
stack X is bounded if it admits a smooth surjection Spec(A)↠ X where A is a bounded
derived commutative ring (πi(A) = 0 for i≫ 0).

● We write D(X) for the derived ∞-category of quasi-coherent sheaves on a derived algebraic
stack X, defined as in [GR17, Chap. 3, 1.1.4]. When X is a classical algebraic stack, this
agrees with the derived ∞-category of OX-modules with quasi-coherent cohomology (see
[HR17, Prop. 1.3]).
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The fourth author’s work on sections 1, 3, 4, 5, and Appendix C was completed under the support
of Russian Science Foundation grant 20-41-04401.

1. Milnor squares of stable ∞-categories

1.1. The base change property.

Notation 1.1.1. Recall that any colimit-preserving functor between presentable ∞-categories
admits a right adjoint by the adjoint functor theorem. We will usually use a symbol of the
form f∗ to denote such a functor, and f∗ for its right adjoint. We also write ηf ∶ id→ f∗f

∗ and
εf ∶ f∗f∗ → id for the unit and co-unit transformations. This is just a notational device: we have
not assigned any meaning to the symbol “f” itself.
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Construction 1.1.2 (Exchange transformation). Let ∆ be a commutative square

A B

A′ B′

f∗

p∗ q∗

g∗

of presentable ∞-categories and colimit-preserving functors. The exchange transformation associ-
ated to ∆ is the canonical natural transformation

Ex∆ ∶ f∗p∗ → q∗g
∗

of functors A′ → B defined as the composite

f∗p∗
ηqÐ→ q∗q

∗f∗p∗ ≃ q∗g∗p∗p∗
εpÐ→ q∗g

∗.

Definition 1.1.3. When Ex∆ is invertible, we say that the square ∆ satisfies base change1.

Example 1.1.4. Suppose given a commutative square

A B

A′ B′

of rings or more generally of E1-ring spectra. This induces a square of stable ∞-categories of
module spectra

LModA LModB

LModA′ LModB′ ,

where the functors are each given by (derived) extension of scalars. Then the exchange transfor-
mation evaluated on any object M ′ ∈ LModA′ is the canonical B-module morphism

B ⊗AM ′ → B′ ⊗A′ M ′.

Since LModA′ is generated under colimits by A′ ∈ LModA′ , we see that this square satisfies base
change if and only if the canonical morphism

B ⊗A A′ → B′

is invertible.

1.2. Precartesian squares.

Definition 1.2.1. We say that a commutative square in Pres

A B

A′ B′

f∗

p∗ q∗

g∗

is precartesian if the canonical functor

(p∗, f∗) ∶ A→ A′ ×B′ B

1It is also common to say that the square satisfies the Beck–Chevalley condition, or that it is vertically

right-adjointable.
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is fully faithful. This is equivalent to the condition that the square of natural transformations

id f∗f
∗

p∗p
∗ f∗q∗q

∗f∗

ηf

ηp ηq

ηg

(1.2.a)

is cartesian.

Example 1.2.2. In the situation of Example 1.1.4, the square is precartesian if and only if the
original square of E1-rings is cartesian.

Warning 1.2.3. A cartesian square of ordinary rings

A B

A′ B′

is not necessarily cartesian as a square of E1-rings, as the fibred product A′ ×B′ B may acquire
negative homotopy groups when taken in the ∞-category of E1-rings. A sufficient condition is
that A′ → B′ is surjective. For example, Milnor squares of rings give rise to cartesian squares of
E1-rings and hence to precartesian squares of presentable stable ∞-categories.

Example 1.2.4. If

A B

A′ B′

f

p q

g

is a cartesian square of small stable ∞-categories and exact functors, then the induced square

Ind(A) Ind(B)

Ind(A′) Ind(B′)

f∗

p∗ q∗

g∗

is precartesian. (Indeed, the fully faithful functor

A ∼Ð→ A′ ×
B′

B ↪Ð→ Ind(A′) ×
Ind(B′)

Ind(B)

factors through the full subcategory of compact objects, since filtered colimits commute with
finite limits of spaces.) However, it is cartesian only under additional hypotheses: for example,
when g∗ is fully faithful [EHIK20, Lem. 4].

1.3. Milnor squares.

Lemma 1.3.1. Let f∗ ∶ A → B be a colimit-preserving functor between presentable stable
∞-categories. Then the following conditions are equivalent:

(i) If B0 ⊆ B is a cocomplete stable subcategory containing the essential image of f∗ ∶ A→ B,
then B0 = B.

(ii) The right orthogonal to the essential image of f∗ ∶ A→ B is the zero subcategory.

(iii) The right adjoint f∗ ∶ B→ A is conservative.
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Proof. See e.g. [MNN17, Lemma 7.6] for the equivalence of the first two conditions. The second
and third are equivalent by adjunction. �

Definition 1.3.2. If f∗ ∶ A→ B satisfies the equivalent conditions of Lemma 1.3.1, then we say
f∗ generates B under colimits.

Definition 1.3.3. Let ∆ be a commutative square in Pres of the form

A B

A′ B′.

f∗

p∗ q∗

g∗

We say ∆ is a Milnor square if it is precartesian and each of the functors f∗, g∗, p∗ and q∗ is
compact and generates its codomain under colimits.

Lemma 1.3.4. Suppose given a Milnor square ∆ of presentable stable ∞-categories as above.
If the functor p∗ is a localization, i.e., its right adjoint p∗ is fully faithful, then ∆ satisfies base
change.

Proof. The exchange transformation is by definition the composite

f∗p∗
ηqÐ→ q∗q

∗f∗p∗ ≃ q∗g∗p∗p∗
εpÐ→ q∗g

∗.

The counit εp is invertible by assumption, so it will suffice to show that the first arrow induced
by the unit ηq is invertible. Since ∆ is precartesian, we have by precomposition of (1.2.a) with p∗
the cartesian square

p∗ f∗f
∗p∗

p∗p
∗p∗ f∗q∗q

∗f∗p∗.

ηf

ηp ηq

ηg

Since f∗ is conservative (Lemma 1.3.1), it will suffice to show that the right-hand arrow is
invertible. The left-hand arrow in the square is invertible by the assumption that εp is invertible
and the adjunction identities. By stability, the claim follows. �

1.4. Pro-Milnor squares. We now define a pro-version of Definition 1.3.3.

For a presentable ∞-category C, we let Pro(C) denote the ∞-category of pro-objects in C as in
[SAG, A.8.1]. Any pro-object X ∈ Pro(C) can be represented (non-uniquely) by a cofiltered system
{Xi}i∈I, i.e., a diagram I→ C from a cofiltered ∞-category I. If X ∈ Pro(C) and Y ∈ Pro(C) are
represented by cofiltered systems {Xi}i and {Yj}j , respectively, then the mapping space can be
computed by the formula

Maps(X,Y ) ≃ lim←Ð
j

limÐ→
i

MapsC(Xi, Yj),

see [SAG, Rem. A.8.1.5]. From this one sees that the functor C→ Pro(C) sending an object C ∈ C
to the constant pro-system {C} is fully faithful. It also implies that for any cofiltered ∞-category
I, the functor of “passage to pro-objects”

Fun(I,C)→ Pro(C)

commutes with finite limits and colimits, since filtered colimits of spaces commute with finite
limits.
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Definition 1.4.1. A commutative square ∆ in Pro(Presc) is pro-precartesian, pro-Milnor, or
satisfies pro-base change if it can be represented by a cofiltered system {∆n}n of commutative
squares

An Bn

A′
n B′

n

f∗n

p∗n q∗n
g∗n

such that every ∆n has the respective property.

2. Quasi-coherent sheaves on algebraic stacks

In this section, we give many examples of Milnor and pro-Milnor squares coming from squares of
(derived) schemes and stacks.

2.1. Nisnevich, cdh, and Milnor squares of stacks.

Definition 2.1.1. A Nisnevich square of derived algebraic stacks is a cartesian square

U′ X′

U X,

f

j

(2.1.a)

where j is a quasi-compact open immersion and f is a representable étale morphism of finite presen-
tation, inducing an isomorphism f−1(Z)→ Z for some closed immersion i ∶ Z→ X complementary
to j. An affine Nisnevich square is a Nisnevich square where f is affine.

Definition 2.1.2. A Milnor square of algebraic stacks is a commutative square

Z′ X′

Z X

i′

g f

i

(2.1.b)

which is cartesian and cocartesian, where f is an affine morphism and i is a closed immersion
with quasi-compact open complement.

Definition 2.1.3. A proper cdh square (or abstract blow-up square) of derived algebraic stacks is
a commutative square

Z′ X′

Z X

i′

g f

i

(2.1.c)

satisfying the following properties:

(i) The square is cartesian on classical truncations, i.e. Z′ → Z×XX′ induces an isomorphism
Z′cl ≃ (Z×XX′)cl.

(ii) The morphism f is representable and proper, and i is a closed immersion with quasi-compact
open complement.

(iii) The induced map fU ∶ U′ → U is invertible, where U (resp. U′) is the open complement of
Z in X (resp. of Z′ in X′).
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A finite cdh square is a proper cdh square as above where the morphism f is finite. The class of
cdh squares is the union of Nisnevich squares and proper cdh squares.

Example 2.1.4. Given a diagram of algebraic spaces or stacks

X0
i0←Ð X01

fÐ→ X1,

where i0 is a closed immersion with quasi-compact open complement and f is a finite morphism,
the operation of forming the pushout X = X0 ⊔X01 X1 is often called “pinching”. The square

X01 X0

X1 X

i0

f f ′

is a Milnor square by [Ryd11, Thm. A.4]. See also [Rao74, Prop. 1] for the case of (separated
noetherian) algebraic spaces. Note that, by [Ryd11, Thm. A.4], the square is also almost a finite
cdh square, except that f ′ is only integral but not necessarily of finite type. If all stacks involved
are of finite type over a noetherian base, then f ′ is of finite type and hence finite.

Example 2.1.5. In Example 2.1.4, if the morphism f is only affine, then the square is called
a Ferrand pushout after [Fer03]. See [Art70, Thm. 6.1] and [AHHLR] for the theory of Ferrand
pushouts in the setting of algebraic spaces and stacks, respectively.

2.2. Proto-excision statements. In this subsection we begin studying the behaviour of the
functor X↦D(X) with respect to various classes of squares of stacks.

Remark 2.2.1. Let X and Y be derived algebraic stacks. For any representable morphism
f ∶ X→ Y, the functor f∗ ∶ D(Y)→D(X) is compact (see e.g. [HLP14, Prop. A.1.5]). If f is affine
(or quasi-affine), then f∗ generates under colimits.

Example 2.2.2 (Base change). Suppose given a commutative square of derived algebraic stacks

X′ Y′

X Y

g

q p

f

where p is representable. If the square is homotopy cartesian, then the induced square

D(Y) D(X)

D(Y′) D(X′)

f∗

p∗ q∗

g∗

satisfies base change by [SAG, Cor. 3.4.2.2]. In fact, this remains valid for non-algebraic stacks
(i.e., for arbitrary derived prestacks, see [HLP14, Prop. A.1.5]). Note moreover that this condition
is both sufficient and necessary for base change.

Affine Nisnevich squares give rise to categorical Milnor squares. More generally, we have:

Theorem 2.2.3 (Excision). Let f ∶ X′ → X be a representable morphism of derived algebraic
stacks. Suppose there exists a closed immersion i ∶ Z→ X with quasi-compact open complement
such that f is an isomorphism infinitely near Z, i.e., the induced morphism X′∧

f−1(Z) → X∧
Z is
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invertible. Then the induced square

D(X) D(X ∖ Z)

D(X′) D(X′ ∖ f−1(Z))

j∗

f∗

is a cartesian square in Presc satisfying base change. If f is affine, then it is moreover a Milnor
square.

Proof. Since open immersions are representable, the base change formula holds by Example 2.2.2
applied to the homotopy cartesian square

X′ ∖ f−1(Z) X′

X ∖ Z X.

j′

f ′ f

j

By Remark 2.2.1 it remains to show the cartesianness. For this, consider the adjunction

D(X)⇄D(X ∖ Z) ×
D(X′∖f−1(Z))

D(X′).

It will suffice to show that the unit and counit are invertible. We will make use of the canonical
exact triangle of endofunctors of D(X)

î♯î
∗ → id→ j∗j

∗ (2.2.a)

where î ∶ X∧
Z ↪ X is the inclusion and î♯ is left adjoint to î∗; see [GR14, 7.1] or [HLP14, Thm. 2.2.3].

The unit evaluated on F ∈ D(X) is the canonical morphism

F → f∗f
∗(F) ×

g∗g∗(F)
j∗j

∗(F),

where g ∶ X′ ∖ f−1(Z)→ X. Using (2.2.a), it will suffice to show that it is invertible after applying

either j∗ or î∗. By the base change formula for j∗ and f∗ (Example 2.2.2), the map becomes

the identity of j∗(F) in the former case and the unit î∗(F) → f̂∗f̂
∗î∗(F) in the latter, where

f̂ ∶ X′∧
f−1(Z) → X∧

Z is the base change (which is invertible by assumption).

For the counit, let FU ∈ D(X ∖ Z), FX′ ∈ D(X′), and FU′ ∈ D(X′ ∖ f−1(Z)) such that there are
isomorphisms f ′∗(FU) ≃ FU′ ≃ j′∗(FX′). It will suffice to show that the canoincal morphisms

j∗(j∗FU ×
g∗FU′

f∗FX′)→ FU

f∗(j∗FU ×
g∗FU′

f∗FX′)→ FX′

are invertible. The first is straightforward using base change, and the second can be checked
using (2.2.a) again (applied to X′ and Z′ this time instead of X and Z). �

Specializing to étale neighbourhoods, we get:
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Corollary 2.2.4 (Étale excision). Suppose given a Nisnevich square of derived algebraic stacks
of the form (2.1.a). Then the induced square

D(X) D(U)

D(X′) D(U′)

j∗

f∗

is cartesian and satisfies base change. In particular, if (2.1.a) is an affine Nisnevich square, then
the above is a Milnor square satisfying base change.

In contrast with the case of Nisnevich squares, Milnor squares of stacks are not generally homotopy
cartesian. Therefore the induced square of stable ∞-categories does not usually satisfy base
change. However, it will at least be precartesian in the following class of examples:

Theorem 2.2.5. Suppose given a Ferrand pushout square of derived algebraic stacks

Z′ X′

Z X.

g

i′

f

i

(2.2.b)

That is, (2.2.b) is cocartesian, i′ is a closed immersion, and g is affine. Then the induced square
in Presc

D(X) D(Z)

D(X′) D(Z′)

i∗

f∗ g∗

i′∗

is a Milnor square. It satisfies base change if and only if (2.2.b) is homotopy cartesian.

Proof. By Remark 2.2.1 it is enough to show precartesianness. By fpqc descent we immediately
reduce to the case where X is affine, hence so are X′, Z and Z′. Consider the corresponding
cartesian square of derived commutative rings

OX OZ

OX′ OZ′ .

Since i is a closed immersion, the homomorphism of derived commutative rings OX → OZ is
surjective on π0, and thus the square is also cartesian on underlying (nonconnective) E1-rings.
Hence the claim follows from [SAG, Thm. 16.2.0.2]. The last part follows from Example 2.2.2. �

2.3. Formal completions of squares.

Construction 2.3.1. Suppose given a commutative square of derived algebraic stacks

Z′ X′

Z X

i′

g f

i
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where i and i′ are closed immersions with quasi-compact open complements. Formally completing
the horizontal arrows (see Subsect. B.1) gives rise to a commutative square

X′∧
Z′ X′

X∧
Z X.

f∧ f (2.3.a)

If the original square is cartesian on underlying classical stacks as in Definition 2.1.3(i), then the
formally completed square is homotopy cartesian (Remark B.1.2). In particular, this holds for
cdh squares and Milnor squares.

We now show that the square (2.3.a) is also cocartesian when the original square is a finite cdh
square or a Milnor square (under mild finiteness assumptions).

Lemma 2.3.2. Suppose given a finite cdh square of bounded noetherian derived algebraic stacks
of the form (2.1.c). Then the formally completed square (2.3.a) is cocartesian.

Proof. Since X is algebraic, it will suffice to show that the square is cocartesian after smooth base
change to any affine derived scheme. Since the latter operation preserves cocartesian squares,
we may assume X is affine. Let X = Spec(A), X′ = Spec(A′), and choose f1, . . . , fm ∈ π0(A) such
that Zcl = Spec(π0(A)/(f1, . . . , fm)). Let f ′1, . . . , f

′
m ∈ π0(A′) denote their respective images. By

[HA, 7.2.4.31], A′ is almost of finite presentation over A. By Example B.1.4 it will suffice to show
that the commutative squares

A A//(fn1 , . . . , fnm)

A′ A′//(f ′1
n
, . . . , f ′m

n)

induce a cartesian square of pro-derived commutative rings as n varies. For this it is enough
that the underlying square of pro-spectra is cartesian, or equivalently that the induced morphism
F → F ′ on horizontal homotopy fibres induces isomorphisms of pro-abelian groups πk(F )→ πk(F ′)
for all k ⩾ 0 (since the derived commutative rings in the square are all bounded above). By the
five lemma it suffices to show that the right- and left-hand vertical arrows are invertible in the
commutative diagram of exact sequences

0 Coker(φk+1) πk(F ) Ker(φk) 0

0 Coker(φ′k+1) πk(F ′) Ker(φ′k) 0

where φk and φ′k denote the induced morphisms {πk(A)}→ {πk(A//(fn1 , . . . , fnm))}n and {πk(A′)→
πk(A′//(f ′1

n
, . . . , f ′m

n))}n, respectively. By [SAG, Lem. 8.4.4.5] or [KST17, Lem. 4.10] the canon-
ical morphisms

{πk(A//(fn1 , . . . , fnm))}n → {πk(A)/(fn1 , . . . , fnm)}n,
{πk(A′//(f ′1

n
, . . . , f ′m

n))}n → {πk(A′)/(f ′1
n
, . . . , f ′m

n)}n

are invertible for all k ⩾ 0. In particular, the morphisms φk and φ′k are all surjective, with kernels
{(fn1 , . . . , fnm) ⋅ πk(A)}n and {(f ′1

n
, . . . , f ′m

n) ⋅ πk(A′)}n, respectively. Since A′ is noetherian and
the morphism f ∶ Spec(A′)→ Spec(A) is finite, the homotopy groups πk(A′) are finitely generated
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over π0(A′) and hence over π0(A). Now it is straightforward to check, using the assumption that
f ∶ Spec(A′)→ Spec(A) induces an isomorphism away from Z, that the canonical morphisms

{(fn1 , . . . , fnm) ⋅ πk(A)}n → {(f ′1
n
, . . . , f ′m

n) ⋅ πk(A′)}n,
are invertible. Indeed for each i, the morphism πk(A)[1/fi] → πk(A′)[1/fi] is invertible by
assumption. This implies in particular that there exists an m such that for all m ≥ n, (fn1 , . . . , fnm)
annihilates the kernel (which is finitely generated by the noetherian assumption) and (fn1 , . . . , fnm) ⋅
πk(A) → {(f ′1

n
, . . . , f ′m

n)πk(A′) is surjective (since πk(A′) is finitely generated over π0(A)). By
the former claim and Artin-Rees lemma we can also ensure (by choosing a larger m if necessary)
that the morphism is injective. The claim follows. �

Corollary 2.3.3. Let X be a bounded noetherian derived algebraic stack. For any closed
immersion i ∶ Z→ X with 0-truncated quasi-compact open complement X ∖ Z, the square

(Xcl)∧Zcl
Xcl

X∧
Z X

is cocartesian, where the right-hand vertical arrow is the inclusion of the classical truncation.

Lemma 2.3.4. Suppose given a Milnor square of noetherian algebraic stacks of the form (2.1.b).
Then the formally completed square (2.3.a) is cocartesian.

Proof. As in the proof of Lemma 2.3.2, we may assume that X (and hence X′) is affine. Let
X = Spec(A), X′ = Spec(A′), and f1, . . . , fm ∈ A such that Z = Spec(A/(f1, . . . , fm)) and Z′ =
Spec(A′/(f1, . . . , fm)A′). By assumption, the square

A A/(fn1 , . . . , fnm)

A′ A′/(fn1 , . . . , fnm)

is cartesian for n = 1, i.e., A→ A′ sends the ideal (f1, . . . , fm) isomorphically onto (f1, . . . , fm)A′.
Then the same holds for all n > 0 and hence by Example B.1.4 it follows that the square

Spec(A′)∧ Spec(A′)

Spec(A)∧ Spec(A)

is cocartesian. �

2.4. Formal Milnor and finite excision. In this subsection we prove the following result,
which shows that if we pass to formal completions in Theorem 2.2.5, then we get a pro-Milnor
square.

Theorem 2.4.1. Suppose given a square of bounded noetherian derived algebraic stacks of the
form

Z′ X′

Z X.

g

i′

f

i
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Assume that i is a closed immersion, f is affine, the square is cartesian on classical truncations,
and the formally completed square (2.3.a) is cocartesian. Then the induced commutative square
in Pro(Presc)

{D(X)} D̂(X∧)

{D(X′)} D̂(X′∧).

î∗

f∗ (f∧)∗

î′∗

(2.4.a)

is a pro-Milnor square satisfying pro-base change.

Proof. By Construction 2.3.1 and the assumption, the square

X′∧
Z′ X′

X∧
Z X

f∧ f

is both cartesian and cocartesian. Thus by Remark B.1.3 it can be represented by either of the
following filtered systems

Z̃′ X′

Z̃ X,

f

Z̃′ X′

Z̃ Z̃⊔Z̃′ X
′,

f

indexed by Z̃ as in Remark B.1.3, where Z̃′ = Z̃×XX′. The left-hand squares are levelwise cartesian
and the right-hand squares are levelwise cocartesian. Thus by Example 2.2.2 and Theorem 2.2.5
the induced square (2.4.a) can be represented alternatively by squares that satisfy levelwise base
change or are levelwise precartesian. In particular, it is a pro-Milnor square. �

Combining this with Lemmas 2.3.2 and 2.3.4 yields:

Corollary 2.4.2 (Formal Milnor excision). Suppose given a Milnor square of noetherian algebraic
stacks of the form (2.1.b). Then the induced commutative square in Pro(Presc)

{D(X)} D̂(X∧)

{D(X′)} D̂(X′∧).

î∗

f∗ (f∧)∗

î′∗

is a pro-Milnor square satisfying pro-base change.

Corollary 2.4.3 (Formal finite excision). Suppose given a finite cdh square of bounded noetherian
derived algebraic stacks of the form (2.1.c). Then the induced commutative square in Pro(Presc)

{D(X)} D̂(X∧
Z)

{D(X′)} D̂(X′∧
Z′)

is a pro-Milnor square satisfying pro-base change.
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Corollary 2.4.4 (Formal nil-excision). Let X be a bounded noetherian derived algebraic stack
with classical truncation Xcl. Then for any closed immersion Z ↪ X with 0-truncated quasi-
compact open complement X ∖ Z, the induced commutative square in Pro(Presc)

{D(X)} D̂(X∧
Z)

{D(Xcl)} D̂((Xcl)∧Zcl
)

is a pro-Milnor square satisfying pro-base change.

3. Categorical Milnor excision

In this section we prove categorical Milnor excision (Theorem A). We will first prove a characteri-
zation of Milnor squares in terms of the “⊙-construction” (see Theorem 3.3.1).

3.1. Adjustments of squares. Of particular interest for us will be the behaviour of Milnor
squares as B′ is allowed to vary (especially among categories of non-geometric origin). For
convenience, we refer to the operation of extending the square ∆ along a colimit-preserving
functor a∗ ∶ B′ → B′′ as “adjustment”.

Definition 3.1.1. Let ∆ be a commutative square in Pres of the form

A B

A′ B′.

f∗

p∗ q∗

g∗
(3.1.a)

Any choice of another presentable ∞-category B′′ and a colimit-preserving functor a∗ ∶ B′ → B′′

determines a new square ∆a of the form

A B

A′ B′′,

f∗

p∗ q∗a
g∗a

where q∗a = a∗ ○ q∗ and g∗a = a∗ ○ g∗. We call ∆a the adjustment of ∆ by a∗.

Lemma 3.1.2. Let ∆ be a commutative square in Pres of the form (3.1.a). Let ∆a be the
adjustment of ∆ by a colimit-preserving functor a∗ ∶ B′ → B′′. Then the exchange transformations
for the respective squares fit into a canonical commutative square

f∗p∗ q∗g
∗

f∗p∗ qa,∗g
∗
a

Ex∆

Ex∆a

where the vertical arrow is the morphism q∗g
∗ → q∗a∗a

∗g∗ ≃ qa,∗g∗a induced by the unit ηa.
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Proof. The diagram in question can be subdivided as follows

f∗p∗ q∗q
∗f∗p∗ q∗g

∗p∗p∗ q∗g
∗

f∗p∗ q∗a∗a
∗q∗f∗p∗ q∗a∗a

∗g∗p∗p∗ q∗a∗a
∗g∗

ηq ∼

ηa

εp

ηa ηa

ηaq ∼ εp

where each square is tautologically commutative. �

Corollary 3.1.3. Let ∆ be a commutative square of presentable stable ∞-categories and colimit-
preserving functors of the form (3.1.a). Suppose that ∆ satisfies base change. For any presentable
stable ∞-category B′′ and colimit-preserving functor a∗ ∶ B′ → B′′, consider the following
conditions:

(i) The functor a∗ ∶ B′ → B′′ is fully faithful.

(ii) The adjustment ∆a satisfies base change.

The implication (i) Ô⇒ (ii) always holds, and the converse holds if g∗ and q∗ generate B′ under
colimits.

Proof. Recall that the first condition is equivalent to invertibility of the unit ηa ∶ id → a∗a
∗.

Therefore the claim follows immediately from Lemma 3.1.2. �

Lemma 3.1.4. Let ∆ be a commutative square in Pres of the form (3.1.a). If a colimit-preserving
functor a∗ ∶ B′ → B′′ induces monomorphisms on mapping spaces (e.g. it is fully faithful, or more
generally if it is a monomorphism of ∞-categories), the following conditions are equivalent:

(i) The square ∆ is precartesian.

(ii) The adjustment ∆a is precartesian.

Proof. This follows from the following basic fact: given a diagram of spaces X → Z ← Y and a
map f ∶ Z → Z ′, the induced map

X ×
Z
Y →X ×

Z′
Y

is invertible when Z → Z ′ is a monomorphism. �

3.2. The ⊙-construction. In this subsection we introduce the main tool in our analysis of
categorical Milnor squares (see Construction 3.2.5). This material closely follows [LT19], where it
is developed in the special case of ∞-categories of module spectra.

Fix a commutative square ∆ in Presc of the form

A B

A′ B′.

f∗

p∗ q∗

g∗

We begin with the following preliminary construction.

Construction 3.2.1. Consider the ∞-category C of triples (X ′, Y, θ), where X ′ ∈ A′ and Y ∈ B
are objects and θ ∶ g∗(X ′)→ q∗(Y ) is a morphism in B′. A morphism (X ′

1, Y1, θ1)→ (X ′
2, Y2, θ2)
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in C is the data of a morphism α ∶X ′
1 →X ′

2 in A′, a morphism β ∶ Y1 → Y2 in B, and a commutative
square

g∗(X ′
1) g∗(X ′

2)

q∗(Y1) q∗(Y2)

g∗(α)

θ1 θ2

q∗(β)

in B′. More precisely, C may be defined by the cartesian square

C Fun(∆1,B′)

A′ ×B B′ ×B′.

This construction is called the lax pullback or oriented fibre product. Note that the usual fibre
product can be identified with the full subcategory of C spanned by objects (X ′, Y, θ) such that θ
is an isomorphism.

Remark 3.2.2. By construction, the ∞-category C is stable and presentable (see [Tam18,
Lemma 8]). The full subcategory of C spanned by objects of the form (X ′,0,0) is canoni-
cally identified with A′, and similarly B is identified with the full subcategory spanned by objects
of the form (0, Y,0). Every object (X ′, Y, θ) ∈ C fits functorially into a cofibre sequence

(0, Y,0)→ (X ′, Y, θ)→ (X ′,0,0). (3.2.a)

In fact, there is a semi-orthogonal decomposition C = ⟨B,A′⟩, see [Tam18, Proposition 10].

Remark 3.2.3. Consider the functor d∗ ∶ A→ C defined as the composite

(p∗, f∗) ∶ A→ A′ ×B′ B ⊆ C.

whose essential image is spanned by objects of the form (p∗(X), f∗(X), θ∆) ∈ C, where X ∈ A
and θ∆ ∶ g∗p∗(X) ≃ q∗f∗(X) is the isomorphism determined by the commutative square ∆. Note
that d∗ is fully faithful if and only if the square ∆ is precartesian. Since d∗ preserves colimits it
admits a right adjoint2 d! ∶ C→ A whose value on any object (X ′, Y, θ) ∈ C can be computed by
the cartesian square

d!(X ′, Y, θ) f∗(Y )

f∗q∗q
∗(Y )

p∗(X ′) p∗g∗g
∗(X ′) p∗g∗q

∗(Y ).

ηq

ηg θ

Remark 3.2.4. For every object X ∈ A, the cofibre sequence (3.2.a) may be evaluated at the
object d∗(X) = (p∗(X), f∗(X), θ∆) ∈ C to get a cofibre sequence

(0, f∗(X),0)→ d∗(X)→ (p∗(X),0,0)
with boundary map

∂ ∶ (p∗(X),0,0)→ Σ(0, f∗(X),0) ≃ (0,Σf∗(X),0).

2The departure from our usual notation (1.1.1) is because of the semi-orthogonal decomposition we will see

below (Remark 3.2.7).
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As the construction is functorial in X, ∂ defines a natural transformation of functors A→ C, up
to which the square

A B

A′ C.

f∗

p∗ (0,Σ,0)

(id,0,0)

⇒ (3.2.b)

commutes. Note that the adjustment of this square by the canonical colimit-preserving functor
c∗ ∶ C→ B′, sending (X ′, Y, θ) to the fibre of θ, is canonically identified with our original square
∆.

The ⊙-construction is obtained by forcing the square (3.2.b) to become commutative, which
amounts to killing the essential image of d∗ ∶ A→ C.

Construction 3.2.5 (⊙-Construction). We let A′ ⊙B′
A B denote the Verdier quotient of the

presentable stable ∞-category C by the essential image of the functor d∗ ∶ A → C. We write

a∗ ∶ C→ A′ ⊙B′
A B for the quotient functor. Thus we have a canonical commutative square ∆0

A B

A′ A′ ⊙B′
A B,

f∗

p∗ q∗0

g∗0

(3.2.c)

where g∗0 = a∗(id,0,0) and q∗0 = Σa∗(0, id,0). Since the composite

A
d∗Ð→ C

c∗Ð→ B′

is canonically null-homotopic, the colimit-preserving functor c∗ ∶ C→ B′ descends to a canonical
colimit-preserving functor

b∗ ∶ A′ ⊙B′
A B→ B′.

By construction, the adjustment of ∆0 by b∗ is canonically identified with ∆.

Remark 3.2.6. Upon application of the quotient functor a∗ ∶ C→ A′⊙B′
A B, the cofibre sequences

of Remark 3.2.2 induce cofibre sequences of the form

Ωq∗0(Y )→ a∗(X ′, Y, θ)→ g∗0(X ′)
for every object (X ′, Y, θ) ∈ C.

Remark 3.2.7. By construction, we have a semi-orthogonal decomposition C = ⟨A,A′ ⊙B′
A B⟩.

In particular there is a cofibre sequence

d∗d
! εdÐ→ id

ηaÐ→ a∗a
∗

of natural transformations C→ C.

Lemma 3.2.8.

(i) If p∗ ∶ A→ A′ generates its codomain under colimits, then so does q∗0 ∶ B→ A′ ⊙B′
A B.

(ii) If f∗ ∶ A→ B generates its codomain under colimits, then so does g∗0 ∶ A′ → A′ ⊙B′
A B.

(iii) If q∗ ∶ B→ B′ generates its codomain under colimits, then so does b∗ ∶ A′ ⊙B′
A B→ B′.

(iv) If p∗, f∗ and q∗f∗ ≃ g∗p∗ are compact, then so is a∗.

(v) If q∗ is compact, then so is c∗.
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(vi) If f∗, p∗, and q∗ are compact, then so is b∗.

(vii) If p∗ and f∗ are compact, then so are q∗0 and g∗0 .

Proof.

(i) If the essential image of p∗ generates A′ under colimits, then it follows from Remark 3.2.2
that C is generated under colimits by objects of the form (p∗(X),0,0) and (0, Y,0) as X
and Y vary among objects of A and B, respectively. In particular, the Verdier quotient

A′ ⊙B′
A B is generated under colimits by the images of such objects under the quotient

functor a∗ ∶ C → A′ ⊙B′
A B, i.e., by objects of the forms g∗0p

∗(X) and q∗0(Y ). But the
commutativity of ∆0 (3.2.c) provides isomorphisms

g∗0p
∗(X) ≃ q∗0f∗(X)

in A′ ⊙B′
A B for every X ∈ A.

(ii) Similar to (i).

(iii) By assumption, B′ is generated under colimits by the essential image of q∗ ≃ b∗q∗0 . Hence
b∗ also generates B′ under colimits.

(iv) Since a∗ generates under colimits, it will suffice to show that a∗a
∗ preserves filtered colimits.

Using the cofibre sequence of Remark 3.2.7, we reduce to showing that d! preserves filtered
colimits. This follows immediately from the description of Remark 3.2.3 (in view of the
assumptions).

(v) Note that the right adjoint c∗ ∶ B′ → C is given by the formula Y ′ ↦ (0,Σq∗(Y ′),0).

(vi) Recall that a∗ ∶ A′ ⊙B′
A B → C is conservative (as a∗ is essentially surjective) and colimit-

preserving by (iii). Therefore b∗ preserves colimits if and only if a∗b∗ ≃ c∗ does. This is
true under the assumptions by (iv).

(vii) By the definition of q∗0 and g∗0 , this follows immediately from (iii).

�

3.3. Characterization of Milnor squares. The following result shows that every Milnor square
∆ satisfying base change is isomorphic to one coming from the ⊙-construction. More precisely, it

is an adjustment of the square ∆0 (3.2.c) along the canonical functor b∗ ∶ A′ ⊙B′
A B→ B′, which is

an equivalence.

Theorem 3.3.1. Let ∆ be a Milnor square of presentable stable ∞-categories of the form

A B

A′ B′.

f∗

p∗ q∗

g∗

Then we have:

(i) The square ∆0 (3.2.c) satisfies base change.

(ii) If ∆ satisfies base change, then the canonical functor

b∗ ∶ A′ ⊙B′
A B→ B′

is an equivalence. In particular, there is an isomorphism of squares ∆ ≃ ∆0.
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Lemma 3.3.2. Let ∆ be a commutative square of presentable stable ∞-categories and colimit-
preserving functors as above. Let φq0 denote the fibre of the unit ηq0 , and similarly for φq. Then
there is a canonical isomorphism f∗f∗φq ≃ φq0 such that the diagram

f∗f∗φq f∗f∗

φq0 id

f∗f∗can

εf

can

commutes, where can denotes the canonical inclusion of the respective fibre.

Proof. Precomposing the cofibre sequence of Remark 3.2.7 with the inclusion (0, id,0) ∶ B → C

and projecting the result back to B yields the cofibre sequence

f∗d!(0, id,0)→ id
ηq0ÐÐ→ q0,∗q

∗
0

of natural transformations B→ B. Now apply the description of d! given in Remark 3.2.3. �

Lemma 3.3.3. Let ∆ be a commutative square of presentable stable ∞-categories and colimit-
preserving functors as above. If ∆ is precartesian, then the exchange transformation for ∆0

induces an isomorphism

f∗p∗p
∗

Ex∆0
p∗

ÐÐÐÐ→ q0,∗g
∗
0p

∗ ≃ q0,∗q
∗
0f

∗.

In particular, if ∆ is a Milnor square, then ∆0 satisfies base change.

Proof. Note that the second claim follows from the first in view of the fact that p∗ generates A′

under colimits and p∗ and q∗0 are compact (Lemma 3.2.8). For the main claim, by construction of
the exchange transformation, we have a commutative square

f∗ f∗p∗p
∗

f∗ q0,∗q
∗
0f

∗.

ηp

ηq0

(3.3.a)

Taking fibres horizontally, we obtain by Lemma 3.3.2 the following commutative diagram:

f∗φp f∗ f∗p∗p
∗

f∗f∗φqf
∗ f∗f∗f

∗

φq0f
∗ f∗ q0,∗q

∗
0f

∗

can ηp

f∗ηf

can

εff
∗

can ηq0

The upper vertical left-hand arrow is invertible as soon as ∆ is precartesian, i.e., when the
right-hand square below is cartesian:

φp id p∗p
∗

f∗φqf
∗ f∗f

∗ f∗q∗q
∗f∗ ≃ p∗g∗g∗p∗

can

ηf

ηp

ηg

can ηq

Thus in that case we find that (3.3.a) is cartesian. �
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Proof of Theorem 3.3.1. The first claim follows from Lemma 3.3.3. For the second, assume that
∆ satisfies base change. Since ∆ is the adjustment of ∆0 by b∗, and since b∗ is compact by
Lemma 3.2.8, this implies by Corollary 3.1.3 that b∗ is fully faithful. By Lemma 3.2.8, b∗ generates

B′ under colimits. Since A′ ⊙B′
A B is cocomplete, it now follows that b∗ is an equivalence. �

3.4. Categorical Milnor excision. Let E be a functor on the ∞-category of small stable
∞-categories with values in a stable ∞-category. Recall that E is called a localizing invariant if
it sends exact sequences to exact triangles. See e.g. [BGT13], except that we do not assume that
E commutes with filtered colimits.

Example 3.4.1. The main example we have in mind is nonconnective algebraic K-theory, as
defined in [BGT13, Sect. 9] or via the generalized Bass–Thomason–Trobaugh construction as in
[CK20, Thm. C]. We denote it simply by K.

Notation 3.4.2. Let E be a localizing invariant. For any compactly generated stable ∞-category
C, we set for convenience

E(C) ∶= E(Cω)
where Cω denotes the full subcategory of compact objects.

Theorem 3.4.3. Let E be a localizing invariant. Let ∆ be a Milnor square of compactly
generated stable ∞-categories of the form

A B

A′ B′.

f∗

p∗ q∗

g∗

If ∆ satisfies base change, then the induced square E(∆)

E(A) E(B)

E(A′) E(B′)

f∗

p∗ q∗

g∗

is cartesian.

Theorem 3.4.3 immediately follows, in view of Theorem 3.3.1, from the following statement:

Proposition 3.4.4. Let the notation be as in Theorem 3.4.3. Then the induced square E(∆0)

E(A) E(B)

E(A′) E(A′ ⊙B′
A B′)

f∗

p∗ q∗0

g∗0

is cartesian.

Proof. First note that the Verdier localization sequence (see Remark 3.2.7)

A
d∗Ð→ C

a∗Ð→ A′ ⊙B′
A B

induces a cofibre sequence

E(A) d∗Ð→ E(C) a∗Ð→ E(A′ ⊙B′
A B).
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Similarly, E sends the Verdier localization sequence B → C → A′ (Remark 3.2.2) to a cofibre
sequence. Moreover, both functors in this sequence have compact right adjoints which hence yield
a splitting

E(C) ≃ E(A′)⊕E(B)
given by the projections C→ A′ and C→ B. Under this isomorphism, the map d∗ ∶ E(A)→ E(C)
is induced by the maps p∗ ∶ E(A) → E(A′) and f∗ ∶ E(A) → E(B), and the map a∗ ∶ E(C) →
E(A′ ⊙B′

A B) splits thanks to Remark 3.2.6 as

a∗ ∶ E(C) ≃ E(A′)⊕E(B)
g∗0−q

∗
0ÐÐÐ→ E(A′ ⊙B′

A B).
Thus we end up with a cofibre sequence of the form

E(A) (p
∗,f∗)ÐÐÐÐ→ E(A′)⊕E(B)

g∗0−q
∗
0ÐÐÐ→ E(A′ ⊙B′

A B).
Recall that this is equivalent to the assertion that E(∆0) is cartesian. �

3.5. Categorical pro-Milnor excision. We now turn our attention to the behaviour of lo-
calizing invariants with respect to pro-Milnor squares (Definition 1.4.1). Under some strong
assumptions, we will be able to show a pro-variant of Theorem 3.4.3 (see Theorem 3.5.11).

We begin with some preliminary considerations on isomorphisms of pro-systems in Pro(Presc).
Definition 3.5.1. Let {f∗n ∶ Cn →Dn}n be a cofiltered system in Presc. We say that {f∗n}n is a
pro-equivalence if it induces an isomorphism in Pro(Presc).
While a general criterion for pro-equivalences seems out of reach, we will show that there is a
large enough supply for our purposes. First note the following class of examples:

Example 3.5.2. Let {φn ∶ An → Bn}n be a cofiltered system of homomorphisms of connective
bounded above E1-rings. If {φn}n induces an isomorphism of underlying pro-spaces, then it
follows from [LT19, Lem. 2.28] that it induces an isomorphism of pro-objects in the ∞-category
of E1-rings. In particular, by functoriality of the construction R ↦ LModR (as a functor from the
∞-category of E1-rings to Presc), we deduce that the extension of scalars functors

{φ∗n ∶ LModAn → LModBn}n
define a pro-equivalence.

Example 3.5.3. Since passage to underlying pro-objects preserves finite limits and colimits, it
follows that pro-equivalences are closed under finite (co)limits.

We also have closure under certain colocalizations (and a dual statement for localizations that we
leave to the reader to formulate):

Lemma 3.5.4. Suppose given a cofiltered system of commutative squares in Presc

C′n Cn

D′
n Dn

in,∗

g∗n f∗n
in,∗

where in,∗ is fully faithful for every n, with right adjoint i!n. Assume that for every n, the square
is horizontally right-adjointable: that is, the base change transformation

g∗ni
!
n → i!nf

∗
n

is invertible. If f∗ is a pro-equivalence, then so is g∗.
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Proof. By assumption, there exists a morphism v∗ ∶ {Dn}n → {Cn}n in Pro(Presc) which is
inverse to f∗ = {f∗n}n. Let u∗ ∶ {D′

n}n → {C′n}n be the morphism in Pro(Pres) defined as the
composite u∗ = i!v∗i∗. More explicitly, we may represent v∗ by the following data:

(∗) For every index n, there exists an index n′ > n, a compact colimit-preserving functor
v∗n ∶Dn′ → Cn, isomorphisms

f∗nv
∗
n ≃ tr∗ ∶Dn′ →Dn, v∗nf

∗
n′ ≃ tr∗ ∶ Cn′ → Cn,

and a homotopy coherent system of compatibilities between this data, where we write tr∗

for the transition functors.

In terms of such a choice, the morphism u∗ is represented by the colimit-preserving functors

u∗n ∶D′
n′

i∗Ð→Dn′
v∗nÐ→ Cn

i!Ð→ C′n

where we omit some decorations for simplicity. Note that we have canonical isomorphisms of
functors

g∗nu
∗
n ≃ g∗ni!v∗ni∗ ≃ i!f∗nv∗ni∗ ≃ i!tr∗i∗ ≃ i!i∗tr∗ ≃ tr∗

u∗ng
∗
n′ ≃ i!v∗ni∗g∗n′ ≃ i!v∗nf∗n′i∗ ≃ i!tr∗i∗ ≃ i!i∗tr∗ ≃ tr∗,

where we have used the assumptions that i∗ and i! commute with the vertical arrows. Note
moreover that u∗n is compact: since g∗n′ generates under colimits, this follows from the fact that
u∗ng

∗
n′ ≃ tr∗ is compact. Thus the morphism u∗ is contained in the subcategory Pro(Presc) and

defines an inverse to g∗ = {g∗n}n in the latter. �

In the projectively generated case (see [HTT, Def. 5.5.8.23]), and when the mapping pro-spaces
are uniformly bounded, we can prove the following criterion for pro-equivalence.

Lemma 3.5.5. Let {Cn}n and {Dn}n be cofiltered systems in Presc and let {f∗n ∶ Cn → Dn}n
be a cofiltered system of colimit-preserving compact projective3 functors which generate their
codomains under colimits. Consider the following conditions:

(i) For every n there exists a small set of compact projective generators {Cαn}α of Cn such
that every transition functor Cn → Cm sends Cαn ↦ Cαm for every α and every m < n.

(ii) For every pair of indices α and β, the map

{MapsCn(C
α
n ,C

β
n)}n → {MapsDn

(f∗n(Cαn ), f∗n(Cβn))}n
is an isomorphism of pro-spaces.

(iii) There exists an integer c ⩾ 0 such that the pro-spaces

{MapsCn(C
α
n ,C

β
n)}n

are c-truncated for all α and β.

Then {f∗n}n induces a pro-equivalence.

Proof. For every n, consider the full subcategory An ⊆ Cn spanned by finite direct sums of the
objects Cαn (as α varies). Then An is an additive ∞-category for which the inclusion An ⊆ Cn
extends to an equivalence PΣ(An) ≃ Cn by [HTT, Prop. 5.5.8.25]. Let Cn ∈ Cn be the direct sum
of the objects Cαn (as α varies), and let A+

n ⊆ Cn be the full subcategory generated by Cn under
finite direct sums and direct summands. By [SAG, Ex. C.1.5.11] this is an idempotent-complete

3A functor f∗ ∶ C→ D is called compact projective if its right adjoint preserves sifted colimits.
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additive ∞-category equipped with an equivalence PΣ(A+
n) ≃ LModcn

An , where An is the connective
endomorphism algebra of Cn (as in [SAG, Rem. C.2.1.9]). Then we have inclusions An ⊆ A+

n

which are closed under finite direct sums and hence give rise by [HTT, Prop. 5.5.8.15] to fully
faithful colimit-preserving functors

i∗ ∶ Cn ≃ PΣ(An)→ PΣ(A+
n) (3.5.a)

whose right adjoints i! are restriction along An ⊆ A+
n. Similarly let Dα

n ∈ Dn be the images of
Cαn , Bn ⊆Dn the additive subcategory they generate, Dn ∈Dn their direct sum over α, and Bn
the connective endomorphism algebra of Dn. Since the functors f∗n are compact projective and
generate under colimits, the objects Dα

n form a small set of compact projective generators of Dn.
Thus we similarly get functors i∗ ∶Dn → LModcn

Bn fitting into commutative squares

Cn LModcn
An

Dn LModcn
Bn ,

i∗

f∗n φ∗n
i∗

where φ∗n is extension of scalars along the homomorphism φn ∶ An → Bn induced by f∗n . Since
{An}n and {Bn}n are bounded above by assumption, we see by Example 3.5.2 that the functors
φ∗n induce a pro-equivalence. To conclude it remains to check the criteria of Lemma 3.5.4 for the
above square.

The functors (3.5.a) preserve compact projective objects by construction, so we see that i∗ is
compact projective. It remains to show that i! commutes with the vertical arrows. Since all
functors in the square commute with sifted colimits, it will suffice to evaluate on the object
An ∈ LModcn

An . By construction, the horizontal arrows send

An ↦ Cn,

Bn ↦Dn,

whence the claim. Thus the conditions of Lemma 3.5.4 are satisfied, and {f∗n}n is a pro-
equivalence. �

Under the conditions of Lemma 3.5.5, the ∞-categories Cn and Dn will never be stable, but only
prestable. Nevertheless, by stabilization, we may deduce a following variant of Lemma 3.5.5 for
certain presentable stable ∞-categories.

Definition 3.5.6. Let {Ci}i∈I be a diagram of presentable stable ∞-categories and compact
colimit-preserving functors indexed by a small ∞-category I. Suppose given full subcategories
(Ci)⩾0 ⊆ Ci for every i ∈ I, closed under colimits and extensions, and collections {Cαi }α∈S of
compact projective objects of (Ci)⩾0 indexed by some small set S. We will say that the collections
{Cαi }α form a set of projective generators for {Ci}i if the following conditions hold:

(i) For every i ∈ I, the objects {Cαi }α∈S generate (Ci)⩾0 under colimits and extensions, and
the objects {Σ−n(Cαi )}n⩾0,α generate Ci under colimits.

(ii) For every morphism i→ j in I, the induced functor u∗i,j ∶ Ci → Cj sends Cαi ↦ Cαj for every

α ∈ S, and its right adjoint ui,j,∗ sends (Cj)⩾0 to (Ci)⩾0.

Remark 3.5.7. For I = ∆0, Definition 3.5.6 is essentially a presentable version of the notion of
weighted ∞-category as discussed in Subsect. 5.1. For I = ∆1, it corresponds to a weight-exact
functor which generates under colimits.
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Remark 3.5.8. Using [HA, Prop. 1.4.4.11, Lem. 7.2.2.6] we can recast Definition 3.5.6 in terms
of t-structures: there are t-structures on the Ci—accessible, right-complete, and compatible with
filtered colimits—with connective parts (Ci)⩾0 generated under colimits and extensions by {Cαi }α,
such that the functors u∗i,j and their right adjoints are right t-exact.

Remark 3.5.9. In case I has an initial object 0, we will only specify the generators Cα0 ∈ C0, so
that Cαi ∈ Ci are implicitly defined as the images by the functor C0 → Ci for every i ∈ I. If we
have a cofiltered system of I-indexed diagrams {Cn,i}n∈Λ,i∈I, where Λ is cofiltered, then projective
generators of {Cn,i}n,i (as a Λ × I-indexed diagram) will be similarly specified by a small set S
and a collection of objects {Cαn,0}α∈S .

We can now reformulate Lemma 3.5.5 as follows:

Corollary 3.5.10. Suppose given a cofiltered system {f∗n ∶ Cn → Dn}n of presentable stable
∞-categories and compact colimit-preserving functors. Suppose there exists a small set S and
objects {Cαn}α∈S of Cn for every n, which projectively generate {f∗n}n as a cofiltered system of
∆1-indexed diagrams. Then {f∗n}n is a pro-equivalence in case the following conditions hold:

(i) For every pair α, β, the map

{MapsCn(C
α
n ,C

β
n)}n → {MapsDn

(f∗n(Cαn ), f∗n(Cβn))}n
is an isomorphism of pro-spaces.

(ii) There exists an integer c ⩾ 0 such that the mapping pro-spaces

{MapsCn(C
α
n ,C

β
n)}n

are c-truncated for all α, β.

We now prove our categorical pro-excision statement.

Theorem 3.5.11. Let E be a localizing invariant. Let ∆ be a pro-Milnor square of presentable
stable ∞-categories which can be represented by a cofiltered system {∆n}n of levelwise Milnor
squares

An Bn

A′
n B′

n

f∗n

p∗n q∗n
g∗n

satisfying the following conditions:

(i) There exists a small set S and objects {Aαn}α∈S of An for every n, which projectively
generate {∆n}n as a cofiltered system of (∆1 ×∆1)-indexed diagrams.

(ii) There is an integer c ⩾ 0 such that for all α, β, the mapping pro-space

{MapsB′
n
(g∗np∗n(Aαn), g∗np∗n(Aβn))}n

is c-truncated.

If ∆ satisfies pro-base change, then the induced square of pro-objects

{E(An)}n {E(Bn)}n

{E(A′
n)}n {E(B′

n)}n

f∗n

p∗n q∗n
g∗n
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is cartesian.

We will need the following lemma.

Lemma 3.5.12. Suppose given a precartesian square of presentable stable ∞-categories and
compact colimit-preserving functors

A B

A′ B′.

f∗

p∗ q∗

g∗

Assume that the square is projectively generated by a collection {Aα}α of objects of A. Then the

functors q∗0 ∶ B→ A′ ⊙B′
A B and b∗ ∶ A′ ⊙B′

A B→ B′ are both projectively generated (as ∆1-indexed
diagrams). In particular, the collection {q∗0f∗(Aα)}α forms a set of projective generators of the

⊙-construction A′ ⊙B′
A B.

Proof. We consider the t-structures defined in Remark 3.5.8. To simplify the notation set

Q ∶= A′ ⊙B′
A B. By [HA, Prop. 1.4.4.11] there is a t-structure whose connective part Q⩾0 is the

cocomplete stable subcategory generated by q∗0(B⩾0).
It follows from the assumption that each of the functors in the given square generates under
colimits, and is compact projective (the latter by [HA, Lem. 7.2.2.6], since it has right t-exact
right adjoint by assumption). Hence by Lemma 3.2.8 the functors q∗0 and b∗ also generate under
colimits and are compact. It remains to show that are right t-exact, and have right t-exact right
adjoints. The functor q∗0 is right t-exact by construction. Let us show q0,∗ is right t-exact. Since
q∗0f

∗ generates under colimits and is right t-exact, it will suffice to show that q0,∗q
∗
0f

∗ is right
t-exact. Since ∆ is precartesian, Lemma 3.3.3 implies that the latter functor is identified with
the right t-exact functor f∗p∗p

∗.

Since q∗0 generates under colimits and b∗q∗0 ≃ q∗ is right t-exact, it follows that b∗ ∶ Q→ B′ is also
right t-exact. Finally, using the fact that q0,∗ is conservative and t-exact, it follows from the fact
that q0,∗b∗ ≃ q∗ is right t-exact that b∗ itself is right t-exact. �

The following key lemma shows that any pro-Milnor square as in Theorem 3.5.11 can be levelwise
represented by squares coming from the ⊙-construction.

Lemma 3.5.13. Let ∆ be a pro-Milnor square as in Theorem 3.5.11. If ∆ satisfies pro-base
change, then there exists an isomorphism

{∆n,0}n → {∆n}n

of commutative squares in Pro(Presc), where every ∆n,0 is obtained from ∆n via the ⊙-
construction.

Proof. Note that by Theorem 3.3.1(i), the induced square ∆n,0

An Bn

A′
n A′

n ⊙
B′
n

An
Bn
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satisfies base change for every n. To simplify the notation, set Qn ∶= A′
n ⊙

B′
n

An
Bn. It remains only

to show that the functors

b∗n ∶ Qn → B′
n

define a pro-equivalence as n varies. Since q∗n ≃ b∗nq∗n,0 generates B′
n under colimits, so does b∗n. By

Lemma 3.5.12, the functor b∗n is projectively generated for every n (by the objects Bαn = f∗n(Aαn)).
Thus in order to apply Corollary 3.5.10 it will suffice to show that b∗n induce isomorphisms on
mapping pro-spaces. For this we need a pro-version of Corollary 3.1.3. By Lemma 3.1.2 we have
for every n a commutative square of natural transformations

f∗npn,∗ qn,0,∗g
∗
n,0

f∗npn,∗ qn,∗g
∗
n.

Ex∆n,0

ηbn

Ex∆n

By Lemma 3.3.3, the upper arrow is invertible for every n. Evaluating at the object A′α
n ∶=

p∗n(Aαn) ∈ A′
n for any α, applying MapsBn(B

β
n ,−) for any β, and passing to pro-systems yields a

commutative diagram of pro-spaces

{MapsBn(B
β
n , f

∗
npn,∗(A′α

n ))}n {MapsBn(B
β
n , qn,0,∗g

∗
n,0(A′α

n ))}n

{MapsBn(B
β
n , f

∗
npn,∗(A′α

n ))}n {MapsBn(B
β
n , qn,∗g

∗
n(A′α

n ))}n

Ex∆n,0

Ex∆n

where the upper arrow is invertible in Pro(Spc). The claim is that the right-hand vertical arrow
is invertible in Pro(Spc). Since ∆ satisfies pro-base change, it can be represented by some
cofiltered system {∆′

n}n for which ∆′
n satisfies base change for every n. Choose an isomorphism

{∆n}n ≃ {∆′
n}n (of squares in Pro(Presc)); re-indexing if necessary, we may assume that it is

induced by levelwise morphisms ∆n →∆′
n. By functoriality, such an isomorphism gives rise to

an identification between the lower arrow in the diagram above and the analogous construction
{Ex∆′

n
}n for the squares ∆′

n. Since Ex∆′
n

is invertible for every n, we conclude that the lower
arrow above is also invertible. �

Proof of Theorem 3.5.11. Combine Lemma 3.5.13 and Proposition 3.4.4. �

4. Localizing invariants of algebraic stacks

Definition 4.0.1. Let X be a derived algebraic stack which is perfect in the sense of Subsect. A.3.
For instance, suppose X is ANS (affine diagonal and nice stabilizers, see Definition A.1.2 and
Theorem A.3.2). Then we set

E(X) ∶= E(D(X)) ≃ E(Perf(X))
for any localizing invariant E. For example, we have the nonconnective algebraic K-theory
spectrum K(X).
Remark 4.0.2. Let X and Y be perfect derived algebraic stacks. Then for any morphism
f ∶ X→ Y, the functor f∗ ∶ D(Y)→D(X) preserves perfect complexes and is therefore compact.
In particular, there is an induced map

f∗ ∶ E(Y)→ E(X)
for any localizing invariant E.
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4.1. Étale excision. See Subsect. A.3 for the notion of perfectness of stacks.

Theorem 4.1.1. Let f ∶ X′ → X be a representable morphism of perfect derived algebraic stacks.
Suppose there exists a closed immersion i ∶ Z → X with quasi-compact open complement such
that f is an isomorphism infinitely near Z, i.e., the induced morphism X′∧

f−1(Z) → X∧
Z is invertible.

Then for every localizing invariant E, the induced square

E(X) E(X ∖ Z)

E(X′) E(X′ ∖ f−1(Z))

j∗

f∗

is cartesian.

Proof. Apply the criterion of [Tam18, Thm. 18] (cf. [Hoy18, Cor. 13]) to the cartesian square
in Theorem 2.2.3. Let j′ ∶ U′ → X′ denote the open immersion complementary to f−1(Z). Fully
faithfulness of the functor j′∗ ∶ D(U′) → D(X′), i.e., invertibility of the unit id → j′∗j′∗, follows
from the base change formula for the self-intersection U′ ×R

X′ U
′ ≃ U′. �

Specializing to étale neighbourhoods gives:

Corollary 4.1.2 (Étale excision). Suppose given a Nisnevich square of derived algebraic stacks
of the form

U′ X′

U X

j′

g f

j

where X and X′ are perfect. Then for every localizing invariant E, the induced square

E(X) E(U)

E(X′) E(U′)

j∗

f∗

is cartesian.

Remark 4.1.3. Note that for affine Nisnevich squares (i.e., squares as above where f is affine),
Corollary 4.1.2 can be deduced alternatively from Corollary 2.2.4 and Theorem 3.4.3. This weaker
statement would in fact suffice for our purposes in this paper.

Remark 4.1.4. Corollary 4.1.2 also holds for squares as above where f is not assumed repre-
sentable. This can also be deduced from [Tam18, Thm. 18], e.g. using Nisnevich descent for the
presheaf of ∞-categories X↦D(X) and [Kha19, Thm. 2.2.7].

Remark 4.1.5. By [Kha19, Thm. 2.2.7], Corollary 4.1.2 implies that the presheaf of spectra
X↦ E(X) satisfies descent for the Grothendieck topology generated by Nisnevich squares. The
discussion of [HK19, Prop. 2.8] goes through mutatis mutandis in the derived setting to show
that this topology is generated by a stacky variant of the usual notion of Nisnevich covers.

4.2. Formal Milnor and finite excision.
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Theorem 4.2.1. Suppose given a square of bounded derived algebraic stacks

Z′ X′

Z X.

g

i′

f

i

with X noetherian ANS. Assume that i is a closed immersion, f is affine, the square is cartesian
on classical truncations, and the formally completed square (2.3.a) is cocartesian. Then for any
localizing invariant E, the induced square

{E(X)} Ê(X∧
Z)

{E(X′)} Ê(X′∧
Z′)

is pro-cartesian.

Proof. By Corollary 4.1.2, Theorem A.1.8, Proposition A.1.9 and Theorem A.3.2, we may reduce
to the case X = [X/G], where G is an embeddable nice group scheme over an affine scheme S, and
X is an affine derived S-scheme with G-action. Now we may apply the criterion of Theorem 3.5.11
to the square

{D(X)} D̂(X∧
Z)

{D(X′)} D̂(X′∧
Z′)

which is pro-Milnor and satisfies pro-base change by Theorem 2.4.1. The assumptions of Theo-
rem 3.5.11 are verified by Remark 2.2.1 and Proposition A.3.4. �

Corollary 4.2.2 (Formal Milnor excision). Suppose given a Milnor square of noetherian algebraic
stacks of the form (2.1.b). Then for any localizing invariant E, the induced square

{E(X)} Ê(X∧
Z)

{E(X′)} Ê(X′∧
Z′).

î∗

f∗ (f∧)∗

î′∗

is pro-cartesian.

Corollary 4.2.3 (Formal finite excision). Suppose given a finite cdh square of bounded derived
stacks

Z′ X′

Z X

f

i

with X noetherian ANS. Then for any localizing invariant E, the induced square

{E(X)} Ê(X∧
Z)

{E(X′)} Ê(X′∧
Z′)

is pro-cartesian.
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Corollary 4.2.4 (Formal nil-excision). Let X be a bounded noetherian ANS derived stack with
classical truncation Xcl, and let Z ↪ X be a closed immersion with 0-truncated quasi-compact
open complement. Then for any localizing invariant E, the induced square

{E(X)} Ê(X∧
Z)

{E(Xcl)} Ê((Xcl)∧Zcl
)

is pro-cartesian.

4.3. Derived blow-ups. Given a quasi-smooth closed immersion of derived algebraic stacks, one
can form the derived blow-up X̃ in the sense of [KR18a, 4.1.6], which fits in a commutative square

D X̃

Z X,

iD

q p

i

where q is the projection of the projectivized normal bundle E = P(NZ/X) and iD is a virtual
Cartier divisor, i.e., a quasi-smooth closed immersion of virtual codimension 1. See [KR18a]
for background on quasi-smoothness and virtual Cartier divisors. This square is not homotopy
cartesian, but it is an abstract blow-up square in the sense of Definition 2.1.3. The following
result was proven in [Kha20, Thm. A]:

Theorem 4.3.1. Let i ∶ Z→ X be a quasi-smooth closed immersion of derived algebraic stacks.
Then for every localizing invariant E, there is a cartesian square

E(X) E(Z)

E(X̃) E(D).

i∗

p∗ q∗

In this subsection, we derive a formal version of this statement. This is a special case of formal
proper excision.

Proposition 4.3.2. Let the notation be as above and assume that X is a noetherian ANS stack.
Then the square

{E(X)} Ê(X∧
Z)

{E(X̃)} Ê(X̃∧
D)

is pro-cartesian.

Remark 4.3.3. Note that if X is ANS, then so is the derived blow-up X̃ by Lemma A.1.7.

Remark 4.3.4. If X has the resolution property, the quasi-smooth closed immersion i ∶ Z→ X can
be realized as the derived zero locus of some section s of a vector bundle V on X (Remark A.2.3).
For every integer n, let Z(n) → X denote the derived zero locus of s⊗n. By Lemma B.1.5, the
formal completion of X can then be represented by

X∧ ≃ {Z(n)}n.
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Similarly, it follows from Remark B.1.2 that the formal completion of the derived blow-up can be
represented by

X̃∧ ≃ {Z′(n)}n,
where Z′(n) denotes the derived base change Z(n)×X X̃.

Construction 4.3.5. Assume that X has the resolution property and let Z(n) be as in Re-

mark 4.3.4. The derived blow-up square defining X̃ is the derived base change of the classical
blow-up square

DV Ṽ

X V
0

of the zero section 0 ∶ X → V. Let X(n) denote the nth infinitesimal thickening of the latter.

Write DV(n) for the (classical) fibre product of X(n) and Ṽ over V (which is an effective Cartier

divisor in Ṽ) and let Z′V(n) denote the derived fiber product. The two commutative squares

DV(n) Ṽ

X(n) V,

Z′V(n) Ṽ

X(n) V

(4.3.a)

define by derived base change to X the squares

D(n) X̃

Z(n) X,

Z′(n) X̃

Z(n) X.

(4.3.b)

The right-hand square is homotopy cartesian. The left-hand square is a derived blow-up square
for n = 1, and otherwise is a thickening of the latter.4

The ind-stack {D(n)} gives another presentation of X̃∧:

Lemma 4.3.6. If X is a noetherian algebraic stack, then the morphisms D(n)→ Z′(n) induce
an isomorphism

{D(n)}n → {Z′(n)}n ≃ X̃∧

of ind-stacks over X̃.

Proof. By derived base change, it will suffice to show the claim for the analogous constructions
over Ṽ. Note that both squares in (4.3.a) consist of classical stacks, with the sole exception of
Z′V(n). In fact, the morphism DV(n)→ Z′V(n) exhibits the domain as the classical truncation of
the codomain. Thus the morphism

{DV(n)}n → {Z′V(n)}n
over Ṽ can be identified with the morphism from the classical formal completion of Ṽ (in the
classical stack DV) to the formal completion in the sense of Definition B.1.1, and is invertible by
Remark B.1.6. �

4In fact, D(n) can be described as the n-fold sum nD of the virtual Cartier divisor D, but we do not need this

here.
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Notation 4.3.7. To simplify the notation, we will compress commutative squares of ind-stacks
of the form

Z′ X′

Z X,

where the horizontal arrows can be represented by levelwise closed immersions, into morphisms
of pairs

(X′,Z′)→ (X,Z).
We will say that such a morphism is an E-equivalence if it induces an isomorphism

Ê(X,Z)→ Ê(X′,Z′),

where Ê(X,Z) is defined as the fibre of Ê(X)→ Ê(Z).
To show Proposition 4.3.2, we will need to compare the pairs

{(X̃,Z′(n))}n and {(X,Z(n))}n,
up to E-equivalence. By Theorem 4.3.1, we have E-equivalence of the pair {(X,Z(n))}n with

its derived blow up {(X̃(n),D(n,n))}n, which is E-equivalent to the pair {(X̃(n),Z′(n,n))}n by

Lemma 4.3.6, where Z′(n,n)) is the derived pullback of Z(n) in X̃(n). The goal is therefore to

understand the relation between {(X̃(n),Z′(n,n))}n and {(X̃,Z′(n))}n. For this purpose it will
be convenient to introduce the following bi-indexed construction.

Construction 4.3.8. For every pair of natural numbers n and k, consider the following two
commutative squares:

DV(n, k) Ṽ(k)

X(n) V,

Z′V(n, k) Ṽ(k)

X(n) V

(4.3.c)

Here Ṽ(k) is the blow-up of V centred in X(k). The left-hand square is classically cartesian
and the right-hand square is homotopy cartesian. As above, all stacks are underived except for
Z′V(n, k).
Now by derived base change to X we get the squares

D(n, k) X̃(k)

Z(n) X,

Z′(n, k) X̃(k)

Z(n) X.

(4.3.d)

Note that we have

D(n,1) =D(n), Z′(n,1) = Z′(n)
for every n. We regard D(n, k) and Z′(n, k) as ind-stacks indexed by the poset of pairs (n, k) ∈
N ×N, where (n, k) ⩽ (n′, k′) iff n ⩽ n′ and k ⩽ k′.

Proof of Proposition 4.3.2. By Corollary 4.1.2, Theorem A.1.8, Proposition A.1.9 and Theo-
rem A.3.2, we may reduce to the case X = [X/G], where G is an embeddable nice group scheme
over an affine scheme S, and X is an affine S-scheme with G-action. Then by Proposition A.2.5,
X has the resolution property so we are in the situation of Remark 4.3.4 and Construction 4.3.5.
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We need to show that the morphism of pairs

{(X̃,Z′(n))}n → {(X,Z(n))}n (4.3.e)

is an E-equivalence. Passing to the bi-indexed system constructed in Construction 4.3.8, note
that for k = n, the square

D(n,n) X̃(n)

Z(n) X

is a derived blow-up square and therefore by Theorem 4.3.1,

{(X̃(n),D(n,n))}n → {(X,Z(n))}n

induces a levelwise E-equivalence. For each k, Lemma 4.3.6 gives an identification of ind-stacks

{D(n, k)}n → {Z′(n, k)}n,

which induces an equivalence

{D(n,n)}n → {Z′(n,n)}n.

Therefore we have an E-equivalence

{(X̃(n),Z′(n,n))}n ≃ {(X̃(n),D(n,n))}n → {(X,Z(n))}n. (4.3.f)

The inclusion of posets ∆N ⊆ N ×N ⊇ N × {1}, induces morphisms

{(X̃(m),Z′(m,m))}m → {(X̃(k),Z′(n, k))}n,k ← {(X̃(n),Z′(n,1))}n ≃ {(X̃(n),Z′(n))}n,

where the left arrow is an equivalence by cofinality and we shall see that the right arrow is an
equivalence by finite formal excision. As one can see by base change from V, there is for every k
a finite morphism

X̃→ X̃(k)

which fits in a commutative diagram

Z′(n) X̃

Z′(n, k) X̃(k)

Z(n) X

where the squares are homotopy cartesian for each n, k. This provides a factorization

{(X̃,Z′(n))}n → {(X̃(n),Z′(n,n))}n → {(X,Z(n))}n, (4.3.g)

where the first arrow is an E-equivalence by finite excision (Corollary 4.2.3) and the second arrow
is an E-equivalence by (4.3.f). �
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4.4. Formal proper excision. The following is the main result of this section. It generalizes
Corollary 4.2.3 and Proposition 4.3.2 to arbitrary proper cdh squares. The proof is essentially
the same as that in [Kha20, 5.3.4].

Theorem 4.4.1. Suppose given a proper cdh square of algebraic stacks

Z′ X′

Z X

f

i

with X noetherian and ANS. Then for any localizing invariant E, the induced square

{E(X)} Ê(X∧
Z)

{E(X′)} Ê(X′∧
Z′)

is pro-cartesian.

Proof. Let us first demonstrate the claim in the case where f is the projection of the blow-up
X′ = BlZX. By Nisnevich descent (Corollary 4.1.2), Theorem A.1.8 and Proposition A.1.9, we
may assume that X = [X/G] where G is an embeddable nice group scheme over an affine scheme
S, and X is an affine derived S-scheme with G-action. Since X has the resolution property
(Proposition A.2.5), i ∶ Z → X is the classical truncation of a quasi-smooth closed immersion

Z̃ → X (Construction A.2.2). Let X̃ → X denote the derived blow-up of the latter. Since the

formal completion X∧ only depends on the classical truncation Z̃cl ≃ Z, the square in question
factors as in the diagram below:

{E(X)} Ê(X∧)

{E(X̃)} Ê(X̃∧)

{E(X′)} Ê(X′∧).

The upper square is cartesian by Proposition 4.3.2. Since X′ → X̃ is a closed immersion which is
an isomorphism away from Z, the lower square is also cartesian by Corollary 4.2.3. This concludes
the proof in the case of a blow-up square.

Now consider the case of an arbitrary proper morphism f . By Corollary 4.2.3 it is safe to replace
X by the schematic closure of X∖Z and thereby assume that X∖Z is schematically dense in X and
X′ ∖Z′ is schematically dense in X′. In this case Rydh’s stacky generalization of Raynaud–Gruson
(see [Ryd17], [HK19, Cor. 2.4]) to f ∶ X′ → X yields a proper morphism f ′ ∶ X′′ → X′ such that
f ○ f ′ ∶ X′′ → X is a sequence of (X ∖ Z)-admissible blow-ups. In particular, f ′ sits in a proper
cdh square Q′ over the original square Q. Applying the construction again to f ′ yields a third
proper cdh square Q′′ over Q′. Then it suffices to show the claim for the two squares Q′ ○Q and
Q′′ ○Q′, so we have reduced to the case where f is a sequence of (X ∖ Z)-admissible blow-ups.
By induction, we may as well assume it is a (X ∖Z)-admissible blow-up. Using Corollary 4.2.3
and the same argument as in [KST17, Claim 5.3], one finally reduces to the case of a blow-up
considered above. �
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Remark 4.4.2. Theorem 4.4.1 also holds “with supports” in any closed substack Y ⊆ X. That is,
one can replace E(X) with E(X on Y), Ê(X∧

Z) with Ê(X∧
Z on Y∧Y∩Z), etc. Here E(X on Y) is E

applied to the kernel of the restriction Perf(X)→ Perf(X ∖ Y) as in [TT07]. Note that since E is
localizing, there are exact triangles

E(X on Y)→ E(X)→ E(X ∖ Y).
Therefore, the “with supports” variant of Theorem 4.4.1 follows immediately from the “without
supports” one.

5. Negative K-theory

5.1. Nil-invariance of negative K-groups. In this subsection we prove a nil-invariance result
for sufficiently negative K-groups of ANS stacks (Corollary 5.1.4).

We make use of the formalism of weight structures of Bondarko. Let C be an additive ∞-category
which is projectively generated in the sense of [HTT, Def. 5.5.8.23]. Then the full subcategory
A of compact projective objects is an idempotent-complete additive ∞-category for which the
inclusion A ⊂ C extends to an equivalence PΣ(A) ≃ C by [HTT, Prop. 5.5.8.25]. By [SAG,
Prop. C.1.5.7], C is prestable and thus embeds fully faithfully into its stabilization Spt(C). In
this situation, the full subcategory D = Spt(C)ω of compact objects admits a weight structure in
the sense of [Bon10]. This weight structure is bounded, its heart Dw=0 is A, and the subcategory
Dw⩾0 ⊆D of connective objects is Cω. Moreover, every bounded weight structure arises in this
manner: in fact, the ∞-category of weighted ∞-categories and weight-exact functors is equivalent
to the ∞-category of idempotent-complete additive ∞-categories by [Sos19, Prop. 3.3] (see also
[Sos21, Props. 3.1.4, 3.1.5]). We refer the reader to [Sos19, 1.3], [Sos21, 3.1], or [ES20] for an
∞-categorical account of the theory of weight structures, originally developed in [Bon10].

Example 5.1.1. Let A be a connective E∞-ring. Then the ∞-category Modcn
A of connective

A-modules is projectively generated by A. Thus there exists a canonical weight structure on the
stable ∞-category PerfA whose heart is the full subcategory of finite projective A-modules.

The next example, a slight generalization of [Sos21, Theorem 3.4.3], will play in an important
role in what follows.

Example 5.1.2. Let R be a commutative ring, G an embeddable linearly reductive group scheme
over R, and A a derived commutative ring over R. Then by Proposition A.3.4, the ∞-category
D([Spec(A)/G])⩾0 of connective G-equivariant A-modules is projectively generated and there
exists a canonical weight structure on D([Spec(A)/G]) whose heart is the full subcategory
spanned by objects of the form p∗(E), where p ∶ [Spec(A)/G] → BG is the projection and
E ∈ D(BG) is a finite projective G-equivariant R-module.

Proposition 5.1.3. Let R be a commutative ring and G an embeddable linearly reductive group
scheme over R. For any G-equivariant nilpotent extension A→ B of connective E∞-algebras over
R with G-actions (i.e., a π0-surjection with nilpotent kernel), the induced map

K−n([Spec(A)/G])→ K−n([Spec(B)/G])
is an isomorphism for every n ⩾ 0.

Proof. Example 5.1.2 together with Lemma A.2.6 shows that the morphism A → B induces
an equivalence of the homotopy categories of the heart of the weight structures on the ∞-
categories D([Spec(A)/G]) and D([Spec(B)/G]). The required isomorphism on negative K-
groups therefore follows from [Sos19, Theorem 4.3]. �
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This further implies the following nil-invariance statement for a large class of stacks, which will
be crucial for the proof of Weibel’s conjecture.

Corollary 5.1.4. Let X be a ANS derived stack of Nisnevich cohomological dimension d. Then
for any surjective closed immersion i ∶ X′ → X, the map

i∗ ∶ K−n(X)→ K−n(X′)

is an isomorphism for every n > d.

Proof. By Corollary 4.1.2, we may regard K(−) and K(− ×X X′) as Nisnevich sheaves of spectra
on the small étale site of X. Then the fibre F of the morphism K(−) → K(− ×X X′) is also a
Nisnevich sheaf. The claim is that π−n(F(X)) = 0 for n > d. Considering the descent spectral
sequence

Hp
Nis(X, π

Nis
q (F))⇒ πq−p(F(X)),

it will suffice to show that the left-hand side is trivial for q < 0 and for p > d. By Theorem A.1.8
and Proposition A.1.9, there exists an embeddable linearly reductive group scheme G over an affine
scheme S, and affine derived schemes Ui over S with G-action, together with étale morphisms
[Ui/G]→ X which generate a Nisnevich covering. By Proposition 5.1.3, the spectrum F([Ui/G])
is connective for all i. Hence the homotopy sheaves πNis

q (F) vanish for q < 0. �

5.2. Killing by blow-ups. The killing lemma, proven in [KS17, Prop. 5], says that for any
negative K-theory class one can find a suitable (sequence of) blow-ups along which the inverse
image vanishes. It was generalized to stacks, using Rydh’s generalization of Raynaud–Gruson
flatification, in [HK19, Prop. 7.3]. The following is a “with supports” variant of the killing lemma,
which we will require for our proof of the Weibel conjecture.

Proposition 5.2.1. Let f ∶ X → Y be a smooth morphism of finite type where Y is a reduced
noetherian ANS stack and X satisfies the resolution property. Let Z ⊆ X be a closed substack.
Then for any integer i > 0 and any class α ∈ K−i(X on Z), there exists a sequence of blow-ups
q ∶ Y′ → Y with nowhere dense centres such that q∗X(α) = 0 in K−i(X′ on Z′), where X′ ∶= X×Y Y

′,
Z′ ∶= Z×XX′, and qX ∶ X′ → X is the projection.

The proof will use the following standard lemma. For a noetherian algebraic stack X, let Cohb(X)
be the derived ∞-category of coherent complexes on X (see e.g. [Kha22, Defn. 1.5] where it

is denoted Dcoh(X)). Given a closed substack Z, Cohb(X on Z) denotes the full subcategory
spanned by complexes supported set-theoretically on ∣Z∣.
Lemma 5.2.2. Let X be a noetherian algebraic stack and Z a closed substack. Then for any
open immersion j ∶ U→ X, the restriction functor

j∗ ∶ Cohb(X on Z)→ Cohb(U on Z ∩U)

is essentially surjective.

Proof. Since j∗ is t-exact and the t-structures are bounded, it is enough to show that it induces
an essentially surjective functor on the hearts. That is, it is enough to show that every coherent
sheaf F on U supported on Z∩U extends to a coherent sheaf F̃ on X supported on Z. Let i ∶ Z→ X

and iU ∶ Z ∩U → U denote the inclusions. We may write F ≃ iU,∗(G) for some coherent sheaf G

on Z ∩U. Now G can be extended to a coherent sheaf G̃ on Z (see e.g. [LMB18, Cor. 15.5]). By

the base change formula, i∗(G̃)∣U ≃ iU,∗(G̃∣Z∩U) ≃ F. That is, F̃ = i∗(G̃) is an extension of F as
desired. �
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Proof of Proposition 5.2.1. By inductive application of the Bass fundamental theorem (see e.g.
[Kha22, Thm. 2.21], which holds with supports just as in [TT07, Thm. 7.5]), there is a canonical
surjection

Coker(K0(X ×Ai on Z ×Ai) j∗Ð→ K0(X ×Gi
m on Z ×Gi

m))→ K−i(X on Z).

Therefore it suffices to show that for any α ∈ K0(X ×Gi
m on Z ×Gi

m), there exists a sequence of
blow-ups q ∶ Y′ → Y with nowhere dense centers such that the image of α in K0(X′×Gi

m on Z′×Gi
m)

lifts to a class in K0(X×Ai on Z×Ai). By definition, we may write α = [F] where F is a perfect
complex on X ×Gi

m supported on Z ×Gi
m.

By Lemma 5.2.2, we can extend F to some E ∈ Cohb(X ×Ai on Z ×Ai). Since X ×Ai has the
resolution property (as it is affine over X), we may assume that E is represented by a chain
complex E● of finite locally free sheaves with En = 0 for n≪ 0. Since its restriction F ≃ j∗(E) is
perfect, say of Tor-amplitude ⩽ a, we may replace E by its truncation τ⩽a(E) (which still restricts
to F) so that it may be represented by a chain complex E● with the following properties:

(1) En = 0 for n≪ 0 or n > a;

(2) En is finite locally free for all n < a;

(3) Ea is coherent and j∗(Ea) is finite locally free.

By Rydh’s stacky generalization of Raynaud–Gruson (see [Ryd17, Thm. 4.2]), we can argue as
in the proof of [HK19, Prop. 7.3] to produce a sequence of blow-ups q ∶ Y′ → Y such that the
strict transform E′a of Ea on X′ ×Ai is flat over X′. For every n, the strict transform E′n of En on
X′ ×Ai is the cokernel of the inclusion H0

D×Y X×Ai(q∗X(En))↪ q∗X(En), where D ⊆ Y′ ×Ai is the

exceptional divisor. Thus we may regard E′● as a chain complex with the following properties:

(a) E′a is of finite tor-amplitude on X′ ×Ai, since it is flat over Y′ (see e.g. [HK19, Lem. 7.2]).

(b) For every n < a we have E′n = q∗X(En), since En is already flat over X′ ×Ai.

(c) For every n, we have E′n∣X′×Gi
m
= q∗X(Fn), because Fn is already flat over X′.

Since each term of E′● is of finite Tor-amplitude on X′ × Ai, E′● represents a perfect complex
E′ ∈ Perf(X′ × Ai). Since the chain complex q∗X(E●) has homology supported on Z′ × Ai, the
same holds for its quotient E′●, hence in particular E′ ∈ Perf(X′ ×Ai on Z′ ×Ai). Finally, since
E′∣X′×Gi

m
≃ q∗X(F) in Perf(X′×Gi

m on Z′×Gi
m), we find that the class [E′] ∈ K0(X′×Ai on Z′×Ai)

lifts q∗X(α) as claimed. �

5.3. Weibel’s conjecture (I).

Theorem 5.3.1. Let X be a noetherian ANS stack of fppf-covering dimension d (see Defini-
tion A.4.1). Then the negative K-groups K−i(X on Y) vanish for all i > d.

Lemma 5.3.2. Let X be a reduced noetherian ANS stack with the resolution property of fppf-
covering dimension d (see Definition A.4.1). Then for any closed substack Y ⊆ X, the negative
K-groups K−i(X on Y) vanish for all i > d.

Proof. We argue by induction on d. For any element γ ∈ K−i(X on Y), there exists by Proposi-
tion 5.2.1 a sequence of blow-ups f ∶ X′ → X with nowhere dense centers such that f∗(γ) = 0 in
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K−i(X′ onf−1(Y)). This fits in a proper cdh square

Z′ X′

Z X

f

where Z ⊆ X is any nowhere dense closed substack for which f is an isomorphism over X ∖ Z.
Let Z(n) and Z′(n) denote the nth infinitesimal thickenings of Z and Z′, respectively. By
Theorem 4.4.1 (and Remark 4.4.2) and Remark B.1.6, we get a long exact sequence

⋯→ {K−i+1(Z′(n)) on f−1(Y)}n → K−i(X on Y)→ {K−i(Z(n)) on Y}n⊕K−i(X′ on f−1(Y))→ ⋯
of pro-abelian groups. Now Z(n) and Z′(n) are reduced noetherian ANS stacks satisfying the
resolution property (Lemma A.1.7 and Lemma A.2.4) and of fppf-covering dimension < d, so
{K−i+1(Z′(n)) on f−1(Y)}n and {K−i(Z(n)) on Y}n both vanish by the induction hypothesis. It
follows that f∗ ∶ K−i(X)→ K−i(X′) is injective and hence that γ = 0. �

Proof of Theorem 5.3.1. We again argue by induction on d. Suppose d = 0. By Corollary 4.1.2
and Theorem A.3.2, there is a convergent Nisnevich-descent spectral sequence:

Hp
Nis(X, π

Nis
q (K))⇒ Kq−p(X),

where πNis
q (K) denotes the Nisnevich sheaf associated with Kq. It follows from Proposition A.4.4

and the previous case that Hp
Nis(X, πNis

q (K)) vanishes for all q < 0 and p > 0 and therefore also
K−i(X) = 0 for i > 0.

Now suppose d ⩾ 1. By Theorem A.1.8 and Proposition A.2.5, there is a finite sequence of open
immersions ∅ = U0 ↪ U1 ↪ ⋯↪ Un = X, and Nisnevich squares

Wj Vj

Uj−1 Uj ,

where each Wj and Vj satisfy the resolution property and have fppf-covering dimension ⩽ d.
We prove by induction on j that for i > d, K−i(Uj) vanishes. For j = 0, this follows from the
previous case. By Proposition A.4.4 and Corollary 5.1.4, we may assume that Uj is reduced.
Choose γ ∈ K−i(Uj). By induction on j, and the previous case for stacks with resolution
property, the groups K−l(Wj), K−l(Vj) and K−l(Uj−1) vanish for all l > d. By Nisnevich descent
(Corollary 4.1.2), we have a long exact sequence:

⋯→ K−i+1(Wj)
∂Ð→ K−i(Uj)→ K−i(Uj−1)⊕K−i(Vj)→ ⋯.

By induction hypothesis on j, we deduce that γ = ∂(α) for some α ∈ K−i+1(Wj). By applying the
killing lemma (Proposition 5.2.1) to the étale morphism Wj → Uj , we can find a sequence of blow-
ups f ∶ U′

j → Uj with nowhere dense centers such that for the induced map fW ∶W′
j ∶= U′

j×UjWj →
Wj , f

∗
W (α) = 0 in K−i+1(W′

j). Since U′
j is again a noetherian ANS stack (Lemma A.1.7), we

conclude that f∗(γ) = f∗(∂(α)) = ∂(f∗W (α)) = 0. Now as in the first case, by using Theorem 4.4.1
and the induction hypothesis on d, we conclude that γ = 0. �

5.4. Weibel’s conjecture (II).

Theorem 5.4.1. Let X be a noetherian ANS stack of smooth-covering dimension d (see Defini-
tion A.4.1). Then for any vector bundle π ∶ E→ X, the map

π∗ ∶ K−i(X)→ K−i(E)
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is an isomorphism for all i ⩾ d.

Proof. The zero section induces a retraction of π∗ ∶ K(X)→ K(E), so it is enough to show that π∗

is surjective. If F denotes the cofiber of the morphism π∗ ∶ K(−)→ K(− ×X E) on the small étale
site of X, then it suffices to show that F−i(X) vanishes for all i ⩾ d. By Proposition 5.1.3, F−i is nil-
invariant for all i ⩾ 0 for any [X/G], where X is an affine scheme and G is an embeddable linearly
reductive group scheme. Therefore by Corollary 4.1.2, Theorem A.1.8 and Proposition A.1.9, F−i
is nil-invariant for all i ⩾ d (arguing as in the proof of Corollary 5.1.4). Thus we can assume that
X is reduced.

Suppose d = 0. Then there exists a smooth surjection u ∶X → X by a 0-dimensional noetherian
scheme X. Since X is reduced, X is also reduced and hence regular. Since perfectness is fppf-local,
we find that every cohomologically bounded pseudocoherent complex on X is perfect (see e.g. the
proof of [HK19, Lem. 5.6]), and the same for E. Thus the map π∗ ∶ K(X) → K(E) is identified
with the inverse image π∗ ∶ G(X)→ G(E), which is invertible by [Kha22, Thm. 3.5]. Now assume
d > 0 and the statement is known for smooth-covering dimension < d.

Case 1: X has the resolution property. If X has the resolution property, then by Lemma A.1.7,
Theorem A.3.2 and Lemma A.2.4, E is a perfect stack with the resolution property. By Proposi-
tion 5.2.1, for any γ ∈ K−d(E), there exists a sequence of blow-ups f ∶ X′ → X with nowhere dense
centers such that γ goes to 0 in K−d(X′ ×X E). Choose Z ⊆ X a nowhere dense closed substack
such that f is an isomorphism over X ∖ Z and let Z′ = Z ×X X′. The nth infinitesimal thickenings
Z(n) satisfy the induction hypothesis by Lemmas A.1.7 and A.2.4. Combining formal proper
excision (Theorem 4.4.1) with Remark B.1.6, the isomorphism K−d(E ×X Z(n)) ≃ K−d(Z(n)) ≃ 0
(by induction hypothesis), and Theorem 5.3.1, we get a commutative diagram with exact rows:

{K−d+1(Z′(n))}n K−d(X) K−d(X′)

{K−d+1(E ×X Z′(n))}n K−d(E) K−d(E ×X X′).

π∗
Z′ π∗ π∗Z

Since π∗Z′ is also an isomorphism by induction hypothesis, this implies that γ is in the image of
π∗.

Case 2: X is arbitrary. In general, there exists by Theorem A.1.8 and Proposition A.2.5 a finite
sequence of open immersions ∅ = U0 ↪ U1 ↪ ⋯↪ Un = X and Nisnevich squares

Wj Vj

Uj−1 Uj ,

p

where each Vj satisfies the resolution property. We prove by induction on j that for i ⩾ d, F−i(Uj)
vanishes. For j = 0, this follows from Case 1. Assuming the groups F−l(Uj−1) vanish for all l ⩾ d,
we will show that F−i(Uj) also vanishes.

Choose γ ∈ F−i(Uj) for some i ⩾ d. We will show that γ = 0. By localization for F, we get an
exact sequence of homotopy groups

F−i(Uj on Zj)→ F−i(Uj)→ F−i(Uj−1),
where Zj denotes the (reduced) complement of the open substack Uj−1 ⊆ Uj . Since F−i(Uj−1)
vanishes by induction hypothesis, γ lifts to a class F−i(Uj on Zj) (which we also denote γ). Let
γ̃ denote its image by p∗ ∶ F−i(Uj on Zj)→ F−i(Vj on p−1(Zj)).
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By applying Proposition 5.2.15 to γ̃ and the smooth morphism Vj → Uj , we can find a sequence
of blow-ups q ∶ U′

j → Uj with nowhere dense centres such that γ̃ vanishes after inverse image along
the base change qV ∶ V′j ∶= U′

j ×Uj Vj → Vj . The cartesian square

V′j Vj

U′
j Uj

qV

p

q

gives rise to a commutative square

F−i(Uj on Zj) F−i(Vj on Zj)

F−i(U′
j on Zj) F−i(V′j on Zj),
q∗ q∗V

where the horizontal arrows are invertible by excision (and we implicitly base change Zj where
necessary). Therefore, we get that q∗(γ) vanishes in F−i(U′

j on Zj) and in particular in F−i(U′
j).

By construction, q is an isomorphism over Uj ∖D for some nowhere dense closed substack D ⊆ Uj .
Let D′ =D×Uj U

′
j . Using Theorem 4.4.1, we have an exact sequence of pro-abelian groups

{F−i+1(D′(n))}n → F−i(Uj)→ F−i(U′
j)⊕ {F−i(D(n))}n,

where F−i+1(D′(n)) and F−i(D(n)) vanish as they satisfy the induction hypothesis on d (by
Lemmas A.1.7 and A.2.4). But since q∗(γ) vanishes in F−i(U′

j), we have γ = 0 in F−i(Uj) as
desired. �

Remark 5.4.2. The argument in the proof of Theorem 5.4.1 can also be used to generalize
Theorem 5.3.1 to any stack X that is smooth and affine over a noetherian ANS stack of fppf-covering
dimension d.

Appendix A. Algebraic stacks

A.1. ANS stacks.

Definition A.1.1. Let G be an affine fppf group scheme over an affine scheme S.

(i) We say that G is linearly reductive if direct image along the morphism BG→ S is t-exact
(i.e., it is cohomologically affine).

(ii) We say that G is nice if it is an extension of a finite étale group scheme, of order prime to
the characteristics of S, by a group scheme of multiplicative type.

(iii) We say that G is embeddable if it is a closed subgroup of GLS(E) for some finite locally
free sheaf E on S.

Nice group schemes are linearly reductive by [AHR19, Rem. 2.2].

Definition A.1.2. A derived algebraic stack X is called ANS if it has affine diagonal and nice
stabilizers.

Example A.1.3. In characteristic zero any reductive groupG (such as GLn,S) is linearly reductive.
In characteristic p > 0, any linearly reductive group is nice [AHR19, Thm. 18.9].

5To be precise, we use the statement for F in place of K, which holds since there is a natural splitting

K(−×X E) ≃ K(−)⊕ F(−).
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Example A.1.4. Let G be a finite étale group scheme over a field k. If G has order prime to
the characteristic of k, then G is nice and embeddable. It follows that any separated Deligne–
Mumford stack over k is ANS as long as it is tame (i.e., has all stabilizers of order prime to the
characteristic).

Example A.1.5. Any algebraic stack with affine diagonal that is tame in the sense of [AOV08,
Def. 3.1] is ANS. This generalizes Example A.1.4.

Example A.1.6. Tori are embeddable group schemes of multiplicative type (hence nice). Thus
if T is a torus over an affine scheme S acting on an algebraic space X over S with affine diagonal,
then the quotient [X/T ] is ANS. (However, it is typically not tame in the sense of [AOV08].)

Lemma A.1.7. Let X be an ANS derived stack. Let f ∶ X′ → X be a representable morphism
with affine diagonal. Then X′ is ANS.

Proof. Since f is representable, the stabilizers of X′ are subgroups of those of X. �

The following is the main result of [AHHLR] in the classical case. The generalization to derived
stacks is immediate.

Theorem A.1.8 (Alper–Hall–Halpern-Leistner–Rydh). Let X be an ANS derived stack. Then
there exists a finite sequence of open immersions

∅ = U0 ↪ U1 ↪ ⋯↪ Un = X,

an embeddable nice group scheme G over an affine scheme S, and Nisnevich squares

Wi Vi

Ui−1 Ui

where Vi is étale and affine over Ui and quasi-affine over BG.

Proof. This follows by combining [AHHLR, Thm. 6.3]6 with [HK19, Prop. 2.9]. See [KR21,
Thm. 2.12] for details. �

Proposition A.1.9. Let X = [X/G] be the quotient of a quasi-compact separated derived
algebraic space X with action of a nice group scheme G over an affine scheme S. Then X admits
a scallop decomposition of the form (Ui,Vi, ui)i, where Vi is of the form [Vi/G] for some affine
derived schemes Vi over S with G-action, and ui is an affine morphism for each i.

Proof. By generalized Sumihiro (see [KR21, Theorem 2.14]), X admits an affine Nisnevich cover
u ∶ V ↠ X where V is of the form [V /G] with V an affine scheme over S with G-action. The
desired scallop decomposition is obtained by a G-equivariant version of the construction in the
proof of [RG71, Lem. 5.7.5] or [SAG, Prop. 3.2.2.4], which goes through mutatis mutandis:

For every i ⩾ 0, define Ui ⊆ X as the substack of points where the fibre of u has ⩾ i geometric
points. We have U1 = X (since u is surjective) and Un+1 = ∅ for some large enough n (since X is
quasi-compact). This gives a finite filtration of X by quasi-compact opens Ui ∶= Un+1−i.

Consider the fibre powers V i of V over X and Vi = [V i/G] of V over X, respectively. Since u is
affine, so is each V i. Since V →X is affine and étale, the “big diagonal” ∆i ⊆ V i is an open and

6See [AHR19, Cor. 17.3] and [AOV08, Thm. 3.2] for documented special cases of this result.
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closed subscheme. The permutation action of the symmetric group Σi on V i is free away from
∆i, and commutes with the factorwise G-action on V i. Thus we can write

Vi ∶= [(V i ∖∆i)/G ×Σi] ≃ [Wi/G],

where Wi = [(V i∖∆i)/Σi], as a quotient of an affine scheme by a free action of a finite group, is an
affine scheme. Now one checks, exactly as in [SAG, Prop. 3.2.2.4], that the canonical morphisms
Vi → X factor through affine étale morphisms ui ∶ Vi → Ui, and that the resulting construction
(Ui,Vi, ui)i is indeed a scallop decomposition. �

A.2. The resolution property.

Definition A.2.1. Let X be a derived algebraic stack. We say that X has the resolution property
if for every discrete coherent sheaf F of finite type on X, there exists a finite locally free sheaf E
and a surjection E↠ F.

The following construction is one of the pleasant consequences of the resolution property.

Construction A.2.2. Let i ∶ Z → X be a closed immersion of derived stacks. If i is almost of
finite presentation (e.g. X is noetherian), then the ideal I ⊆ π0(OX) defining Zcl in Xcl is of finite
type. Thus if X admits the resolution property, there exists a surjection E ↠ I from a finite
locally free sheaf E on X. The induced morphism s ∶ E → I → OX can be viewed as a section of
the vector bundle

VX(E) = SpecX(SymOX
(E)),

and its derived zero locus defines a quasi-smooth closed immersion ĩ ∶ Z̃→ X whose 0-truncation
is i ∶ Z→ X and which fits in a homotopy cartesian square

Z̃ X

X VX(E).

ĩ

s

0

Repeating this construction with the section s⊗n, for any n > 0, gives a tower of infinitesimal
thickenings

Z↪ Z̃ = Z̃(1)↪ Z̃(2)↪ ⋯.
Remark A.2.3. If X is a derived stack with the resolution property, then any quasi-smooth
closed immersion i ∶ Z→ X fits in a homotopy cartesian square

Z X

X VX(E)

i

s

0

where E is a finite locally free sheaf on X. This follows by a variant of the proof of [KR18a,
Prop. 2.3.8].

We discuss some examples of derived stacks with the resolution property. First, recall that in the
classical setting, the property is stable under affine morphisms:

Lemma A.2.4. Let f ∶ X→ Y be a quasi-affine morphism of (classical) algebraic stacks. If Y has
the resolution property, then so does X.

Proof. See [HR17, Lem. 7.1] or [Gro17, Prop. 1.8(v)]. �
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The classifying stack BG has the resolution property for embeddable linearly reductive group
schemes G, so one finds that affine quotient stacks [X/G] also admit the resolution property (see
[AHR19, Rmk. 2.5]). We prove the following derived generalization of this statement:

Proposition A.2.5. Let S be an affine scheme, G an embeddable linearly reductive group scheme
over S, and X a derived affine S-scheme with G-action. Then the derived stack X = [X/G] admits
the resolution property.

The proof of Proposition A.2.5 will require the following lemma. We write Dlfr(Y) for the full
subcategory of D(Y) spanned by the finite locally free sheaves, for any derived algebraic stack Y.

Lemma A.2.6. Let the notation be as in Proposition A.2.5. For any integer n ⩾ 0, let i ∶
τ⩽n(X)→ X be the inclusion of the n-truncation. Then we have:

(i) For any finite locally free E ∈ Dlfr(X) and any F ∈ D(X), the canonical map of n-truncated
spaces

τ⩽nMaps(E,F)→Maps(τ⩽n(E), τ⩽n(F))
is invertible.

(ii) The induced functor of (n + 1)-categories

i∗ ∶ τ⩽n+1 Dlfr(X)→Dlfr(τ⩽n(X))
is an equivalence.

In particular, the functor of ordinary categories

hDlfr(X)→Dlfr(Xcl)
is an equivalence (where h denotes the homotopy category).

Proof. Note that the map in the first claim is induced by the morphism in D(X)
τ⩽nHomOX

(E,F)→ i∗HomOτ⩽n(X)
(τ⩽n(E), τ⩽n(F)), (A.2.a)

where Hom denotes the internal Hom, by applying in succession the functors of direct image
along f ∶ X→ BG (which is t-exact since f is affine), direct image along BG→ S (which is t-exact
since G is linearly reductive), and (derived) global sections (which is t-exact since S is affine).
Therefore it will suffice to show that (A.2.a) is invertible. By fpqc descent, this can be checked
after inverse image along the smooth surjection X → X. Since i is representable, i∗ satisfies
base change and we are thus reduced to the affine case, which is well-known (see e.g. [Kha17,
Claim 4.3]).

Consider now claim (ii). By (i) the functor in question is fully faithful (on finite locally frees).
For essentially surjectivity, we may assume n = 0 (so that τ⩽n(X) = Xcl). Since BG has the
resolution property [AHR19, Rmk. 2.5], Lemma A.2.4 implies that for every finite locally free
sheaf E ∈ D(Xcl), there exists a finite locally free sheaf F ∈ D(BG) and a surjection g∗(F)↠ E

where g ∶ Xcl → BG. Certainly g∗(F) ∈ D(Xcl) lifts to f∗(F) ∈ D(X), so we are reduced to show

that if E↠ F is surjection of locally free sheaves on Xcl and E = i∗Ẽ for some locally free Ẽ ∈ D(X),
then F also extends to a locally free sheaf F̃ on X. Since G is linearly reductive, F is projective
by [Hoy17, Lem. 2.17] and the surjection E↠ F splits. The resulting map e0 ∶ E↠ F → E is an

idempotent with image F. By claim (i), we can extend e0 to an idempotent endomorphism e of Ẽ.
If we set

F̃ ∶= limÐ→(Ẽ eÐ→ Ẽ
eÐ→ ⋯),

F̃1 ∶= limÐ→(Ẽ id−eÐÐ→ Ẽ
id−eÐÐ→ ⋯),
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then the induced morphism φ ∶ Ẽ → F̃ ⊕ F̃1 is invertible. Indeed, by fpqc descent we may pull
back to X and thereby assume X is affine, in which case it is clear that φ is an isomorphism
on homotopy groups. In particular, it follows that F̃ is locally free, and clearly i∗(F̃) ≃ F by
construction. �

Proof of Proposition A.2.5. By [AHR19, Rmk. 2.5], the classical truncation [Xcl/G] has the
resolution property. Hence the claim follows from Lemma A.2.6. �

A.3. Compact generation.

Definition A.3.1. A derived algebraic stack X is perfect if the stable ∞-category D(X) is
compactly generated by its full subcategory Perf(X) of perfect complexes.

In this subsection we prove the following result, which is a derived generalization of [AHR19,
Prop. 14.1].

Theorem A.3.2. Let X be an ANS derived stack. Then X is perfect.

Lemma A.3.3. Let G be an embeddable linearly reductive group scheme over an affine scheme
S. Then the classifying stack BG is perfect. Moreover, D(BG) is compactly generated by finite
representations of G (i.e., finite projectives).

Proof. Since G is affine, BG has affine diagonal. By Proposition A.2.5, BG has the resolution
property. Hence the claim follows from [HR17, Prop. 8.4]. �

The following shows that, for nice enough quotients of affine derived schemes, the derived ∞-
category is not only compactly generated, but projectively generated in the sense of Definition 3.5.6.

Proposition A.3.4. Let G be an embeddable linearly reductive group scheme over an affine
scheme S. Then for any affine derived scheme X with G-action, the quotient stack [X/G] is
perfect and even crisp in the sense of [HR17]. Moreover, if p ∶ [X/G] → BG is the projection,
then the collection of objects {p∗(E)} forms a small set of compact projective generators for
D([X/G])⩾0, as E ∈ D(BG) varies over finite locally free G-modules on S.

Proof. Since p is affine, the functor p∗ ∶ D(BG) → D([X/G]) is compact and generates its
codomain under colimits (2.2.1). This already implies that D([X/G]) is compactly generated by
the objects of the stated form.

We now demonstrate the stronger property of crispness. By Proposition A.2.5, [X/G] admits the
resolution property. Since [X/G] has affine diagonal, [HR17, Prop. 8.4] then implies that [X/G]
is crisp. Note that loc. cit. only discusses classical stacks, but we only need the argument from
the last paragraph of the proof, which immediately generalizes to the derived setting.

Finally let us show that the object p∗(E) ∈ D([X/G])⩾0 is projective for every finite representation
E ∈ D(BG). By [HA, Lem. 7.2.2.6] it will suffice to show that the functor Maps(p∗(E),−) ∶
D(BG)→ Spt is t-exact, where Maps(−,−) denotes the mapping spectrum functor in the stable
∞-category D(BG). We have a canonical isomorphism

Maps(p∗(E),−) ≃ Γ (S, (p∗Hom(E,−))G) .
Note that Hom(E,−) is t-exact because E is projective in D(S), p∗ is t-exact since p is affine,
the G-invariants functor (−)G is identified with the direct image functor D(BG) → D(S) and
hence is t-exact because G is linearly reductive, and the (derived) global sections functor Γ(S,−)
is t-exact since S is affine. �
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Proof of Theorem A.3.2. By Theorem A.1.8, we can in particular find an affine étale surjection
onto X from a finite coproduct of quotient stacks of the form [X/G], where G is a nice group
scheme over an affine scheme S and X is an affine derived S-scheme with G-action. It will now
suffice to show that the property of crispness can be detected by affine étale surjections. Indeed,
we note that the proof given in [HR17, Thm. C] for the classical case generalizes to our setting,
following Example 9.4 of loc. cit. �

A.4. Dimension of algebraic stacks. Recall several useful notions of dimension from [HK19].

Definition A.4.1. Let X be a noetherian stack.

(i) The Krull dimension dim(X) of X is the dimension of the underlying topological space ∣X∣.
(ii) The blow-up dimension bl dim(X) is the supremum over integers n ⩾ 0 for which there

exists a sequence of maps

Xn → ⋯→ X0 = X

such that Xi is a nonempty nowhere dense closed substack in an iterated blow-up of Xi−1

for all i > 0. If X is empty, then bl dim(X) = −1 by convention.

(iii) The fppf-covering dimension cov dimfppf(X) is the minimal integer −1 ⩽ n ⩽∞ such that
there exists an fppf morphism X → X where X is a noetherian scheme of Krull dimension
n.

(iv) The covering dimension cov dimsm(X) (more precisely, smooth-covering dimension) is the
minimal integer −1 ⩽ n ⩽∞ such that there exists a smooth surjection X → X where X is a
noetherian scheme of Krull dimension n.

Remark A.4.2. In general, one has the inequalities dim(X) ⩽ bl dim(X) ⩽ cov dimfppf(X) ⩽
cov dimsm(X). For quasi-Deligne–Mumford stacks these are all equal to the usual dimension as
defined in [Stacks, Tag 0AFL]. See [HK19, Lemma 7.8].

Example A.4.3. Let G be an fppf group scheme over an algebraic space S. If G acts on an
algebraic space X over S, then the quotient stack X = [X/G] is of fppf-covering dimension
⩽ dim(X).
In this subsection we will show that the Nisnevich cohomological dimension of an algebraic stack
X, which we denote by cdNis(X), is bounded by its fppf-covering dimension:

Proposition A.4.4. Let X be a noetherian stack and let F be a sheaf of abelian groups on the
Nisnevich site of X. Then

Hi
Nis(X,F) = 0

for all i > cov dimfppf(X). In other words, cdNis(X) ⩽ cov dimfppf(X).
Recall that the Nisnevich topology on the category of noetherian algebraic stacks is generated by a
cd-structure [HK19, Sect. 2C], which is clearly complete and regular. To establish Proposition A.4.4
we will show that this cd-structure is bounded with respect to a density structure.

Construction A.4.5. For any noetherian algebraic stack X, let StkDM
/X be the category of

algebraic stacks Y over X for which the structural morphism Y→ X is representable by Deligne–
Mumford stacks. Choose an fppf covering S → X from a Deligne–Mumford stack S. We define
a density structure DS

i (−) in the sense of [Voe10a, Definition 2.20] on the category StkDM
/X . For

Y ∈ StkDM
/X , let q ∶ SY → Y be the fppf covering of Y given by the base change of S → X along

Y. For i ⩾ 0, let DS
i (Y) denote the class of open substacks U ↪ Y such that the open substack

U ×Y SY ↪ SY defines an element of the class Di(SY), where D∗(−) denotes the density structure
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on the category of Deligne–Mumford stacks defined in [KØ12, Definition 4.4]. It is easy to check
that the classes DS

i (−) define a density structure which is locally of finite dimension and the
dimension of X with respect to the density structure is equal to the Krull dimension dim(S).
Recall that for a Deligne–Mumford stack X and i ≥ 0, Di(X) is the collection of open substacks
U ↪ X such that for every irreducible, reduced closed substack Z of X with Z ×X U the empty
stack, there exists a sequence Z = Z0 ⊊ Z1 ⊊ ⋯ ⊊ Zi of irreducible, reduced closed substacks of X.

Lemma A.4.6. Let X be a Deligne–Mumford stack and U ∈Di(X). For any open substack V of
X, we have U ∩V ∈Di(V).

Proof. By [KØ12, Lemma 4.5] it suffices to show that ∣U∩V∣ ∈Di(∣V∣). Now we can use the same
argument as in the proof of [Voe10b, Lemma 2.5]. �

Proposition A.4.7. The Nisnevich cd-structure on the category StkDM
/X is bounded with respect

to the density structure DS
∗(−).

Proof. We need to show that every Nisnevich square is reducing with respect to the density
structure. Consider a Nisnevich square Q in StkDM

/X :

W V

U Y,

jV

p

j

(A.4.a)

where p is étale, j is an open immersion and the induced morphism p−1(Y ∖ U) → (Y ∖ U) is
invertible. Choose W0 ∈DS

i−1(W), U0 ∈DS
i (U) and V0 ∈DS

i (V). To show that the above square
Q is reducing with respect to the density structure, we need to prove that there exists a Nisnevich
square Q′ in StkDM

/X

W′ V′

U′ Y′,

(A.4.b)

and a morphism Q′ → Q such that W′ →W factors through W′ →W0, U′ → U through U′ → U0,
V′ → V through V′ → V0, and Y′ ∈ DS

i (Y) (see [Voe10a, Definition 2.21]). Applying Lemma
A.4.8 to the morphism j∐p, we can find Y0 ∈ DS

i (Y) such that j−1(Y0) ⊆ U0 and p−1(Y0) ⊆ V0.
Therefore by base changing (A.4.a) along Y0 ↪ Y and then replacing Y by Y0 we are reduced
to the case when U = U0 and V = V0 in (A.4.a). Note that W0 ×Y Y0 is in DS

i−1(U0 ×Y V0) by
Lemma A.4.6.

Let Z =W ∖W0 and C = Y ∖U and set W′ =W0, U′ = U, V′ = V ∖ clV(Z) and Y′ = Y ∖ (C ∩ clY(p ○
jV (Z))) in (A.4.b) to obtain the Nisnevich square Q′ with a natural morphism to Q given by
inclusions. Now Y′ ×Y SY → SY ∈ Di(SY) by the proof of [KØ12, Proposition 4.9]. Therefore
Q′ → Q satisfies all the required properties. �

Lemma A.4.8. Let f ∶ W → Y be an étale surjection of noetherian stacks. Then for any i ⩾ 0
and W0 ∈DS

i (W) there exists Y0 ∈DS
i (Y) such that f−1(Y0) ⊂W0.

Proof. Let SW = S×XW, SW0 = S×XW0 and let fS ∶ SW → SY denote the base change of f ∶W→ Y

along the fppf covering q ∶ SY → Y and q̃ ∶ SW →W denote the base change of q along f . Then by
[KØ12, Lemma 4.7] applied to fS there exists Ỹ ∈Di(SY) such that f−1

S (Ỹ) ⊂ SW0 . Let Y0 = q(Ỹ),
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then Y0 ∈ Di(Y) since q is open (see [LMB18, Proposition 5.6]), Ỹ ⊆ Y0 ×Y SY and Ỹ ∈ Di(SY).
Moreover f−1(Y0) = f−1(q(Ỹ)) ⊆ q̃(f−1

S (Ỹ)) ⊆ q̃(SW0) =W0. �

Appendix B. Formal stacks

B.1. Formal completion. We briefly review some elements of formal derived algebraic geometry.
Good references are [HLP14, Sect. 2.1] and [GR14]. The following definition is [HLP14, Def. 2.1.1].

Definition B.1.1 (Formal completion). Let i ∶ Z → X be a closed immersion of derived stacks
with quasi-compact open complement. The formal completion of X in Z is the derived prestack
X∧

Z whose R-points, for any derived commutative ring R, are the R-points x ∶ Spec(R)→ X which
factor set-theoretically through the underlying topological space ∣Z∣ ⊆ ∣X∣. By definition, i ∶ Z→ X

factors as

i ∶ Z→ X∧
Z

îÐ→ X,

where the first arrow induces an isomorphism on reductions, and the second arrow is a monomor-
phism. When there is no risk of ambiguity, we will write simply X∧ for X∧

Z.

Remark B.1.2. Note that the formal completion X∧
Z only depends on the underlying topological

space ∣Z∣. In particular, if we have a commutative square

Z′ X′

Z X

g

i′

f

i

where ∣Z′∣ is the set-theoretic inverse image f−1(∣Z∣), then the formal completion X′∧ is the derived
base change of X∧. That is, we have a homotopy cartesian square

X′∧
Z′ X′

X∧
Z X.

f∧ f

Remark B.1.3. The formal completion of a derived algebraic stack X along a closed immersion
i ∶ Z → X is always an ind-algebraic stack. More precisely, one has the following canonical
isomorphism (see [GR14, Prop. 6.5.5]):

{Z̃}Z̃→X → X∧
Z,

where the source is the ind-system indexed by the filtered ∞-category of closed immersions Z̃→ X

that induce an isomorphism Z̃red ≃ Zred on reductions. Note that the transition morphisms are
surjective closed immersions.

In the affine case, we can give the following more familiar (but less canonical) description.

Example B.1.4. Let A be a derived commutative ring and I ⊆ π0(A) an ideal, and consider the
formal completion of Spec(A)∧ in the vanishing locus of I. Choosing generators f1, . . . , fm for
the ideal I, there is an equivalence

Spec(A)∧ ≃ {Spec(A//(fn1 , . . . , fnm))}n.

See [SAG, Proof of Prop. 8.1.2.1] or [HLP14, Prop. 2.1.2].
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If A is an ordinary commutative ring and is noetherian, then we recover the classical formal
completion, i.e., the formal spectrum of A as an I-adic ring:

Spec(A)∧ ≃ {Spec(A/(fn1 , . . . , fnm))}n.

See [SAG, Lem. 17.3.5.7], [HLP14, Prop. 2.1.4], or [GR14, Proof of Prop. 6.8.2].

More generally in the presence of the resolution property, we have:

Lemma B.1.5. Let i ∶ Z→ X be a closed immersion almost of finite presentation between derived
algebraic stacks for which X has the resolution property. Let Z̃(n) be as in Construction A.2.2.
Then there is an isomorphism of ind-stacks

X∧
Z ≃ {Z̃(n)}.

Proof. This is a simple cofinality argument using the description of the formal completion given
in Remark B.1.3. �

Remark B.1.6. If X is a classical stack, then the formal completion (in any closed substack)
in the sense of Definition B.1.1 coincides with the classical formal completion, as long as X is
noetherian. This follows from Example B.1.4, see [HLP14, Cor. 2.1.5].

For the reader’s convenience, we spell out Lemma B.1.5 in the equivariant (quotient stack) case.

Construction B.1.7. Let G be a group scheme over a commutative ring R, and let A be a
derived commutative R-algebra with G-action. Let M be a locally free G-equivariant A-module
and s ∶M → A a homomorphism of G-equivariant A-modules. The derived quotient of A by s is
the G-equivariant A-algebra formed by attaching a cell s ≃ 0, i.e., by the cocartesian square in
G-equivariant derived commutative rings

SymA(M) A

A A//s,

0

s

where the map 0 is induced by adjunction from the zero map M → A, and similarly for s.

Similarly, for any n > 0, we also write A//sn for the same construction where s is replaced by
s⊗n ∶M⊗n → A⊗n ≃ A (the n-fold derived tensor product taken over A).

Lemma B.1.8. Let G be a group scheme over a commutative ring R and A↠ B a homomorphism
of G-equivariant derived commutative R-algebras which is surjective on π0. Assume that the
quotient stack [Spec(π0(A))/G] admits the resolution property, so that there exists a locally
free G-equivariant A-module M and s ∶ M → A whose image on π0 is equal to the kernel of
π0(A)↠ π0(B). Then we have the following presentation of the formal completion:

[Spec(A)/G]∧ ≃ {[Spec(A//sn)/G]}n>0.

Lemma B.1.9. Let G be a group scheme over a commutative ring R and A↠ B a surjective
homomorphism of G-equivariant commutative R-algebras with kernel I. Assume that the quotient
stack [Spec(A)/G] admits the resolution property, so that there exists a locally free G-equivariant
A-module M and s ∶M → A whose image is I. Then we have the following presentation of the
formal completion:

[Spec(A)/G]∧ ≃ {[Spec(A/In)/G]}n>0.
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B.2. Quasi-coherent sheaves. For formal stacks (or more generally ind-stacks) such as the
formal completion, there is a natural pro-∞-categorical refinement of the stable ∞-category of
quasi-coherent sheaves.

Construction B.2.1. If C denotes the ∞-category of derived algebraic stacks and representable
morphisms, then by Remark 2.2.1 the assignment X ↦ D(X) can be regarded as a functor
Cop → Presc valued in the ∞-category of presentable ∞-categories and compact colimit-preserving
functors. Now consider its Ind-extension

Ind(C)op ≃ Pro(Cop)→ Pro(Presc).
Any derived ind-algebraic stack X can be regarded an ind-object in C and hence gives rise to a
canonical pro-∞-category which we denote D̂(X).

Example B.2.2. Let X be a derived algebraic stack. Then D̂(X) is the constant pro-∞-category
{D(X)}.

Example B.2.3. If X is a derived ind-algebraic stack represented by a filtered system {Xn}n,

then D̂(X) is represented by the cofiltered system {D(Xn)}n.

Example B.2.4. Let A be a derived commutative ring and I ⊆ π0(A) an ideal, and consider the
formal completion Spec(A)∧ in the vanishing locus of I. Then choosing generators f1, . . . , fm for
the ideal I, we have an equivalence

D̂(Spec(A)∧) ≃ {D(A//(fn1 , . . . , fnm))}n
by Example B.1.4. If A is a noetherian commutative ring, then we have also

D̂(Spec(A)∧) ≃ {D(A/(fn1 , . . . , fnm))}n
again by Example B.1.4.

Appendix C. Weak pro-Milnor squares

In this section we continue to use the language of weight structures as in Sect. 5. For convenience,
the term weighted ∞-category will refer to an essentially small stable ∞-category with a bounded
weight structure. We write Cw=0 for the weight-heart of a weighted ∞-category C.

C.1. Connected invariants.

Definition C.1.1.

(i) We say that a weight-exact functor f ∶ C → D between weighted ∞-categories is thickly
surjective if every object Y ∈Dw=0 is a direct summand of f(X) for some object X ∈ Cw=0.
In other words, if the induced functor f∗ on Ind-completions generates its codomain under
colimits.

(ii) Let C and D be weighted ∞-categories and k ⩾ 0 an integer. A thickly surjective weight-exact
functor f ∶ C→D is k-connective if it induces k-connective maps

MapsCw=0(X,Y )→MapsDw=0(f(X), f(Y ))
for all X and Y in Cw=0. In other words, if the induced functor of (k + 1)-categories

τ⩽k+1(C)→ τ⩽k+1(D)
is fully faithful (and hence an equivalence) when restricted to the weight-hearts.
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Example C.1.2. If A → B is a k-connective map of connective E∞-rings, then the induced
functor PerfA → PerfB is k-connective with respect to the weight structures of Example 5.1.1.

The following definition is a variant of [LT19, Def. 2.5].

Definition C.1.3. Let E be a spectrum-valued functor on the ∞-category of small stable ∞-
categories. We say that E is connected if for any k-connective functor C → D of weighted
∞-categories, the induced map of spectra E(C)→ E(D) is (k + 1)-connective.

Example C.1.4. Connective K-theory is an example of a connected invariant. This follows
from [Fon18, Cor. 5.16] and the fact that plus-construction sends k-connected maps of spaces
into k + 1-connected maps (cf. [LT19, Lem. 2.4]). Moreover, nonconnective K-theory is also an
example by [Sos19, Thm. 4.3].

Remark C.1.5. Let E be a localizing invariant. If E is connected, then it is 1-connective in the
sense of [LT19, Def. 2.5]. The converse holds if E commutes with filtered colimits. If E does not
commute with filtered colimits, one can still show a weaker statement: if E is 2-connective in the
sense of [LT19], then it is connected. This follows from the fact that any weighted ∞-category can
be functorially realized as the kernel of a weight-exact localization functor PerfA(C) → PerfB(C)
for some map of connective E1-rings A(C)→ B(C); see the proof of Lemma 3.5.5. (See [Bon10,
Sect. 8.1] or [BS16] for the theory of weight-exact localizations.) Any n-connective functor C→D

clearly induces an n-connective map on A(C)→ A(D), and it also induces an n-connective map
B(C)→ B(D) by the universal properties of localization and of truncation.

C.2. Weak pro-Milnor squares. The starting point for our definition of weak pro-Milnor
squares is the following classical definition (see e.g. [AM69, Sect. 4]):

Definition C.2.1. Let {fn ∶Xn → Yn}n be a morphism of cofiltered systems of spectra. We say
that f is pro-k-connective if the induced map

{τ⩽k(Xn)}n → {τ⩽k(Yn)}n

is an isomorphism in Pro(Spt) for every k. It is a weak pro-equivalence if it is pro-k-connective
for all k.

Note that the same definition makes sense for the ∞-category of E1-rings, for instance, in place of
Spt. The following can be viewed as a many-object generalization (see Example 5.1.1). A weighted
pro-∞-category is a pro-object in the ∞-category of weighted ∞-categories and weight-exact
functors.

Definition C.2.2. Let {fn ∶ Cn →Dn}n be a cofiltered system of weight-exact functors between
weighted ∞-categories and k ⩾ 0 an integer. We say that it is pro-k-connective if the induced
morphism of pro-∞-categories

{τ⩽k+1(Cw=0
n )}n → {τ⩽k+1(Dw=0

n )}n

is invertible. If it is k-connective for all k, then it is called a weak pro-equivalence of weighted
pro-∞-categories.

This enables us to define weak pro-Milnor squares of weighted ∞-categories.
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Definition C.2.3. Let {∆n}n be a cofiltered system of commutative squares of weighted ∞-
categories and weight-exact functors of the form

An Bn

A′
n B′

n.

fn

pn qn

gn

For every n, let A+
n ⊆ A′

n ×B′
n
Bn denote the full subcategory of the pullback (taken in the

∞-category of weighted ∞-categories) generated under finite colimits, finite limits, and retracts by
the essential image of An → A′

n×B′
n
Bn. Note that A+

n inherits a weight structure from A′
n×B′

n
Bn.

We say that ∆ is k-pro-precartesian if the functors An → A+
n induce a pro-k-connective functor

on weighted pro-∞-categories. We say it is weakly pro-precartesian if it is k-pro-precartesian for
all k.

Definition C.2.4. Let {∆n}n be a cofiltered system of commutative squares of weighted ∞-
categories and weight-exact functors as above. We say that {∆n}n is k-pro-Milnor if it is
pro-precartesian and each of the functors f∗n , g∗n, p∗n, q∗n is thickly surjective. It is weakly
pro-Milnor if it is k-pro-Milnor for all k.

Construction C.2.5. Suppose given a commutative square

A B

A′ B′

f

p q

g

of weighted ∞-categories. Write Â, B̂, etc. for the Ind-completions and consider the ⊙-construction

Q̂ ∶= Â′ ⊙B̂′
Â

B̂. By Lemma 3.5.12 there is a weight structure on Q ∶= Q̂ω such that all the functors

in the induced square

A B

A′ Q,

f

p q0

g0

as well as the functor b ∶ Q→ B′, are weight-exact. We call Q the weighted ⊙-construction, and
denote it by

A′ ⊙B′
A B.

Definition C.2.6. Let {∆n}n be a cofiltered system of commutative squares of weighted ∞-
categories and weight-exact functors of the form

An Bn

A′
n B′

n.

fn

pn qn

gn

(C.2.a)

If ∆ is a pro-k-Milnor square, then we say it pro-k-base change if the functors A′
n ⊙

B′
n

An
Bn → B′

n

induce a pro-k-connective functor on weighted pro-∞-categories. If ∆ is a weak pro-Milnor square,
then we say it weakly satisfies pro-base change if satisfies pro-k-base change for all k.
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C.3. Weak pro-excision. For connected invariants, we have the following analogue of Theo-
rem 3.5.11:

Theorem C.3.1 (Weak pro-excision). Let E be a connected localizing invariant. Suppose given
a weak pro-Milnor square of weighted pro-∞-categories of the form (C.2.a) weakly satisfying
pro-base change. Then the induced square of pro-spectra

{E(An)}n {E(Bn)}n

{E(A′
n)}n {E(B′

n)}n

is weakly pro-cartesian. That is, the morphisms E(An)→ E(A′
n)×E(B′

n)
E(Bn) induce a weak

pro-equivalence of pro-spectra.

Lemma C.3.2. Let {fn ∶ Cn → Dn}n be a cofiltered system of weight-exact functors between
idempotent-complete weighted ∞-categories. If it is pro-k-connective, then it is isomorphic to a
pro-system of levelwise k-connective functors.

Proof. For every n, consider the commutative square

Cn Dn

τ⩽k+1(Cn) τ⩽k+1(Dn)

fn

fn

By assumption, the lower arrow induces an isomorphism of pro-objects as n varies. Since passage
to underlying pro-objects commutes with finite limits, it follows that the base changes En →Dn

also induce an isomorphism of pro-objects. Thus it will suffice to show that for every n, the
induced functor f ′n ∶ Cn → En is k-connective. By construction of En, the functor En → τ⩽k+1(Cn)
induces an equivalence on homotopy categories of the weight-hearts. Since the same holds for
Cn → τ⩽k+1(Cn), it follows that Cn → En is thickly surjective.

Now for any two objects X and Y in Cw=0
n , consider the commutative triangle

MapsCn(X,Y ) τ⩽k MapsEn(f
′
n(X), f ′n(Y ))

τ⩽k MapsCn(X,Y ).

Note that the vertical and diagonal maps have fibres

τ⩾k+1 MapsDn
(fn(X), fn(Y )) and τ⩾k+1 MapsCn(X,Y ),

respectively. These are both (k + 1)-connective, so it follows from the octahedral axiom that the
horizontal map also has k-connective fibre. �

Corollary C.3.3. Let E be a connected invariant. Then E sends pro-k-connective maps of
idempotent-complete weighted ∞-categories to (k + 1)-connective maps of pro-spectra. In partic-
ular, it sends weak pro-equivalences to weak pro-equivalences.
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Proof of Theorem C.3.1. Since {∆n}n is weakly pro-Milnor, it is weakly pro-equivalent to the
pro-system induced by the squares

An Bn

A′
n A′

n ⊙
B′
n

An
Bn.

By Theorem 3.4.3, E sends the above square to a cartesian square of spectra for every n. Thus
the claim follows from Corollary C.3.3. �
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