
PERVERSE PULLBACKS

ADEEL A. KHAN, TASUKI KINJO, HYEONJUN PARK, AND PAVEL SAFRONOV

Abstract. We define a new perverse t-exact pullback operation on derived categories of constructible
sheaves which generalizes most perverse t-exact functors in sheaf theory, such as microlocalization, the
Fourier–Sato transform and vanishing cycles. This operation is defined for morphisms of algebraic stacks
equipped with a relative exact p´1q-shifted symplectic structure, and can be used to define cohomological
Donaldson–Thomas invariants in a relative setting. We prove natural functoriality properties for perverse
pullbacks, such as smooth and finite base change, compatibility with products and Verdier duality.
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Introduction

For a locally compact topological space X the derived category ShvpXq of sheaves of complexes of Q-
vector spaces has two t-structures: one t-structure is determined by the condition that all stalk functors
(i.e. i˚ for inclusions of points) are t-exact and another t-structure is determined by the condition that all
costalk functors (i.e. i!) are t-exact. By definition, arbitrary ˚-pullbacks are t-exact with respect to the first
t-structure and arbitrary !-pullbacks are t-exact with respect to the second t-structure. Moreover, these two
t-structures as well as ˚-pullbacks and !-pullbacks are exchanged under the Verdier duality functor D.

In the case when X is the complex analytic space underlying a complex algebraic variety, there is a
subcategory Db

c pXq Ă ShvpXq of constructible sheaves which inherits the two t-structures. But it also has a
third, perverse, t-structure, which is Verdier self-dual. Given an extra structure on a morphism π : X Ñ B
of complex algebraic varieties (a relative d-critical structure or a derived enhancement X Ñ B equipped
with a relative exact p´1q-shifted symplectic structure) the goal of this paper is to define a perverse pullback
functor πφ : Db

c pBq Ñ Db
c pXq which is perverse t-exact and Verdier self-dual.

Cohomological DT theory. Cohomological Donaldson–Thomas theory associates a cohomology theory
to certain algebro-geometric moduli spaces. Namely, for a complex algebraic stack X consider the following
data:

‚ A derived enhancement X ãÑ X equipped with a p´1q-shifted symplectic structure in the sense of
[Pan+13].

‚ Orientation data, i.e. the choice of a square root line bundle of the canonical bundle KX “ detpLXq.
Given such data, the works [Bra+15; Ben+15; KL12] define a perverse sheaf φX on X, locally modeled on

the sheaf of vanishing cycles for a function f : U Ñ C on a smooth complex scheme U , so that the cohomo-
logical Donaldson–Thomas (DT) invariant of X is given by the cohomology of φX . Some of the examples of
stacks which admit p´1q-shifted symplectic derived enhancements are moduli stacks of compactly supported
coherent sheaves on smooth 3-dimensional Calabi–Yau varieties (in which case a natural orientation data
was constructed in [JU21]) and moduli stacks of local systems on a compact oriented 3-manifold (in which
case a natural orientation data was constructed in [NS23]).

Cohomological DT invariants relate to the usual cohomology via a dimensional reduction isomorphism
constructed in [Kin22]. Namely, consider an algebraic stack Y with a quasi-smooth derived enhancement Y.
Consider the stack of singularities SingpY q [AG15] obtained as the classical truncation of the p´1q-shifted
cotangent bundle T˚r´1sY. The dimensional reduction theorem identifies the cohomological DT invariant
of SingpY q with the Borel–Moore homology of Y :

H‚pSingpY q, φSingpY qq – HBM
dimpYq´‚pY q.

Perverse pullbacks. Motivated by relative cohomological Donaldson–Thomas theory (where we have a
family of 3-dimensional Calabi–Yau varieties or an anticanonical divisor in a 4-dimensional Fano variety),
in this paper we introduce a relative version of the perverse sheaf φX recalled above. Namely, instead of
considering a fixed complex algebraic stack X and equipping it with a perverse sheaf φX P PervpXq we
consider a family π : X Ñ B and equip it with a perverse pullback functor PervpBq Ñ PervpXq. The
following is a condensed version of Theorem 5.24; we refer the reader to the main body of the paper to the
precise definition of natural isomorphisms, their compatibility as well as a generalization to constructible
sheaves with coefficients in a general commutative ring R.
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Theorem A. Let π : X Ñ B be a morphism of higher Artin stacks over C together with a derived enhance-
ment X ãÑ X, a relative exact p´1q-shifted symplectic structure on X Ñ B, and the choice of a square root
line bundle of KX{B “ detpLX{Bq. Then there is a perverse t-exact functor

πφ : Db
c pBq ÝÑ Db

c pXq

which satisfies the following properties:
(1) It is compatible with pullbacks along smooth morphisms in B.
(2) It is compatible with pullbacks along smooth morphisms in X.
(3) It is compatible with p´1q-shifted symplectic pushforwards (in the sense of [Par24]) along smooth

morphisms in B.
(4) It is compatible with pushforwards along finite morphisms in B.
(5) It commutes with Verdier duality.
(6) It is compatible with products.

In the opposite extremes the perverse pullback is given as follows:
‚ For B “ pt we have πφQB “ φX is the perverse sheaf defined in [Bra+15; Ben+15]. In fact, our

construction of perverse pullbacks extends its definition to higher Artin stacks X.
‚ For X “ X “ B with the relative exact p´1q-shifted symplectic structure on id : X Ñ X determined

by a function f : X Ñ C we have

πφ “
à

cPC
pf´1pcq Ñ Xq˚φf´c,

where φf : Db
c pXq Ñ Db

c pf´1p0qq is the vanishing cycle functor. The above sum is necessary for
perverse pullbacks to be compatible with products in the naive way. In fact, this natural isomorphism
along with the properties (1)-(3) of perverse pullbacks from Theorem A determine them uniquely.

Following [Joy15], instead of considering a p´1q-shifted symplectic enhancement X ãÑ X it turns out to
be useful to consider relative d-critical structures on π : X Ñ B (see Definitions 3.15 and 4.11). Namely, a
relative d-critical structure s on π is given by a pair of a function undpsq P OX together with a nullhomotopy
of its de Rham differential dundpsq P LX{B in the relative cotangent complex; we moreover require that
smooth-locally X Ñ B is given by the relative critical locus of a function of a smooth B-scheme, compatibly
with s. Given a p´1q-shifted symplectic enhancement X ãÑ X, the restriction of the relative exact p´1q-
shifted symplectic structure on X to X defines such an element s; the local structure is provided by the shifted
Darboux theorems of [BBJ19; BG13; Ben+15; Par24]. The advantage of (relative) d-critical structures over
(relative) exact p´1q-shifted symplectic structures is that the former are obviously functorial with respect
to smooth maps, which is useful in extending our constructions to higher Artin stacks.

Besides the vanishing cycle functor, the perverse pullback functor recovers most of the perverse t-exact
functors that appear in sheaf theory:

‚ Let X “ E be a vector bundle over a scheme B. Then the composite uE : E_ Ñ B
0

ãÝÑ E naturally
carries a relative exact d-critical structure, together with a canonical choice of square root KE_{E –

detpE|Eqb2. In this situation, the perverse pullback functor

uφE : Db
c pEq Ñ Db

c pE_q

recovers the Fourier–Sato transform [KS90, Section 3.7] up to shift.
‚ Let Y ãÑ B be a closed immersion between smooth varieties. In this situation, the composite
π : N˚pY {Bq Ñ Y Ñ B naturally carries a relative exact d-critical structure with a canonical choice
of square root KN˚pY {Bq{B – KY {B |

b2
N˚pY {Bq

. Then the perverse pullback functor

πφ : Db
c pBq Ñ Db

c pN˚pY {Bqq

recovers the microlocalization functor in [KS90, Section 4.3]. In particular, the composite

uφN˚pY {Bq
˝ πφ : Db

c pBq Ñ Db
c pNpY {Bqq

recovers the specialization functor. See the next paragraph for more details on the microlocal nature
of the perverse pullback functor.
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Lagrangian microlocalization. For a complex manifold B and a complex submanifold Y Ă B Kashiwara
and Schapira [KS90, Section 4.3] defined the microlocalization functor µY {B : Db

c pBq Ñ Db
c pN˚pY {Bqq which

is perverse t-exact. The definition of the microlocalization functor µY {B was extended in [Sch22] to the case
when Y Ñ B is a quasi-smooth closed immersion, and independently in [KK23] when Y Ñ B is a morphism
of derived Artin stacks locally of finite presentation.

One can interpret the perverse pullback functor as a Lagrangian version of the microlocalization functor
as follows. The starting point for this point of view is given by the following results:

‚ By [Par24, Corollary 3.1.3] a morphism X Ñ B with a relative exact p´1q-shifted symplectic struc-
ture is the same as an exact Lagrangian structure on a morphism X Ñ T˚B.

‚ For a complex symplectic manifold pS, ωq equipped with a Gm-action which acts on ω with weight
1 there is a category PervpSq of perverse microsheaves constructed in [Was04; Côt+22]. Moreover,
if S “ T˚B is the cotangent bundle of a complex manifold B, there is an equivalence PervpT˚Bq –

Perv
K

1{2
B

pBq, the category of perverse sheaves on B twisted by the gerbe of square roots of the
canonical bundle KB .

Conjecture B. For a complex 0-shifted symplectic derived Artin stack pS, ωq equipped with a Gm-action
which acts on ω with weight 1 there is a category PervpSq of perverse microsheaves on S. For a morphism
f : L Ñ S equipped with an exact Lagrangian structure there is a Lagrangian microlocalization functor

µLag
L{S : PervpSq ÝÑ PervpT˚Lq.

Moreover, for S “ T˚B there is an equivalence PervpT˚Bq – Perv
K

1{2
B

pBq and under this equivalence µLag
L{S

is equivalent to the perverse pullback along the composite L Ñ T˚B Ñ B.

The Lagrangian microlocalization functor is closely related to the notion of a sheaf quantization of a
Lagrangian submanifold as in [NS20]: a sheaf of quantization of L Ñ S is an object LL P PervpSq such that
µLag
L{SpLLq is a (twisted) rank 1 local system on L.
In a follow-up paper we use the formalism of perverse pullbacks to construct shifted Lagrangian classes

as in [JS19, Conjecture 1.1] and [AB17, Conjecture 5.18]: for a complex oriented p´1q-shifted symplectic
derived Artin stack S and a morphism f : L Ñ S equipped with an oriented Lagrangian structure there is a
p´1q-shifted Lagrangian class

rLsLag : f˚φS ÝÑ ωLr´dimpLqs

generalizing the virtual classes in Borel–Moore homology defined in [BJ17] and [OT23] for S “ pt. This may
be viewed as a decategorified and p´1q-shifted version of Conjecture B.

Given a morphism Y Ñ B of derived Artin stacks locally of finite presentation we obtain a 0-shifted
Lagrangian morphism π : L “ N˚pY {Bq Ñ S “ T˚B. We expect that the perverse pullback functor in this
case coincides with the derived microlocalization functor, i.e. we expect that there is a natural isomorphism

µLag
N˚pY {Bq{T˚B – µY {B .

Conventions. Throughout the paper we work with schemes over a field k assumed to be of characteristic
different from 2 and with i P k satisfying i2 “ ´1. Starting from Section 5, k will be the field C of
complex numbers. We also fix a commutative ring R of coefficients for our sheaves. We denote by Gpd8

the 8-category of 8-groupoids.

Acknowledgements. AAK acknowledges support from the grants AS-CDA-112-M01 and NSTC 112-2628-
M-001-0062030. TK was supported by JSPS KAKENHI Grant Number 25K17229. HP was supported by
Korea Institute for Advanced Study (SG089201).

1. Schemes and stacks

1.1. Stacks. Recall the symmetric monoidal 8-category PrSt of stable presentable 8-categories with colimit-
preserving functors as morphisms as in [Lur17, §4.8.1]. Let ModR P PrSt be the derived 8-category of chain
complexes of R-modules. Let

PrStR “ ModModR
pPrStq

be the 8-category of R-linear stable presentable 8-categories.
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Let Sch be the category of schemes over k and Schsepft Ă Sch the subcategory of separated schemes of
finite type. Recall the following notion of higher Artin stacks, as in [TV08, Definition 1.3.3.1].

Definition 1.1. A stack is a presheaf of 8-groupoids on Sch satisfying Čech descent along étale surjections;
we denote by Stk the 8-category of such. We define n-geometric stacks (for n ě ´1) inductively:

(1) A stack is p´1q-geometric if it is (representable by) a scheme.
(2) A morphism of stacks f : X Ñ Y is n-geometric (for n ě ´1) if for every scheme V and every

morphism V Ñ Y , the fibered product X ˆY V is n-geometric.
(3) An n-geometric morphism f : X Ñ Y is smooth , resp. smooth surjective , if for every commutative

diagram

U //

��

X

��
V // Y

with U, V schemes and U Ñ X ˆY V smooth surjective as an pn ´ 1q-geometric morphism, the
morphism U Ñ V is a smooth, resp. smooth surjective, morphism of schemes.

(4) A stack X is n-geometric if it satisfies the following properties:
(a) Its diagonal ∆X : X Ñ X ˆX is pn´ 1q-geometric.
(b) There exists a scheme U and a morphism1 p : U Ñ X which is a smooth surjection.

We additionally introduce the following terminology:

‚ A stack is higher Artin if it is n-geometric for some n; we denote by Art Ă Stk the 8-category of
such.

‚ A morphism is geometric if it is n-geometric for some n.
‚ A higher Artin stack is Artin if the corresponding functor is valued in groupoids. More generally,

a higher Artin stack is n-Artin if the corresponding functor is valued in n-groupoids.
‚ A morphism is n-representable if it is representable by n-Artin stacks. It is schematic if it is

representable by schemes.

For a pair of stacks X,Y we denote by MappX,Y q the mapping stack whose S-points are given by

MappX,Y qpSq “ HomStkpS ˆX,Y q.

Definition 1.2. A stack X is locally of finite type if for every cofiltered system tSiu of affine schemes
the natural morphism

colimiXpSiq ÝÑ Xplim
i
Siq

is an isomorphism.

Remark 1.3. For schemes over a field k the above definition coincides with the usual notion of schemes
locally of finite type, see [Stacks, 01ZC].

Let Stklft Ă Stk be the full subcategory of stacks locally of finite type. We write Artlft Ă Art for the full
subcategory spanned by X P Art locally of finite type.

1.2. Extensions to stacks. Let V be an 8-category with limits. In this section we describe several mecha-
nisms to extend invariants of schemes valued in V to invariants of stacks. Equip the category of schemes Sch
with the étale topology. We will encounter objects on schemes functorial only with respect to smooth mor-
phisms. Namely, consider the subcategory Schsmooth Ă Sch whose objects are schemes and whose morphisms
are smooth. Let Artsmooth Ă Art be a similarly defined subcategory for higher Artin stacks.

1which is automatically pn ´ 1q-geometric when the diagonal ∆X is pn ´ 1q-geometric.
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To formalize invariants of relative schemes, let Funp∆1,Schq be the category whose objects are morphisms

of schemes and whose morphisms p : pX 1 π1

ÝÑ B1q Ñ pX
π

ÝÑ Bq are commutative diagrams

X 1
p //

π1

��

X

π

��
B1

p // B.

We extend the étale topology to Funp∆1,Schq by declaring covering families tpXi Ñ Biq Ñ pX Ñ Bqu to be
families of morphisms such that both tBi Ñ Bu and tXi Ñ X ˆB Biu are étale covers.

Let
Funp∆1,Schsepftq0smooth,1smooth Ă Funp∆1,Schq0smooth Ă Funp∆1,Schq

be the following subcategories:
‚ Funp∆1,Schq0smooth has the same objects and morphisms pX 1 Ñ B1q Ñ pX Ñ Bq such that X 1 Ñ

X ˆB B
1 is smooth.

‚ Funp∆1,Schsepftq0smooth,1smooth has the same objects and morphisms pX 1 Ñ B1q Ñ pX Ñ Bq such
that both B1 Ñ B and X 1 Ñ X ˆB B

1 are smooth.
Let Funp∆1,Stkq be the 8-category of morphisms of stacks and let

Funp∆1,Artq0smooth,1smooth Ă Funp∆1,Stkq
geometric
0smooth Ă Funp∆1,Stkqgeometric Ă Funp∆1,Stkq

be the following subcategories:
‚ Funp∆1,Stkqgeometric is the full subcategory whose objects are geometric morphisms of stacks,
‚ Funp∆1,Stkq

geometric
0smooth has the same objects and morphisms pX 1 Ñ B1q Ñ pX Ñ Bq such that

X 1 Ñ X ˆB B
1 is smooth.

‚ Funp∆1,Artq0smooth,1smooth has objects morphisms of higher Artin stacks and morphisms pX 1 Ñ

B1q Ñ pX Ñ Bq such that both B1 Ñ B and X 1 Ñ X ˆB B
1 are smooth.

We define the extensions of invariants of schemes to invariants of stacks as follows.
‚ For a functor

F : Schop ÝÑ V

satisfying étale descent we define its value on stacks X P Stk by a right Kan extension:

(1.1) FŸpXq “ lim
pS,sq

F pSq,

where the limit is taken over the 8-category Sch{X of pairs pS, sq with S P Sch and s : S Ñ X
a morphism. By [Kha25, Proposition 3.2.5(i), Corollary 3.2.6(i)] this determines an inverse to the
restriction functor from V-valued sheaves on Stk to V-valued sheaves on Sch.

‚ For a functor
F : Schopsmooth ÝÑ V

satisfying étale descent we define its value on higher Artin stacks X P Art by a right Kan extension:

(1.2) FŸpXq “ lim
pS,sq

F pSq,

where the limit is taken over the full subcategory Sch
smooth{X
smooth Ă pArtsmoothq{X consisting of pairs

pS, sq with S P Sch and s : S Ñ X a smooth morphism.
‚ For a functor

F : Funp∆1,Schq
op
0smooth ÝÑ V

satisfying étale descent we define its value on geometric morphisms pX Ñ Bq P Funp∆1,Stkqgeometric

of stacks by a right Kan extension:

(1.3) FŸpX Ñ Bq “ lim
pX1ÑB1,pq

F pX 1 Ñ B1q,

where the limit is taken over the full subcategory of pFunp∆1,Stkq
geometric
0smooth q{pXÑBq of objects pX 1 Ñ

B1, pq where X 1 Ñ B1 is a morphism of schemes and X 1 Ñ X ˆB B
1 is smooth.
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‚ For a functor
F : Funp∆1,Schq

op
0smooth,1smooth ÝÑ V

satisfying étale descent we define its value on a morphism pX Ñ Bq P Funp∆1,Artq of higher Artin
stacks by a right Kan extension:

(1.4) FŸpX Ñ Bq “ lim
pX1ÑB1,pq

F pX 1 Ñ B1q,

where the limit is taken over the full subcategory of pFunp∆1,Artq0smooth,1smoothq{pXÑBq of objects
pX 1 Ñ B1, pq where X 1 Ñ B1 is a morphism of schemes and both B1 Ñ B and X 1 Ñ X ˆB B

1 are
smooth.

Remark 1.4. By [Kha25, Corollary 3.2.7], the definitions (1.1) and (1.2) (and, similarly, (1.3) and (1.4))
of the extensions above are compatible, i.e. for a sheaf F : Schop Ñ V and a higher Artin stack X P Art the
restriction morphism

lim
pS,sqPSch{X

F pSq ÝÑ lim
pS,sqPSch

smooth{X
smooth

F pSq

is an isomorphism. Thus, the notation FŸpXq for the extension is unambiguous.

Remark 1.5. Given étale-local invariants defined only on the subcategory Schlft Ă Sch of schemes locally of
finite type, we may similarly extend to stacks locally of finite type. Moreover, by Zariski descent it suffices
to have the invariant defined on Schsepft Ă Schlft, or even the subcategory of affine schemes of finite type.

1.3. Derived stacks. Let us briefly introduce the theory of derived stacks. The 8-category dAff of de-
rived affine schemes is opposite to the 8-category CAlg∆k of simplicial commutative k-algebras via the
Spec functor. A derived stack is a presheaf of 8-groupoids on dAff satisfying Čech descent along étale
surjections. We denote by dStk the 8-category of such. There is a fully faithful inclusion functor Stk Ñ dStk
whose right adjoint p´qcl : dStk Ñ Stk is given by passing to the underlying classical stack. The notion of a
geometric morphism of derived stacks is defined analogously to Definition 1.1.

For a derived affine scheme S “ SpecA we define QCohpSq to be the 8-category of dg A-modules. This
8-category is stable and presentable and has a natural symmetric monoidal structure. We refer to objects
of QCohpSq as quasi-coherent complexes. Denote by PerfpSq Ă QCohpSq the full subcategory of perfect
complexes, i.e. dualizable objects in QCohpSq. For a morphism of derived affine schemes f : X Ñ Y we have
a symmetric monoidal pullback functor f˚ : QCohpY q Ñ QCohpXq. This assignment defines a functor

QCoh: dAffop
ÝÑ PrStk

which satisfies étale descent. By right Kan extension we obtain the functor

QCoh: dStkop ÝÑ PrStk .

If f : X Ñ Y is a geometric morphism of derived stacks, we have the relative cotangent complex
LX{Y P QCohpXq which is functorial in the following way. For a commutative diagram

X 1 //

��

X

��
Y 1 // Y

of derived stacks with X Ñ Y and X 1 Ñ Y 1 ˆY X geometric we have a pullback morphism

(1.5) pX 1 Ñ Xq˚LX{Y ÝÑ LX1{Y 1

which is an isomorphism if the diagram is Cartesian. Moreover, for geometric morphisms X Ñ Y Ñ Z of
derived stacks, we have a fiber sequence

(1.6) pX Ñ Y q˚LY {Z ÝÑ LX{Z ÝÑ LX{Y .

We refer to [CHS25, Lemma B.10.13] for more details on the functoriality of the relative cotangent complex.
For a morphism of classical stacks X Ñ Y we define the relative cotangent complex by viewing them as

derived stacks. For instance, if X Ñ Y is a morphism of schemes, we have Ω1
X{Y “ h0pLX{Y q, the sheaf of

relative Kähler differentials. We have the following basic fact.
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Lemma 1.6. Let X Ñ Y be a geometric morphism of derived stacks. Then the cofiber of the pullback
morphism

pXcl Ñ Xq˚LX{Y ÝÑ LXcl{Y cl ,

i.e. LXcl{XˆY Y cl , is 2-connective.

Proof. Consider the diagram

pXcl Ñ Y q˚LY //

��

pXcl Ñ Xq˚LX //

��

pXcl Ñ Xq˚LX{Y

��
pXcl Ñ Y clq˚LY cl

//

��

LXcl
//

��

LXcl{Y cl

��
pXcl Ñ Y clq˚LY cl{Y

// LXcl{X
// LXcl{XˆY Y cl .

In this diagram all columns and the first two rows are cofiber sequences, so the bottom row is a cofiber
sequence. Therefore, the claim reduces to the case Y “ pt.

Let i : Xcl Ñ X be the natural morphism. By definition, for any derived affine scheme S equipped with
a morphism f : S Ñ Xcl and a connective quasi-coherent complex M P QCohpSq we have

MapQCohpSqppi ˝ fq˚LX ,Mq – MapdStkS{
pSrM s, Xq.

The right-hand side preserves colimits in X. Writing X “ colimαXα for a diagram of affine derived schemes
tXαuα, so that Xcl “ colimαX

cl
α , we get a commutative diagram

colimαMapQCohpSqpf˚
αLXcl

α
,Mq

„ //

��

MapQCohpSqpf˚LXcl ,Mq

��
colimαMapQCohpSqppiα ˝ fαq˚LXα

,Mq
„ // MapQCohpSqpf˚LX ,Mq,

where fα : S Ñ Xcl
α and iα : Xcl

α Ñ Xcl. As colimits in Gpd8 are universal, we get

colimαMapQCohpSqpf˚
αLXcl

α {Xα
,Mq – MapQCohpSqpLXcl{X ,Mq.

The 2-connectivity of LXcl{X is equivalent to the contractibility of the right-hand side for everyM P QCohpSq

concentrated in cohomological degrees r´1, 0s. Thus, by the above isomorphism the claim reduces to the
case of an affine derived scheme X “ SpecA. Since the cofiber of A Ñ H0pAq is 2-connective, we get that
LXcl{X “ LH0pAq{A is 2-connective by [Lur17, Corollary 7.4.3.2]. □

We say that a geometric morphism of derived stacks f : X Ñ Y is locally of finite presentation , or
lfp for short, if the induced morphism of classical truncations f cl : Xcl Ñ Y cl is locally of finite presentation
in the classical sense, and the relative cotangent complex LX{Y is perfect. Note that a locally of finite
presentation morphism of classical stacks need not be lfp as a morphism of derived stacks.

The (relative) dimension of an lfp morphism f : X Ñ Y , denoted dimpX{Y q, is the rank of the perfect
complex LX{Y . Note that when f is smooth, we have dimpX{Y q “ dimpXcl{Y clq.

1.4. Determinant lines. For a stack X we denote by PicgrpXq the 8-category of pairs pL,αq of a line
bundle L on X and a locally constant function α : X Ñ Z{2Z. It is a Picard 8-groupoid (or E8-group)
with the symmetric monoidal structure given by pL1, α1q b pL2, α2q “ pL1 b L2, α1 ` α2q with braiding
involving the Koszul sign. We fix an identification pL,αq_ – pL_, αq, under which the evaluation pairing
pL,αq b pL,αq_ Ñ pOX , 0q is identified with the composite pL,αq b pL_, αq “ pLb L_, 0q – pOX , 0q. If l is
a nonvanishing section of a line bundle L, we denote by l´1 the section of L_ which pairs to 1 with l.

For a perfect complex E P PerfpXq we denote by detpEq P PicgrpXq the Z{2Z-graded determinant line
bundle [Del87; KM76]. Our conventions follow [KPS24, Section 2.2]. The main isomorphisms we will use
are as follows:
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‚ For a fiber sequence
∆: E1 ÝÑ E2 ÝÑ E3

there is an isomorphism

ip∆q : detpE1q b detpE3q
„

ÝÑ detpE2q.

‚ For a perfect complex E there is an isomorphism

ιE : detpE_q
„

ÝÑ detpEq_.

For a perfect complex E we have the fiber sequence ∆E : E Ñ 0 Ñ Er1s given by the rotation of E id
ÝÑ E Ñ 0.

It gives rise to an isomorphism
θE : detpEr1sq – detpEq_

so that the composite
detpEq b detpEr1sq

idbθE
ÝÝÝÝÑ detpEq b detpEq_ ev

ÝÑ OX

coincides with ip∆Eq.
We will use the following explicit descriptions:

‚ If E is a trivial vector bundle with a basis of sections ts1, . . . , snu, the determinant line bundle detpEq

has a nonvanishing section s1 ^ ¨ ¨ ¨ ^ sn.
‚ Given a short exact sequence

∆: 0 ÝÑ E1 ÝÑ E2 ÝÑ E3 ÝÑ 0

of trivial vector bundles with ts1, . . . , snu a basis of sections of E1 and ts1, . . . , sn, sn`1, . . . , sn`mu

a basis of sections of E2, then

ip∆qps1 ^ ¨ ¨ ¨ ^ sn b sn`1 ^ ¨ ¨ ¨ ^ sn`mq “ s1 ^ ¨ ¨ ¨ ^ sn`m.

‚ Again, if E is a trivial vector bundle with a basis of sections ts1, . . . , snu and with ts1, . . . , snu the
dual basis of E_, then

ιEps1 ^ ¨ ¨ ¨ ^ snq “ p´1qnpn´1q{2ps1 ^ ¨ ¨ ¨ ^ snq´1.

Given a smooth morphism of stacks f : X Ñ Y , the relative cotangent complex LX{Y is perfect of Tor-
amplitude ě 0 and the canonical bundle is KX{Y “ detpLX{Y q P PicgrpXq.

1.5. Differential forms. Let X Ñ B be a geometric morphism of derived stacks. We have the relative
cotangent complex LX{B P QCohpXq equipped with the de Rham differential

dB : ΓpX,OXq Ñ ΓpX,LX{Bq

defined as in [Cal+17; CHS25; Par24]. Recall the following notions from [Pan+13].

Definition 1.7. Let n P Z.
‚ For p P Z the space of relative p-forms of degree n on X Ñ B is

AppX{B,nq “ MapQCohpXqpOX ,^
pLX{Brnsq.

‚ The space A2,expX{B,nq of relative exact two-forms of degree n on X Ñ B is the homotopy
fiber of dB : A0pX{B,n` 1q Ñ A1pX{B,n` 1q at the zero form.

For a commutative diagram of derived stacks

X 1 //

��

X

��
B1 // B

we have a natural pullback morphism A2,expX{B,nq Ñ A2,expX 1{B1, nq. We have natural isomorphisms

ΩAppX{B,n` 1q – AppX{B,nq, ΩA2,expX{B,n` 1q – A2,expX{B,nq

and a forgetful map dB : A1pX{B,nq Ñ A2,expX{B,nq. We will now give two examples of relative exact
two-forms we will encounter.
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1.5.1. Case n “ 0. Given a quasi-coherent complex V P QCohpXq over a stack X recall the total space
TotXpV q which is a stack over X whose S-points are given by pairs pf, αq of a morphism f : S Ñ X of stacks
and a morphism α : OS Ñ f˚V in QCohpSq.

Definition 1.8. Let X Ñ B be a geometric morphism of stacks. The relative cotangent bundle is
T˚pX{Bq “ TotXpLX{Bq.

The relative cotangent bundle is stable under base change: given a Cartesian square of stacks

X 1 //

��

X

��
B1 // B

which is Tor-independent (e.g. either X Ñ B or B1 Ñ B is flat), so that it is Cartesian when regarded as
a square of derived stacks, there is an isomorphism T˚pX{Bq ˆB B

1 – T˚pX 1{B1q of B1-stacks constructed
using (1.5). Moreover, for a composite X Ñ B1 Ñ B2 of geometric morphisms we have a Cartesian square

(1.7) T˚pB1{B2q ˆB1
X //

��

X

��
T˚pX{B2q // T˚pX{B1q

The relative cotangent bundle carries the so-called Liouville one-form λX{B P A1pT˚pX{Bq{B, 0q

defined as follows (see e.g. [Pan+13; Cal19]). For a morphism pf, αq : S Ñ T˚pX{Bq we set

pf, αq˚λX{B : OS Ñ f˚LX{B Ñ LS{B .

We have the following particular cases:
(1) If X Ñ B is a smooth schematic morphism, LX{B has Tor-amplitude r0, 0s, so T˚pX{Bq Ñ X is a

vector bundle.
(2) If X Ñ B is smooth and geometric, LX{B has Tor-amplitude ě 0 in which case T˚pX{Bq Ñ X is a

cone. In this case the zero section X Ñ T˚pX{Bq is a closed immersion.

Example 1.9. Let X Ñ B be a smooth morphism of schemes. Vector fields on X Ñ B give rise to
functions on T˚pX{Bq. So, given étale coordinates tq1, . . . , qnu on X Ñ B we obtain étale coordinates
tq1, . . . , qn, p1, . . . , pnu on T˚pX{Bq Ñ B, so that pi corresponds to B

Bqi
. In these coordinates we have

λX{B “

n
ÿ

i“1

pidBqi.

1.5.2. Case n “ ´1.

Definition 1.10. Let U Ñ B be a flat geometric morphism of stacks equipped with a function f : U Ñ A1.
The relative critical locus is the fiber product

(1.8) CritU{Bpfq //

��

U

Γ0

��
U

ΓdBf // T˚pU{Bq,

where Γ0 : U Ñ T˚pU{Bq is the zero section and ΓdBf : U Ñ T˚pU{Bq is the graph of the relative one-form
dBf .

By construction we have Γ˚
dBf

λU{B „ dBf in A1pU{B,nq. Thus, f provides a nullhomotopy hf : Γ˚
dBf

λU{B „

0 in A2,expU{B, 0q. Similarly, Γ˚
0λU{B „ 0. The difference of the two nullhomotopies on CritU{Bpfq provides

an element
sf “ hf ´ h0 P ΩA2,expCritU{Bpfq{B, 0q – A2,expCritU{Bpfq{B,´1q.

When we need to specify the base scheme, we also denote it by sf,B .
10



1.6. Immersions. In this preliminary section we collect some useful definitions and facts about immersions.
Throughout we fix a scheme B over k. We will use smoothings of schemes, which are immersions of a given
scheme into a smooth scheme.

Definition 1.11. Let X be a B-scheme and x P X a point. An immersion ı : X Ñ U into a smooth
B-scheme is minimal at x if the pullback ı˚ : Ω1

U{B,ıpxq
Ñ Ω1

X{B,x is an isomorphism.

Remark 1.12. For any immersion ı : X Ñ U the map ı˚ : Ω1
U{B,ıpxq

Ñ Ω1
X{B,x is surjective, so that

dimΩ1
U{B,ıpxq

ě dimΩ1
X{B,x. The minimality assumption is that this is an equality.

The local existence of minimal immersions is shown in [Stacks, Tag 0CBL]. Moreover, locally, every
immersion can be replaced by a minimal one.

Proposition 1.13. Let X be a B-scheme and x P X a point. Let ı : X Ñ U be an immersion into a smooth
B-scheme. Then there is an open neighborhood X˝ Ă X of x and a factorization of X˝ Ñ X

ı
ÝÑ U as

X˝ ı˝
ÝÑ V Ñ U , where V is a smooth B-scheme and ı˝ is a closed immersion minimal at x.

Proof. Let r “ dimΩ1
X{B,x. By [Stacks, Tag 0CBK] we may find an open neighborhood X 1 Ă X of x and a

diagram

X 1 π //

��

ArB

��
X

ı // U

with π unramified. By [EGAIV, Corollaire 18.4.7] we may find an open neighborhood X˝ Ă X 1 of x and a
diagram

X˝ ı˝ //

��

V

��
X 1 // ArB

with ı˝ a closed immersion and V Ñ ArB étale. In particular, V Ñ B is smooth of relative dimension r. In
particular, ı˝ is minimal. □

One can also show the existence of minimal immersions compatibly with smooth morphisms.

Proposition 1.14. Let f : X Ñ Y be a smooth morphism of B-schemes with Y Ñ B locally of finite type,
x P X a point and y “ fpxq. Then there are open neighborhoods X˝ Ă X of x and Y ˝ Ă Y of y, a smooth
morphism f˝ : X˝ Ñ Y ˝, a smooth morphism f̃ : U Ñ V of smooth B-schemes and closed immersions
ı : X˝ Ñ U and ȷ : Y ˝ Ñ V , such that the diagram

X

f

��

X˝ ı //

f˝

��

oo U

f̃
��

Y Y ˝
ȷ //oo V

commutes and ı and ȷ are minimal at x and y.

Proof. Let d be the relative dimension of f : X Ñ Y at x. By [Stacks, Tag 054L], we may find open
neighborhoods X˝ Ă X of x and Y ˝ Ă Y of y together with étale morphism g : X˝ Ñ Ad ˆY ˝ and a smooth
morphism f˝ : X˝ Ñ Y ˝ fitting into a commutative diagram

X

f

��

X˝
g //

f˝

��

oo Ad ˆ Y ˝

π2zz
Y Y ˝.oo

11



By [Stacks, Tag 0CBL], by shrinking Y ˝ we may find a closed immersion ȷ : Y ˝ Ñ V minimal at y P Y ˝ with
V a smooth B-scheme. Therefore, we obtain a commutative diagram

X

f

��

X˝
g //

f˝

��

oo Ad ˆ Y ˝

π2
zz

idˆȷ // Ad ˆ V

π2

xx
Y Y ˝oo ȷ // V.

The composite X˝ g
ÝÑ Ad ˆ Y ˝ idˆȷ

ÝÝÝÑ Ad ˆ V is unramified. Therefore, by [EGAIV, Corollaire 18.4.7],
shrinking X˝ we may factor X˝ Ñ Ad ˆ V as X˝ ı

ÝÑ U
h

ÝÑ Ad ˆ V , where ı is a closed immersion and h is
étale. Thus, we obtain a commutative diagram

X

f

��

X˝ ı //

f˝

��

oo U
h // Ad ˆ V

π2

{{
Y Y ˝oo ȷ // V.

Let f̃ :“ π2 ˝ h : U Ñ V which is smooth, as it is a composite of an étale morphism and a projection.
By construction ȷ : Y ˝ Ñ V is minimal at y, so that dimpΩ1

Y ˝{B,yq “ dimpΩ1
V {B,ȷpyq

q. Since f˝ is smooth of
relative dimension d at x, we have dimpΩ1

X˝{B,xq “ dimpΩ1
Y ˝{B,yq`d. Since h is étale, π2 is smooth of relative

dimension d at ıpxq, i.e. dimpΩ1
U{B,ıpxq

q “ dimpΩ1
V {B,ȷpyq

q`d. Therefore, dimpΩ1
X˝{B,xq “ dimpΩ1

U{B,ıpxq
q. □

2. Constructible sheaves

In this section we summarize the properties of a theory of constructible sheaves on schemes which we will
use in the paper. Such theories will involve choosing the ground field k the schemes will be defined over and
a commutative ring R of coefficients.

2.1. Six-functor formalisms. For an 8-category C which admits finite limits and which has a class c of
morphisms stable under compositions and pullbacks, recall the symmetric monoidal 8-category CorrpCqc;all

which has the following informal description:
‚ Its objects are objects of C.
‚ Morphisms from X1 to X2 are given by correspondences X1 Ð X12 Ñ X2 with X12 Ñ X2 in c.
‚ The composite of X1 Ð X12 Ñ X2 and X2 Ð X23 Ñ X3 is given by the pullback X1 Ð X12 ˆX2

X23 Ñ X3.
‚ The symmetric monoidal structure is given by the Cartesian symmetric monoidal structure in C:
X1, X2 ÞÑ X1 ˆX2.

We have the following notion of 6-functor formalisms from [Man22, Definition A.5.7].

Definition 2.1. A weak 6-functor formalism on C is a lax symmetric monoidal functor

D˚
! : CorrpSch

sepft
qall;all ÝÑ PrStR .

We denote the values of a weak 6-functor formalism as follows:
‚ The image of X P Schsepft is denoted by DpXq P PrStR .
‚ The image of X id

ÐÝ X
f

ÝÑ Y is given by f! : DpXq Ñ DpY q. We denote its right adjoint by
f ! : DpY q Ñ DpXq.

‚ The image of Y f
ÐÝ X

id
ÝÑ X is given by f˚ : DpY q Ñ DpXq. We denote its right adjoint by

f˚ : DpXq Ñ DpY q.
‚ The lax symmetric monoidal structure is given by b : DpXqbDpY q Ñ DpXˆY q and ModR Ñ Dpptq

denoted by M P ModR ÞÑ M P Dpptq.
The 8-category DpXq carries a symmetric monoidal structure defined by

(2.1) F b G “ ∆˚pF b Gq, 1X “ p˚R,
12



where ∆: X Ñ XˆX is the diagonal and p : X Ñ pt. We denote by Homp´,´q : DpXqop ˆDpXq Ñ DpXq

the internal Hom. We denote by RΓcpX,´q the !-pushforward along X Ñ pt.

Definition 2.2. An object F P DpXq is lisse if it is dualizable with respect to (2.1).

Given a Cartesian square

(2.2) X 1
g //

f 1

��

X

f

��
Y 1 h // Y

in Schsepft we obtain the following natural transformations:
(1) There is a natural isomorphism

Ex˚
! : f

1
! g

˚ „
ÝÑ h˚f!

witnessed by the 2-cell

X 1

g
~~

f 1

  
X

id~~

f

  

Y 1

h~~

id

  
X Y Y 1

in the 8-category of CorrpSchsepftqall;all. By construction the exchange natural isomorphism Ex˚
! is

compatible with compositions.
(2) The natural isomorphism

Ex!˚ : f
!h˚

„
ÝÑ g˚pf 1q!

is defined to be the mate of Ex˚
! .

(3) There is a natural transformation

Ex˚,! : g˚f ! ÝÑ pf 1q!h˚

obtained as the mate of the composite

f 1
! g

˚f !
Ex˚

!
ÝÝÝÑ h˚f!f

! counit
ÝÝÝÝÑ h˚.

For a morphism f : X Ñ Y we have the following natural transformations:
(1) Pr˚

! : f!pp´q b f˚p´qq
„

ÝÑ f!p´q b p´q witnessing the projection formula.
(2) Pr!,˚ : f !p´q b f˚p´q ÝÑ f !p´ b ´q is the mate of

f!pf
!p´q b f˚p´qq

Pr˚
!

ÝÝÑ f!f
!p´q b p´q

counit
ÝÝÝÝÑ p´q b p´q.

Definition 2.3. Let D be a weak 6-functor formalism. A morphism f : X Ñ Y in Schsepft is weakly
cohomologically smooth if the following conditions are satisfied:

(1) Pr!,˚ : f !p´q b f˚p´q Ñ f !p´ b ´q is an isomorphism.
(2) The object f !1Y P DpXq is invertible.
(3) For any Cartesian diagram (2.2) the morphism Ex˚,! : g˚f !1Y Ñ pf 1q!1Y 1 is an isomorphism.

A morphism f : X Ñ Y in Schsepft is cohomologically smooth if for any Cartesian diagram (2.2) the
morphism f 1 : X 1 Ñ Y 1 is weakly cohomologically smooth.

Next we introduce the notion of a cohomologically proper morphism. For a monomorphism f : X Ñ Y
we have a Cartesian diagram

X X

f

��
X

f // Y
13



In this case the base change isomorphism is Ex!˚ : f
!f˚

„
ÝÑ id. We denote its mates by

fgspf : f! ÝÑ f˚ ϵf : f
! ÝÑ f˚.

Equivalently, they are mates of the base change isomorphism Ex˚
! : id

„
ÝÑ f˚f!.

Definition 2.4. Let D be a weak 6-functor formalism. A monomorphism f : X Ñ Y in Schsepft is coho-
mologically proper if fgspf is an isomorphism.

For a general morphism f : X Ñ Y consider the diagram

X

∆

$$
X ˆY X

p1 //

p2

��

X

f

��
X

f // Y

If ∆: X Ñ X ˆY X is cohomologically proper, we define fgspf : f! Ñ f˚ as the mate of the composite

id – pp1q˚∆˚∆
!p!2

fgsp∆
ÐÝÝÝ

„
pp1q˚∆!∆

!p!2
counit

ÝÝÝÝÑ pp1q˚p
!
2

Ex!
˚

ÐÝÝÝ
„

f !f˚.

Definition 2.5. Let D be a weak 6-functor formalism. A morphism f : X Ñ Y in Schsepft is cohomologi-
cally proper if fgsp∆ and fgspf are isomorphisms.

Remark 2.6. If f : X Ñ Y is a monomorphism, its diagonal ∆: X Ñ X ˆY X is an isomorphism in which
case the map fgsp∆ is an isomorphism. Therefore, the above definitions of cohomological properness are
consistent.

We are ready to state the definition of a 6-functor formalism we will use in this paper.

Definition 2.7. A 6-functor formalism is a weak 6-functor formalism D˚
! : CorrpSch

sepft
qall;all ÝÑ PrStR

satisfying the following conditions:
(1) Every proper morphism is cohomologically proper.
(2) Every smooth morphism is cohomologically smooth.

Next we introduce the Verdier duality functor for a 6-functor formalism. For X P Schsepft we denote by
ωX “ p!1pt, where p : X Ñ pt. Similarly, for f : X Ñ Y we denote ωX{Y “ f !1Y . For F P DpXq we define

DpFq “ HompF, ωXq

which comes with natural transformations

ψF : F ÝÑ DpDpFqq

and
ExD,b : Dp´q b Dp´q ÝÑ Dp´ b ´q.

For a morphism f : X Ñ Y we have natural isomorphisms

Ex!,D : f !D „
ÝÑ Df˚

and
Ex˚,D : f˚D

„
ÝÑ Df!

which fit into a commutative diagram

(2.3) f !h˚D
Ex˚,D //

Ex!
˚

��

f !Dh!
Ex!,D

// Df˚h!

Ex˚
!

��
g˚pf 1q!D Ex!,D

// g˚Dpf 1q˚
Ex˚,D // Dg!pf 1q˚.
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Proposition 2.8. Let f : X Ñ Y be a monomorphism. Then the diagram

f˚f
!D Ex!,D

„
//

ϵf

��

f˚Df˚
Ex˚,D

„
// Df!f˚

f˚f
˚D Dunitoo Df˚f

˚unitoo

fgspf

OO

commutes.

Proof. Applying (2.3) we get a commutative diagram

D
Ex˚

! //

Ex!
˚

��

Df!f˚

f˚f
!D Ex!,D

// f˚Df˚

Ex˚,D

OO

Using the definitions of fgspf and ϵf as mates of Ex˚
! and Ex!˚, respectively, we obtain the claim. □

For a lisse object V P DpXq with dual V _ P DpXq and another object F P DpXq we have a natural
isomorphism

ExV,D : DpFq b V _ „
ÝÑ DpV b Fq.

The natural transformation ψ commutes with the operation f˚ in the following sense: given a morphism
f : X Ñ Y , there is a commutative square

f˚ f˚DD

DDf˚ DDf˚DD.

f˚ψ

ψf˚ ψf˚DD

DDf˚ψ

We also have the following compatibility between ψ and Ex!,D: there is a commutative square

f !DDD Df˚DD

f !D Df˚.

Ex!,D

f !Dpψq Df˚
pψq

Ex!,D

2.2. Complex analytic constructible sheaves on schemes and stacks. In this section k “ C and R
a commutative Noetherian ring of finite global dimension. Let Toplch be the category of locally compact
Hausdorff topological spaces.

Using results of [KS90; Vol21], an 8-categorical six-functor formalism for locally compact Hausdorff
topological spaces was constructed in [Kha25, Theorem 8.1.8]. In particular, we get a lax symmetric monoidal
functor

Shv˚
! : CorrpTop

lch
qall;all ÝÑ PrStR

which sends a locally compact Hausdorff space X to ShvpX;Rq, the derived 8-category of complexes of
sheaves of R-modules on X with ˚-pullbacks and !-pushforwards along arbitrary morphisms which admit
right adjoints f˚ and f !.

Given a scheme X P Schsepft which is separated and of finite type over C we denote by Xan P Toplch

its analytification. For a scheme X P Schsepft an object F P ShvpXan;Rq is constructible if there is a
finite stratification X “ \iXi of X into locally closed subschemes Xi such that F|Xi

is locally constant
with perfect stalks. Let Db

c pXq Ă ShvpXan;Rq be the full subcategory of constructible sheaves and DpXq “

IndpDb
c pXqq the 8-category of ind-constructible sheaves. By [Ver76] (see also the overview in [MS22]) the

six-functor formalism restricts to constructible sheaves and, hence, ind-constructible sheaves, i.e. we have a
lax symmetric monoidal functor

D˚
! : CorrpSch

sepft
qall;all ÝÑ PrStR
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which sends X P Schsepft to DpXq. Let us summarize some properties of constructible sheaves that can be
found in [KS90; Ach21; MS22].

Proposition 2.9. D˚
! : CorrpSch

sepft
qall;all Ñ PrStR is a 6-functor formalism which satisfies the following

properties:
(1) For every X P Schsepft the unit id Ñ π˚π

˚ is an isomorphism for π : A1 ˆX Ñ X the projection.
(2) The functor D˚ : Schsepft,op Ñ PrStR given by sending f : X Ñ Y to f˚ : DpY q Ñ DpXq satisfies étale

descent.
(3) For a closed immersion i : Z Ñ X and its complementary open immersion j : U Ñ X the base change

isomorphism gives j!i˚ – 0. The corresponding commutative diagram

(2.4) j!j
! counit //

unit

��

id

unit

��
j!j

!i˚i
˚ – 0

counit // i˚i˚

is Cartesian.
(4) For every X P Schsepft and F P Db

c pXq the morphism ψF : F Ñ DpDpFqq is an isomorphism.
(5) For every X,Y P Schsepft and F P Db

c pXq,G P Db
c pY q the morphism ExD,b : DpFqbDpGq Ñ DpFbGq

is an isomorphism.
(6) There is a perverse t-structure on Db

c pXq for X P Schsepft with heart PervpXq with the following
properties:
(a) If f : X Ñ Y is smooth, f : :“ f !r´dimpX{Y qs : Db

c pY q Ñ Db
c pXq is t-exact.

(b) If f : X Ñ Y is smooth with connected fibers, f : : PervpY q Ñ PervpXq is fully faithful.
(c) If f : X Ñ Y is finite, f˚ : D

b
c pXq Ñ Db

c pY q is t-exact.
(7) If R is a field and X P Schsepft, the natural functor IndpDbpPervpXqqq Ñ DpXq is an equivalence.
(8) Lisse objects in DpXq are precisely locally constant sheaves with perfect stalks.

Let us now present several corollaries of the assumptions. First, we may extend a 6-functor formalism to
stacks as follows.

Proposition 2.10. There is a functor

D˚
! : CorrpArtlftqall;all ÝÑ PrStR

with the following properties:
(1) Its restriction to CorrpSchsepftqall;all coincides with the original 6-functor formalism.
(2) The functor

DpXq ÝÑ lim
pS,sq

DpSq

induced by ˚-pullbacks, where the limit is taken over the 8-category Schsepft
{X of schemes S P Schsepft

together with a morphism s : S Ñ X, is an equivalence.
(3) Every smooth morphism f : X Ñ Y in Artlft is cohomologically smooth with respect to this extension

of the 6-functor formalism.

Proof. We will construct an extension of the 6-functor formalism in three steps using the subcategories

CorrpSchsepftqall;all Ă CorrpSchlftqsepft;all Ă CorrpSchlftqall;all Ă CorrpArtlftqall;all,

where morphisms in CorrpSchlftqsepft;all are given by correspondences X1 Ð X12 Ñ X2 of schemes locally of
finite type, where X12 Ñ X2 is separated and of finite type.

(1) The extension of D˚
! : CorrpSch

sepft
qall;all Ñ PrStR to

D˚
! : CorrpSch

lft
qsepft;all ÝÑ PrStR

is provided by [Man22, Proposition A.5.16].
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(2) Since étale morphisms are cohomologically smooth and D satisfies étale descent with respect to
˚-pullbacks, it also satisfies étale descent with respect to !-pullbacks. Therefore, the functor

DpXq ÝÑ lim
pS,sq

DpSq

induced by !-pullbacks, where X P Schlft and the limit is taken over the category Schsepft
{X of schemes

S P Schsepft together with a morphism s : S Ñ X, is an equivalence. Therefore, by [Man22, Lemma
A.5.11] we obtain an extension

D˚
! : CorrpSch

lft
qall;all ÝÑ PrStR .

(3) By assumption every morphism f : X Ñ Y in Schlft which is smooth, separated and of finite type
is cohomologically smooth. Using étale descent we get that any smooth morphism in Schlft is
cohomologically smooth. In particular, we obtain a 7-direct image (in the sense of [Kha23, Definition
2.30]) for every smooth morphism f : X Ñ Y , where f7p´q “ f!pf

!p1Y qbp´qq. Therefore, by [Kha25,
Theorem 3.4.3(ii)] we obtain an extension

D˚
! : CorrpArtlftqall;all ÝÑ PrStR .

□

We extend the notion of constructible and perverse sheaves to stacks as follows. For Y P Artlft we have:
(1) F P DpY q is constructible if for every smooth morphism f : X Ñ Y with X P Schsepft the object

f˚F P DpXq is constructible.
(2) There is a t-structure on Db

c pY q such that for every smooth morphism f : X Ñ Y with X P Schsepft

the functor f : is t-exact.

Proposition 2.11. Let X P Artlft, V P DpXq a lisse object and F P Db
c pXq. Then V b F is constructible.

Proof. By definition of constructibility the claim for anyX P Artlft reduces to the same claim forX P Schsepft.
In this case we have

HomDpXqpV b F,´q – HomDpXqpF, V _ b p´qq.

Since F is constructible, this functor preserves colimits. □

The definition of the Verdier duality functor D extends verbatim to stacks. We have the following func-
toriality of the isomorphism ψ.

Lemma 2.12. Let f : X Ñ Y be a smooth morphism in Artlft and F P Db
c pY q. Then the composite

f !F
ψF

ÝÝÑ f !D2F

Ex!,D
ÝÝÝÑ Df˚DF
Pr!,˚

ÝÝÝÑ Dpω´1
X{Y b f !DFq

pEx!,D
q

´1

ÝÝÝÝÝÝÑ Dpω´1
X{Y b Dpf˚Fqq

pEx
ω

´1
X{Y

,D
q

´1

ÝÝÝÝÝÝÝÝÝÑ D2pωX{Y b f˚Fq

Pr!,˚

ÝÝÝÑ D2f !F,

is equivalent to ψf !F.

Proposition 2.13. For Y P Artlft and F P DpY q constructible, the morphism ψF : F Ñ DpDpFqq is an
isomorphism.

Proof. Let X P Schsepft and f : X Ñ Y a smooth morphism. In the composite in Lemma 2.12 all morphisms,
except possibly the first, are isomorphisms. Since ωX{Y is invertible and f˚F is constructible, f !F is also
constructible by Proposition 2.11. Thus, the composite is an isomorphism by Proposition 2.9(5). Therefore,
f !F Ñ f !D2F is an isomorphism. Since the functors tf ! : DpY q Ñ DpXqu, where f ranges over smooth
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morphisms from a separated scheme of finite type, are jointly conservative, we get that ψF : F Ñ D2F is an
isomorphism. □

Given a morphism f : X Ñ Y in Artlft, we obtain a unique natural isomorphism

(2.5) Ex˚,D : f˚D „
ÝÑ Df !

fitting into the commutative squares

(2.6)
f˚ DDf˚

f˚DD Df !D,

ψf˚

f˚ψ DEx!,D

Ex˚,DD

f ! DDf !

f !DD Df˚D.

ψf˚

f !ψ DEx˚,D

Ex!,DD

For a pair of morphisms f1 : X1 Ñ Y1 and f2 : X2 Ñ Y2 in Artlft we have a natural transformation

Ex!,b : f !1F1 b f !2F2 ÝÑ pf1 ˆ f2q!pF1 b F2q

which is an isomorphism for F1 P Db
c pY1q and F2 P Db

c pY2q as can be seen by applying the Verdier duality
functor D and using Proposition 2.9(5). See [Mas01, Proposition 1.3].

Proposition 2.14. For a smooth morphism f : X Ñ Y in Artlft there is a natural isomorphism

purf : f
˚r2 dimpX{Y qs

„
ÝÑ f !

of functors DpY q Ñ DpXq which is functorial for compositions up to coherent homotopy and compatible with
products.

Proof. By functoriality the natural isomorphism purf extends uniquely from schemes to stacks, so it is
sufficient to construct it for smooth morphisms of schemes.

Since a smooth morphism is cohomologically smooth, the natural morphism Pr!,˚ : ωX{Y bf˚p´q Ñ f !p´q

is an isomorphism. Thus, it is enough to construct an isomorphism ωX{Y – 1X r2 dimpX{Y qs, functorial in
f . The construction of this isomorphism and its 1-categorical functoriality (i.e. the isomorphisms purid – id
and purg˝f – purf ˝purg) are well-known. But since ωX{Y r´2 dimpX{Y qs is a local system of vector spaces,
the 1-categorical functoriality implies the 8-categorical functoriality. □

Given a smooth morphism f : X Ñ Y in Artlft of relative dimension d, we obtain a natural isomorphism

(2.7) Ex:,D : f :D “ f !r´dsD Ex!,D
ÝÝÝÑ Df˚rds

purf
ÐÝÝÝ

„
Df :.

Proposition 2.15. Let f : X Ñ Y in Artlft be a smooth morphism. Then the diagram

f : DDf :

f :DD Df :D

ψ

ψ

Ex:,D

Ex:,D

commutes.

Proof. The claim follows from Lemma 2.12. □

Similarly, for a schematic and proper morphism f : X Ñ Y we obtain a natural isomorphism

Ex˚,D : f˚D
Ex˚,D

ÝÝÝÝÑ Df!
fgspf

ÐÝÝÝ
„

Df˚.

Proposition 2.16. Consider a Cartesian square (2.2), where h is proper and f is smooth. Then the diagram

f :h˚D
Ex˚,D //

Ex!
˚

��

f :Dh˚
Ex:,D

// Df :h˚

g˚pf 1q:D Ex:,D
// g˚Dpf 1q:

Ex˚,D // Dg˚pf 1q:

Ex!
˚

OO
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Proof. Let d be the relative dimension of f : X Ñ Y . Let BC: f˚h˚ Ñ g˚pf 1q˚ be the Beck–Chevalley
transformation obtained as the mate of the isomorphism g˚f˚ – pf 1q˚h˚. By [KPS24, Lemma 7.4] the
diagram

f˚h˚
BC //

purf

��

g˚pf 1q˚

purf 1

��
f !h˚r´2ds

Ex!
˚ // g˚pf 1q!r´2ds.

commutes. By [FYZ23, Example 3.2.1] the diagram

g!pf
1q˚

Ex˚
! //

fgspg

��

f˚h!

fgsph

��
g˚pf 1q˚ f˚h˚

BCoo

commutes. Combining the above two diagrams with (2.3) we get the result. □

We may use Proposition 2.9(7) to (uniquely) extend exact functors on Pervp´q, and natural transforma-
tions between them, to Dp´q as follows. For this it will be convenient to record the following consequence
of the universal property of bounded derived 8-categories. Consider the following 8-categories:

(1) The 8-category Catab of R-linear abelian categories and R-linear exact functors. (This is a p2, 1q-
category.)

(2) The 8-category PrSt,tR of stable presentable R-linear 8-categories equipped with a t-structure, and
t-exact R-linear colimit-preserving functors.

(3) The subcategory PrSt,t,cgR Ă PrSt,tR consisting of those objects E for which the t-structure restricts to
Eω, and the colimit-preserving functor IndpEωq Ñ E is a t-exact equivalence; and those morphisms
given by functors that preserve compact objects.

(4) The full subcategory PrSt,t,cg,comp
R Ă PrSt,t,cgR spanned by those E satisfying the following condition.

By [Bun+19, Corollary 7.4.12] and [Lur09, Proposition 5.3.6.2], there is a unique t-exact R-linear
colimit-preserving functor IndpDbpE♡qq Ñ E extending the inclusion E♡ ãÑ E. Then E belongs to
PrSt,t,cg,comp

R if this functor is an equivalence.
We then have:

Proposition 2.17. Consider the canonical functor PrSt,t,cgR Ñ Catab sending E to Eω,♡, the heart of the
full subcategory of compact objects (with respect to its induced t-structure). This induces an equivalence of
8-categories

PrSt,t,cg,comp
R

„
ÝÝÑ Catab.

Proof. By [Lur09, Proposition 5.3.6.2] and [Bun+19, Corollary 7.4.12], the restriction functor

FunL,ω,t´ex
pIndpDbpAqq, IndpDbpBqqq – Funt´ex

pDbpAq,DbpBqq Ñ FunexpA,Bq

is an equivalence for any A,B P Catab, where the source denotes t-exact functors that preserve colimits and
compact objects. Passing to underlying 8-groupoids, we find that the functor PrSt,t,cg,comp

R Ñ Catab is fully
faithful. Essential surjectivity is obvious. □

Corollary 2.18. Let X P Schsepft and A P Catab an R-linear abelian category. Suppose R is a field. Then
the restriction

FunL,t´ex
pDpXq, IndpDbpAqqq„ ÝÑ FunexpPervpXq,Aq„

is an equivalence of 8-groupoids, where FunexpPervpXq,Aq„ denotes the groupoid of exact R-linear functors
and FunLpDpXq, IndpDbpAqqq„ the 8-groupoid of colimit-preserving R-linear functors sending PervpXq to
A.

Proof. By Proposition 2.9(7) we have the natural equivalence IndpDb
c pXqq Ñ DpXq. The functor in question

is thus the functor induced on mapping 8-groupoids by the equivalence of Proposition 2.17. □
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Remark 2.19. The proof shows that Corollary 2.18 holds at the level of functor 8-categories, and Propo-
sition 2.17 admits a corresponding p8, 2q-categorical upgrade.

Remark 2.20. Corollary 2.18 does not extend to Artin stacks. Even though the natural functors DbpPervpXqq Ñ

Db
c pXq and IndpDb

c pXqq Ñ DpXq are equivalences for X P Schsepft, neither functor is an equivalence for
X “ BGm.

2.3. Vanishing cycles. For a complex analytic space X and a holomorphic function t : X Ñ C, let

XReď0 “ tx P X | Reptpxqq ď 0u.

The vanishing cycles functor φt : ShvpX;Rq Ñ Shvpt´1p0q;Rq is defined by

φt “ pt´1p0q Ñ XReď0q˚pXReď0 Ñ Xq!.

Proposition 2.21. For X P Schsepft and t : X Ñ A1 the functor

ϕt “
à

cPC
pt´1pcq Ñ Xq˚φt´c

preserves constructibility, is perverse t-exact, and satisfies the following property:
(1) For a smooth morphism f : X Ñ B in Schsepft, a function t : X Ñ A1 and a perverse sheaf F P

PervpBq, the object ϕtf :F is supported on the B-relative critical locus of t.
For a morphism f : X 1 Ñ X with t : X Ñ A1 and t1 :“ f˚t there are natural transformations

Ex!ϕ : ϕt1f ! Ñ f !ϕt, Exϕ˚ : ϕtf˚ Ñ f˚ϕt1

which satisfy the following properties:
(2) Ex!ϕ and Exϕ˚ are functorial for compositions.
(3) Let

X11
f1 //

g1

��

X12

g2

��
X21

f2 // X22

be a Cartesian diagram in Schsepft. Let t22 : X22 Ñ A1 be a morphism and denote by t11, t12, t21 its
restrictions to X11, X12, X21. Then the diagram

ϕt21f
!
2g2,˚

Ex!
ϕ //

Ex!
˚

��

f !2ϕt22g2,˚
Exϕ

˚ // f !2g2,˚ϕt12

Ex!
˚

��
ϕt21g1,˚f

!
1

Exϕ
˚ // g1,˚ϕt11f

!
1

Ex!
ϕ // g1,˚f !1ϕt12

is commutative.
(4) If f is smooth, Ex!ϕ is invertible.
(5) If f is proper, Exϕ˚ is invertible.

Proof. We first show that φt preserves constructibility and the perverse t-structure. Indeed, the claim is local,
so by embedding X into a smooth scheme and using proper base change we are reduced to the corresponding
claim for X smooth. The fact that φf preserves constructibility is shown in [MS22, Corollary 4.12]. Perverse
t-exactness is shown in [KS90, Corollary 10.3.13].

Next we show that ϕt preserves constructibility and the perverse t-structure. Fix F P Db
c pXq and let S

be a Whitney stratification of X such that for all strata S P S the restriction F|S is locally constant. By
[Mas00, Remark 1.10] for every c P C we have

(2.8) supppφt´cFq Ă
ď

SPS

CritSpt|Sq X t´1pcq.
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Since t|S is locally constant on CritSpt|Sqred and CritSpt|Sq has finitely many irreducible components, t|S
takes finitely many values on CritSpt|Sq. Since S is finite, this implies that only finitely many summands in
the definition of ϕfF are nonzero. Thus, ϕtF is constructible and, if F is perverse, so is ϕtF.

The exchange natural transformations Ex!ϕ and Exϕ˚ are constructed from the usual exchange natural
transformations between the six-functor operations which satisfy analogs of (2)-(3). The smooth and proper
base change theorems verify (4)-(5).

Let us now show (1). Let S be a Whitney stratification of B such that for all strata S P S the restriction
F|S is locally constant. Then f´1pSq is a Whitney stratification [Gib+76, Chapter I, Proposition 1.4] and
f :F is constructible with respect to f´1pSq. Using (2.8) we get

supppϕtf
:Fq Ă

ď

SPS

Critf´1pSqpt|f´1pSqq Ă
ď

SPS

Critf´1pSq{Spt|f´1pSqq.

Using the Cartesian diagram
f´1pSq

��

// X

��
S // B

we get that Critf´1pSq{Spt|f´1pSqq Ă CritX{Bptq. □

Taking mates of Ex!ϕ and Exϕ˚ we obtain

Exϕ! : f!ϕt1 ÝÑ ϕtf!, Ex˚
ϕ : f

˚ϕt ÝÑ ϕt1f˚.

Moreover, by the proper and smooth base change theorems Exϕ! is an isomorphism if f is proper and Ex˚
ϕ is

an isomorphism if f is smooth.

Proposition 2.22. For a scheme X P Schsepft equipped with a function t : X Ñ A1 there is a natural
isomorphism Exϕ,D : ϕtD

„
ÝÑ Dϕ´t on constructible objects, satisfying the following properties:

(1) The diagram

ϕt

ψ

��

ψ // DDϕt

Exϕ,D

��
ϕtDD

Exϕ,D
// Dϕ´tD

commutes.
(2) For a morphism f : X 1 Ñ X in Schsepft, the diagram

ϕt1f !D Ex!,D
//

Ex!
ϕ

��

ϕt1Df˚ Exϕ,D
// Dϕ´t1f˚

Ex˚
ϕ

��
f !ϕtD

Exϕ,D
// f !Dϕ´t

Ex!,D
// Df˚ϕ´t

commutes, where t1 :“ f˚t.
(3) For a morphism f : X 1 Ñ X in Schsepft, the diagram

ϕtf˚D
Ex˚,D //

Exϕ
˚

��

ϕtDf!
Exϕ,D

// Dϕ´tf!

Exϕ
!

��
f˚ϕt1D Exϕ,D

// f˚Dϕ´t1

Ex˚,D // Df!ϕ´t1

commutes, where t1 :“ f˚t.

Proof. We begin by recalling a natural isomorphism

Exφ,D : φtD
„

ÝÑ Dφ´t

constructed in [Mas16] (the construction is reviewed in [Kin25, §2.3]).
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Consider the diagram of inclusions

X0

XRe“0 XReě0

XReď0 X,

g0

h`

h´ i`

i´

where the square is Cartesian. The natural isomorphism Exφ,D is defined by the composite

φtD “ g˚
0 h

˚
´i

!
´D

ϵg0
ÐÝÝ g!0h

˚
´i

!
´D

Ex˚,!

ÝÝÝÑ g!0h
!
`i

˚
`D

Ex˚,D
ÝÝÝÝÑ g!0h

!
`Di!`

Ex!,D
ÝÝÝÑ Dg˚

0 h
˚
`i

!
`

“ Dφ´t,

where the natural transformations on lines 2 and 3 are isomorphisms by [Mas16]. Exφ,D induces a natural
isomorphism Exϕ,D : ϕtD

„
ÝÑ Dϕ´t.

Property (1) follows from the fact that the natural transformations ϵf and Ex˚,! are Verdier self-dual
while the natural isomorphisms Ex˚,D and Ex!,D are exchanged under Verdier duality. Properties (2) and
(3) follows from the standard commutativity diagrams between the six functors. □

Remark 2.23. There is a natural isomorphism Tπ : ϕt
„

ÝÑ ϕ´t such that the composite

ϕt
Tπ

ÝÝÑ ϕ´t
Tπ

ÝÝÑ ϕt

is the monodromy operator T : ϕt Ñ ϕt for the sheaf of vanishing cycles. Consider the composite isomorphism

Ex
ϕ,D

: ϕtD
Exϕ,D

ÝÝÝÑ Dϕ´t
Tπ

ÝÝÑ Dϕt.

Then Proposition 2.22(1) implies that the diagram

ϕt

ψ

��

T // ϕt
ψ // DDϕt

Ex
ϕ,D

��
ϕtDD

Ex
ϕ,D

// Dϕ´tD

commutes.

Proposition 2.24. For a pair of schemes X1, X2 P Schsepft equipped with functions ti : Xi Ñ A1 there is a
natural Thom–Sebastiani isomorphism TS: ϕt1p´q b ϕt2p´q

„
ÝÑ ϕt1‘t2p´ b ´q which satisfies the following

properties:
(1) TS is unital, associative and commutative.
(2) For smooth morphisms fi : Xi Ñ Yi in Schsepft and functions ti : Yi Ñ A1 with t1i :“ f˚

i ti the diagram

ϕt1
1
f :
1F1 b ϕt1

2
f :
2F2

TS //

Ex!
ϕbEx!

ϕ

��

ϕt1
1‘t1

2
pf1 ˆ f2q:pF1 b F2q

Ex!
ϕ

��
pf1 ˆ f2q:pϕt1F1 b ϕt2F2q

TS // pf1 ˆ f2q:ϕt1‘t2pF1 b F2q

commutes.
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(3) For proper morphisms fi : Xi Ñ Yi in Schsepft and functions ti : Yi Ñ A1 with t1i :“ f˚
i ti the diagram

ϕt1f1,˚F1 b ϕt2f2,˚F2
TS //

Exϕ
˚bExϕ

˚

��

ϕt1‘t2pf1 ˆ f2q˚pF1 b F2q

Exϕ
˚

��
pf1 ˆ f2q˚pϕt1

1
F1 b ϕt1

2
F2q

TS // pf1 ˆ f2q˚ϕt1
1‘t1

2
pF1 b F2q

commutes.
(4) The diagram

ϕt1pDF1q b ϕt2pDF2q

Exϕ,D
bExϕ,D

��

TS // ϕt1‘t2pDF1 b DF2q
ExD,b

// ϕt1‘t2pDpF1 b F2qq

Exϕ,D

��
Dϕ´t1pF1q b Dϕ´t2pF2q

ExD,b

// Dpϕ´t1pF1q b ϕ´t2pF2qq Dpϕ´pt1‘t2qpF1 b F2qq
TSoo

commutes.

Proof. We begin by recalling the natural isomorphism

TSφ : φt1p´q b φt2p´q
„

ÝÑ φt1‘t2p´ b ´q|t´1
1 p0qˆt´1

2 p0q

constructed in [Mas01] and [Sch03, Corollary 1.3.4]. Let

i1 : pX1qReď0 ÝÑ X1, z1 : t
´1
1 p0q ÝÑ pX1qReď0

and similarly for i2, z2. Let

i : pX1 ˆX2qReď0 ÝÑ X1 ˆX2, z : pt1 ‘ t2q´1p0q ÝÑ pX1 ˆX2qReď0.

Finally, let
l : pX1qReď0 ˆ pX2qReď0 ÝÑ pX1 ˆX2qReď0,

which is an inclusion of a closed subset. The natural isomorphism TSφ is defined by the composite

φt1p´q b φt2p´q “ z˚
1 i

!
1p´q b z˚

2 i
!
2p´q

„
ÝÑ pz1 ˆ z2q˚pi!1p´q b i!2p´qq

Ex!,b

ÝÝÝÑ pz1 ˆ z2q˚pi1 ˆ i2q!p´ b ´q

„
ÝÑ pz1 ˆ z2q˚l!i!p´ b ´q

ϵl
ÝÑ pz1 ˆ z2q˚l˚i!p´ b ´q

“ φt1‘t2p´ b ´q|t´1
1 p0qˆt´1

2 p0q
,

where the natural transformations on lines 3 and 5 are isomorphisms by [Mas01].
Fix F1 P Db

c pX1q and F2 P Db
c pX2q. In [Mas01] it is shown that pt´1

1 p0q ˆ t´1
2 p0qq X suppφt1‘t2pF1 b F2q

is an open subset of suppφt1‘t2pF1 b F2q. Therefore, we have a direct sum decomposition

φt1‘t2pF1 b F2q –
à

cPC
pt´1

1 pcq ˆ t´1
2 p´cq Ñ pt1 ‘ t2q´1p0qq˚

´

φt1‘t2pF1 b F2q|t´1
1 pcqˆt´1

2 p´cq

¯

.

Applying the Thom–Sebastiani isomorphism TSφ we thus get an isomorphism
à

cPC
pt´1

1 pcq ˆ t´1
2 p´cq Ñ pt1 ‘ t2q´1p0qq˚ pφt1´cpF1q b φt2`cpF2qq

„
ÝÑ φt1‘t2pF1 b F2q

natural in F1,F2. This gives rise to a natural isomorphism
`
À

c1PCpt´1
1 pc1q Ñ X1q˚φt1´c1pF1q

˘

b
`
À

c2PCpt´1
2 pc2q Ñ X2q˚φt2´c2pF2q

˘

À

cPCppt1 ‘ t2q´1pcq Ñ X1 ˆX2q˚φpt1‘t2q´cpF1 ‘ F2q.

TS„
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Unitality, associativity and commutativity of the isomorphism TS follow from the corresponding properties
of TSφ which are obvious from the construction. Properties (2) and (3) follow from the natural compatibilities
between the exchange natural transformations. Property (4) follows from the compatibility of exchange
natural transformations with external tensor products. □

3. D-critical structures

3.1. Oriented orthogonal bundles. Let U be a scheme. An orthogonal bundle is a vector bundle
E Ñ U equipped with a nondegenerate quadratic form q. For an orthogonal vector bundle pE, qq over U the
quadratic form induces an isomorphism q7 : E

„
ÝÑ E_. Taking its determinant we obtain an isomorphism

detpEq
detpq7

q
ÝÝÝÝÑ detpE_q

ιE
ÝÑ detpEq_.

In particular, we obtain a squared volume form , i.e. a trivialization

vol2q : OU – detpEqb2

so that

OU
vol2q

ÝÝÑ detpEqb2 pιE˝detpq7
qqbid

ÝÝÝÝÝÝÝÝÝÝÑ detpEq_ b detpEq

is the coevaluation of the duality between detpEq and detpEq_.

Example 3.1. Suppose E has an orthonormal basis ts1, . . . , snu of sections. Then the squared volume form
vol2q is given by

1 ÞÑ p´1qnpn´1q{2ps1 ^ ¨ ¨ ¨ ^ snqb2.

Lemma 3.2. Let pE1, q1q and pE2, q2q be two orthogonal vector bundles over a scheme U . Then the diagram

detpE1 ‘ E2qb2 pdetpE1q b detpE2qqb2 detpE1qb2 b detpE2qb2

OU

„ „

vol2q1`q2
vol2q1

bvol2q2

is commutative.

Proof. The statement is local on U , so we may assume that E1 has an orthonormal basis of sections
te1, . . . , enu and E2 has an orthonormal basis of sections tf1, . . . , fmu. Then the image of vol2q1`q2 under the
top isomorphism is

1 ÞÑ p´1qpn`mqpn`m´1q{2pe1 ^ ¨ ¨ ¨ ^ en ^ f1 ^ . . . fmqb2

ÞÑ p´1qpn`mqpn`m´1q{2p´1qnmpe1 ^ ¨ ¨ ¨ ^ enqb2 b pf1 ^ ¨ ¨ ¨ ^ fmqb2.

But p´1qpn`mqpn`m´1q{2p´1qnm “ p´1qnpn´1q{2p´1qmpm´1q{2, so this expression coincides with vol2q1 bvol2q2 .
□

We will now define orientations of orthogonal bundles.

Definition 3.3. Let pE, qq be an orthogonal bundle over U . An orientation of E is an isomorphism
vol : OU

„
ÝÑ detpEq whose square is vol2q. We denote by orE Ñ U the Z{2Z-graded orientation µ2-torsor

of E: its parity coincides with the parity of rkpEq and the underlying µ2-torsor parametrizes orientations.

For a pair of orthogonal bundles pE1, q1q and pE2, q2q we have an isomorphism

(3.1) orE1
bµ2

orE2
ÝÑ orE1‘E2

which sends
pvol1, vol2q ÞÑ vol1 b vol2,

which squares to vol2q1`q2 by Lemma 3.2.
For an orthogonal bundle pE, qq we denote by E the orthogonal bundle pE,´qq. Then we have an

isomorphism

(3.2) orE ÝÑ orE
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which sends vol ÞÑ irkpEqvol, using the fact that vol2´q “ p´1qrkpEqvol2q.
Besides the direct sum of orthogonal bundles we will also consider reductions of orthogonal bundles by

isotropic subbundles.

Definition 3.4. Let pE, qq be an orthogonal bundle over a scheme U and K Ď E an isotropic subbundle.
The reduction of E by K is the orthogonal bundle KK{K.

Lemma 3.5. Let pE, qq be an orthogonal bundle over a scheme U , K Ď E an isotropic subbundle and
F “ KK{K the reduction of E by K. Consider the composite isomorphism

redK : detpEq
ip∆1q

ÐÝÝÝ detpKKq b detpK_q

idbιK
ÝÝÝÝÑ detpKKq b detpKq_

ip∆2q
ÐÝÝÝ detpKq b detpKq_ b detpF q

– detpF q

induced by the exact sequences
∆1 : 0 ÝÑ KK ÝÑ E ÝÑ K_ ÝÑ 0

and
∆2 : 0 ÝÑ K ÝÑ KK ÝÑ F ÝÑ 0.

Then
redKpvol2E,qq “ p´1qrkKvol2F,q.

Proof. The claim is local, so we may assume that E “ F ‘K‘K_ with ts1, . . . , snu an orthonormal basis of
sections of F , te1, . . . , emu a basis of sections of K and te1, . . . , emu the dual basis of sections of K_. Then

redKps1 ^ ¨ ¨ ¨ ^ sn ^ e1 ^ ¨ ¨ ¨ ^ em ^ e1 ^ ¨ ¨ ¨ ^ emq “ p´1qmpm´1q{2s1 ^ ¨ ¨ ¨ ^ sn.

Thus,

redKpvol2E,qq “ p´1qpn`2mqpn`2m´1q{2redKps1 ^ ¨ ¨ ¨ ^ sn ^ e1 ^ ¨ ¨ ¨ ^ em ^ e1 ^ ¨ ¨ ¨ ^ emq2

“ p´1qpn`2mqpn`2m´1q{2ps1 ^ ¨ ¨ ¨ ^ snq2

“ p´1qnpn´1q{2p´1qmps1 ^ ¨ ¨ ¨ ^ snq2

“ p´1qmvol2F,q.

□

In particular, using the notation of Lemma 3.5 we obtain a canonical isomorphism

(3.3) orE – orKK{K

which sends a volume form vol on E to the volume form irkKredKpvolq on KK{K.

Definition 3.6. Let pE, qq be an orthogonal bundle of even rank over a scheme U .
‚ An isotropic subbundle K Ď E is Lagrangian if rkpEq “ 2rkpKq.
‚ Suppose E carries an orientation. A Lagrangian subbundle K Ď E is positive if the image of

the orientation of E under the isomorphism (3.3) is the standard orientation of the zero bundle
KK{K “ 0.

Given an orthogonal bundle pE, qq over a scheme U we consider the following maps:
‚ πE : E Ñ U is the projection;
‚ 0E : U Ñ E is the zero section;
‚ qE : E Ñ A1 the function quadratic along the fibers of πE corresponding to the quadratic form q.

Then we can form the diagram

E
qE //

πE

��

A1

U.

0E

AA
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3.2. D-critical structures on schemes. For a scheme X over B we introduce a presheaf on the étale site
of X by the formula

pU Ñ Xq ÞÑ ΓpU, SU{Bq :“ π0pA2,expU{B,´1qq

Proposition 3.7. Let X Ñ B be a morphism of schemes.

(1) SX{B is a sheaf on X in the étale topology.
(2) There is a long exact sequence

(3.4) 0 ÝÑ h´1pLX{Bq ÝÑ SX{B
und

ÝÝÑ OX
dB

ÝÝÑ h0pLX{Bq “ Ω1
X{B

of sheaves on X.
(3) Let X ãÑ U be a closed immersion into a smooth B-scheme U with IX,U the ideal sheaf. Then there

is an exact sequence

0 ÝÑ SX{B
ιX,U

ÝÝÝÑ OU{I2
X,U

dB
ÝÝÑ Ω1

U{B{IX,UΩ1
U{B ,

so that the composite SX{B
ιX,U

ÝÝÝÑ OU{I2
X,U Ñ OU{IX,U – OX is equal to und: SX{B Ñ OX .

Proof. By the definition of A2,expX{B,´1q we obtain a long exact sequence (3.4) of presheaves. Since
h´1pLX{Bq and h0pLX{Bq are quasi-coherent presheaves of OX -modules, they are sheaves. Therefore, using
the long exact sequence (3.4) we get that SX{B is a sheaf since h´1pLX{Bq, OX and h0pLX{Bq are sheaves.
This proves parts (1) and (2).

The definition of SX{B is insensitive to replacing LX{B by its truncation τě´1LX{B . By [Stacks, Tags

0FV4 and 08UW] we may model OX
dB

ÝÝÑ τě´1LX{B by

IX,U{I2
X,U

// Ω1
U{B{IX,UΩ1

U{B

IX,U //

OO

OU

dB

OO

This gives the description of SX{B as in part (3). □

Example 3.8. If X Ñ B is smooth, using the exact sequence (3.4) we identify sections of SX{B with
functions f : X Ñ A1 such that dBf “ 0.

It is useful to use the following terminology.

Definition 3.9. Let B be a scheme.

(1) An LG pair over B is a smooth B-scheme U Ñ B together with a function f : U Ñ A1.
(2) A morphism Φ: pU, fq Ñ pV, gq of LG pairs over B is a morphism of B-schemes Φ: U Ñ V such

that Φ˚g “ f .

Recall that in Section 1.5.2 for an LG pair pU, fq over B we have considered the relative critical locus
CritU{Bpfq which is equipped with a section

sf P ΓpCritU{Bpfq, SCritU{Bpfq{Bq.

It has the following explicit description.

Proposition 3.10. Consider an LG pair pU, fq over B. Under the embedding CritU{Bpfq Ñ U we have
ιCritU{Bpfq,U psf q “ f pmod I2

CritU{Bpfq,U q.

Proof. Let IΓdBf
be the ideal defining the closed immersion ΓdBf and R “ CritU{Bpfq. The pullback

Γ˚
dBf

: pOT˚pU{Bq
dB

ÝÝÑ Ω1
T˚pU{Bq{Bq Ñ pOU

dB
ÝÝÑ Ω1

U{Bq
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factors as the composite

OT˚pU{Bq

dB //

��

Ω1
T˚pU{Bq{B

��
OT˚pU{Bq{I2

ΓdBf

dB //

Γ˚
dBf

��

Ω1
T˚pU{Bq{B{IΓdBf

Ω1
T˚pU{Bq

Γ˚
dBf

��
OU

dB // Ω1
U{B ,

where the top vertical morphisms are given by modding out by powers of IΓdBf
. As in the proof of Proposi-

tion 3.7, the bottom vertical morphisms assemble into a quasi-isomorphism of two-term complexes in degrees
r0, 1s.

Consider the Liouville one-form λU{B P Ω1
T˚pU{Bq{B . The nullhomotopy hf of Γ˚

dBf
λU{B represented by

f P OU in the bottom complex lifts to a nullhomotopy represented by π˚f P OT˚pU{Bq{I2
ΓdBf

in the middle
complex, where π : T˚pU{Bq Ñ U is the projection.

Next, the pullback
Γ˚
0 : pOU

dB
ÝÝÑ Ω1

U{Bq Ñ pOR
dB

ÝÝÑ τě´1LR{Bq

using the description of the truncated cotangent complex as in the proof of Proposition 3.7(3) is given by

OT˚pU{Bq{I2
ΓdBf

dB //

Γ˚
0

��

Ω1
T˚pU{Bq{B{IΓdBf

Ω1
T˚pU{Bq

Γ˚
0

��
OU{I2

R,U

dB // Ω1
U{B{IR,UΩ1

U{B .

Under the morphism
Γ˚
0 : Ω

1
T˚pU{Bq{B{IΓdBf

Ω1
T˚pU{Bq ÝÑ Ω1

U{B{IR,UΩ1
U{B

we have Γ˚
0λU{B “ 0 which represents the nullhomotopy h0. Therefore, the difference sf “ hf ´ h0 P SR{B

has image Γ˚
0π

˚f “ f under ιR,U : SR{B Ñ OU{I2
R,U . □

Corollary 3.11. Consider an LG pair pU, fq over B. Then undpsf q “ f |CritU{Bpfq P OCritU{Bpfq.

Proof. The claim follows from Proposition 3.10 as well as the compatibility of ιCritU{Bpfq,U and und estab-
lished in Proposition 3.7(3). □

We have the following functoriality of relative critical loci. For a morphism Φ: pU, fq Ñ pV, gq of LG pairs
we have a correspondence

(3.5) T˚pV {Bq ˆV U

πV

ww

πU

''
T˚pV {Bq T˚pU{Bq

of relative cotangent bundles. Now consider the diagram

(3.6) U

ΓdBgˆid
((

Φ

zz

ΓdBf

��

V

ΓdBg ##

T˚pV {Bq ˆV U

πU

((

πV

ww
T˚pV {Bq T˚pU{Bq,
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where the square is Cartesian. The triangle commutes because Φ˚dBg “ dBf . Taking the zero loci of
the three sections V Ñ T˚pV {Bq (with zero locus CritV {Bpgq), U Ñ T˚pV {Bq ˆV U (with zero locus
CritV {Bpgq ˆV U) and U Ñ T˚pU{Bq (with zero locus CritU{Bpfq) we obtain a correspondence

(3.7) CritV {Bpgq ˆV U

πV

vv

πU

((
CritV {Bpgq CritU{Bpfq

of relative critical loci.

Proposition 3.12. Let Φ: pU, fq Ñ pV, gq be a morphism of LG pairs over B. Then

π˚
V sg “ π˚

Usf

in the correspondence (3.7).

Proof. In the correspondence (3.5) we have π˚
UλU{B “ π˚

V λV {B as can be easily checked in local coordinates.
Now consider the correspondence (3.6). In the following we consider homotopies in the spaces of exact relative
two-forms of degree 0. The nullhomotopy hg of Γ˚

dBg
λV {B is represented by g P OV . Its pullback along

Φ: U Ñ V therefore provides a nullhomotopy h1
g : pΓdBg ˆ idq˚π˚

V λV {B „ 0 represented by Φ˚g “ f P OU .
Equating the one-forms π˚

V λV {B “ π˚
UλU{B and pΓdBgˆidq˚π˚

V λV {B “ Γ˚
dBf

π˚
UλU{B we see that the resulting

nullhomotopy of Γ˚
dBf

π˚
UλU{B coincides with hf . Passing to the zero loci we get π˚

Usf “ π˚
V sg. □

Remark 3.13. In the following sections we will encounter morphisms of LG pairs Φ: pU, fq Ñ pV, gq over B
such that Φ: U Ñ V restricts to Φ: CritU{Bpfq Ñ CritV {Bpgq (as CritV {Bpgq Ñ V is a closed immersion, such
a restriction is unique, if it exists). In this case Φ defines a splitting of πU : CritV {Bpgq ˆV U Ñ CritU{Bpfq

and thus Proposition 3.12 implies that Φ˚sg “ sf .

We will use the Hessian quadratic form associated to an LG pair.

Proposition 3.14. Let pU, fq be an LG pair over B. There is a (degenerate) quadratic form Hesspfq, the
Hessian of f , on the restriction of the tangent bundle TU{B |CritU{Bpfq. It satisfies the following properties:

(1) Let x P CritU{Bpfq. Then KerpHesspfqxq “ TCritU{Bpfq{B,x, i.e. the Hessian Hesspfqx restricts to a
nondegenerate quadratic form on the normal bundle NCritU{Bpfq{U,x.

(2) Let Φ: pU, fq Ñ pV, gq be a morphism of LG pairs. Then in the correspondence (3.7) we have

π˚
VHesspgq “ π˚

UHesspfq

as quadratic forms on TU{B |CritV {BpgqˆV U .

Proof. For a smooth morphism U Ñ B we may define its n-th jet bundle JnU{B , which is an OU -bimodule on
U , as in [EGAIV, §16.7]. It has the following properties:

(1) J0
U{B “ OU .

(2) For n ě m there is a morphism JnU{B Ñ JmU{B .
(3) There is a splitting in : OU Ñ JnU{B of JnU{B Ñ OU as left OU -modules and a splitting dnB : OU Ñ JnU{B

as right OU -modules.
(4) There is a short exact sequence

0 ÝÑ SymnΩ1
U{B ÝÑ JnU{B ÝÑ Jn´1

U{B ÝÑ 0.

Let J
n

U{B be the quotient of JnU{B by in : OU Ñ JnU{B . Then we obtain a short exact sequence

0 ÝÑ Sym2Ω1
U{B ÝÑ J

2

U{B ÝÑ J
1

U{B – Ω1
U{B ÝÑ 0.

For f P OU consider the element d2Bf P J
2

U{B whose image in J
1

U{B – Ω1
U{B is dBf . Restricting to CritU{Bpfq

we get that d2Bf |CritU{Bpfq defines a section Hesspfq of Sym2Ω1
U{B |CritU{Bpfq which is the relevant quadratic

form. The functoriality of the Hessian (i.e. property (2)) follows from the functoriality of jet bundles and
the map d2B .
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Let us now show property (1). Choose étale coordinates tz1, . . . , znu on U Ñ B in a neighborhood of
x. Let I be the ideal defining the closed immersion CritU{Bpfq Ñ U . In a neighborhood of x we have

I “

´

Bf
Bz1
, . . . , Bf

Bzn

¯

. A vector field v “
ř

i vi
B

Bzi
on U tangent to CritU{Bpfq if, and only if,

ÿ

i

vi
B2f

BziBzj
P I

for every j. Restricting to x P CritU{Bpfq we get that the subspace TCritU{Bpfq{B,x Ă TU{B,x is given by
tangent vectors v “

ř

i vi
B

Bzi
such that

ÿ

i

vi
B2f

BziBzj
“ 0.

But this is precisely the definition of the subspace KerpHesspfqxq Ă TU{B,x. □

Global versions of relative critical loci are given as follows.

Definition 3.15. Let X Ñ B be a morphism of schemes. A relative d-critical structure on X Ñ B is
a section s P ΓpX, SX{Bq which satisfies the following property:

‚ There exists a collection of LG pairs tUa, fauaPA together with open immersions ua : CritUa{Bpfaq Ñ

X such that tua : CritUa{Bpfaq Ñ Xu is an open cover of X and u˚
as “ sfa . We call such a triple

pUa, fa, uaq a critical chart .

Remark 3.16. Take B “ SpecC and suppose X Ñ SpecC carries a relative d-critical structure s with
undpsq “ f : X Ñ A1. Then f is locally constant on Xred. If we further assume that f |Xred “ 0, then the
relative d-critical structure on X Ñ SpecC is the same as a d-critical structure on X in the sense of [Joy15].

Example 3.17. Let π : X Ñ B be a smooth morphism of schemes and f : B Ñ A1 be a function. Then
CritX{Bpπ˚fq “ X and hence π˚f P SX{B defines a relative d-critical structure on X Ñ B.

We can define products of relative d-critical structures as follows. Given two morphisms of schemes
X1 Ñ B1, X2 Ñ B2 equipped with sections s1 P ΓpX1, SX1{B1

q and s2 P ΓpX2, SX2{B2
q let

s1 ‘ s2 “ π˚
1 s1 ` π˚

2 s2 P ΓpX1 ˆX2, SX1ˆX2{B1ˆB2
q,

where πi : X1 ˆX2 ÝÑ Xi is the projection.

Proposition 3.18.
(1) Let pU1, f1q be an LG pair over B1 and pU2, f2q be an LG pair over B2. Then there is an isomorphism

CritU1{B1
pf1q ˆ CritU2{B2

pf2q – CritU1ˆU2{B1ˆB2
pf1 ‘ f2q

under which sf1 ‘ sf2 ÞÑ sf1‘f2 .
(2) Let X1 Ñ B1 and X2 Ñ B2 be morphisms of schemes equipped with relative d-critical structures

si P ΓpXi, SXi{Bi
q. Then s1 ‘ s2 is a relative d-critical structure on X1 ˆX2.

Proof.
(1) We have a natural isomorphism LU1{B1

‘ LU2{B2
– LU1ˆU2{B1ˆB2

. Using this isomorphism we
obtain an isomorphism T˚pU1{B1q ˆ T˚pU2{B2q – T˚pU1 ˆ U2{B1 ˆ B2q under which ΓdBf1 ˆ

ΓdBf2 ÞÑ ΓdBpf1‘f2q. This shows that the two closed subschemes CritU1{B1
pf1q ˆ CritU2{B2

pf2q and
CritU1ˆU2{B1ˆB2

pf1 ‘ f2q of U1 ˆ U2 are equal. The fact that under this isomorphism sf1 ‘ sf2 ÞÑ

sf1‘f2 follows from Proposition 3.10.
(2) Given a collection of critical charts pU1

a , f
1
a , u

1
aq of X1 and pU2

a , f
2
a , u

2
aq of X2, by part (1) we get that

pU1
a ˆU2

a , f
1
a ‘ f2a , u

1
a ˆu2aq is a critical chart for pX1 ˆX2, s1 ‘ s2q. Since tuia : CritUi

a{Bi
pf iaq Ñ Xiu

is an open cover, tu1a ˆ u2b : CritU1
a{B1

pf1a q ˆ CritU2
a{B2

pf2a q Ñ X1 ˆX2u is an open cover.
□

For a morphism of schemes X Ñ B equipped with a d-critical structure s the opposite ´s is also a
d-critical structure, so that if tUa, fa, uau is a collection of critical charts of pX, sq, then tUa,´fa, uau is a
collection of critical charts of pX,´sq.
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3.3. Critical morphisms. In this section we introduce a particularly nice class of morphisms of LG pairs
and prove their local structure. Throughout the section we fix a base scheme B.

Definition 3.19. A critical morphism of LG pairs pU, fq Ñ pV, gq over B is an unramified morphism
Φ: pU, fq Ñ pV, gq of LG pairs over B such that Φ restricts to a morphism Φ: CritU{Bpfq Ñ CritV {Bpgq.

Clearly, any étale morphism pU˝, f˝q Ñ pU, fq is a critical morphism.

Remark 3.20. In [Joy15] Joyce introduces the notion of an embedding of critical charts, which is equivalent
to critical morphisms with Φ assumed to be an immersion instead of just an unramified morphism.

Example 3.21. Let pU, fq be an LG pair over B and pE, qq an orthogonal bundle over U . Let πE : E Ñ U
and qE : E Ñ A1 be as in Section 3.1. The inclusion 0E : U Ñ E of the zero section identifies CritU{Bpfq –

CritE{Bpf ˝ πE ` qEq compatibly with the natural exact two-forms of degree ´1. Thus, pE, f ˝ πE ` qEq is
an LG pair over B and

0E : pU, fq ÝÑ pE, f ˝ πE ` qEq

is a critical morphism.

The rest of the section is devoted to local structure results for relative LG pairs and critical morphisms.
First, an LG pair can always be replaced by one which admits an open immersion into AnB ; the following is
a family version of [Joy15, Proposition 2.19].

Proposition 3.22. Let pU, fq be an LG pair over B. For every x P CritU{Bpfq there is an open neighborhood
U˝ Ă U of x, a smooth B-scheme V which admits an open immersion V ãÑ AkB together with a function
g : V Ñ A1 and a closed immersion Φ: U˝ Ñ V such that Φ˚g “ f |U˝ and Φ restricts to an isomorphism
CritU˝{Bpf |U˝ q – CritV {Bpgq.

Proof. Choose an open neighborhood U˝ Ă U of x which is affine over B and which admits an étale morphism
c˝ : U˝ Ñ AnB . Then we have may find a closed immersion Φ: U˝ ãÑ V “ AkB . Possibly shrinking V to a
neighborhood of Φpxq we may extend c˝ : U˝ Ñ AnB to p : V Ñ AnB such that p ˝ Φ “ c˝ and f˝ :“ f |U˝ to
g1 : V Ñ A1 such that g1 ˝ Φ “ f˝.

Since Φ: U˝ Ñ V is a regular immersion, by shrinking U˝ and V we may find a function r : V Ñ Am such
that U˝ is the zero locus of r and in the commutative diagram

U˝ Φ //

c˝

��

V ˝

pp,rq

��
AnB

p1,0q // An`m
B

the vertical arrows are étale.
Consider

g :“ g1 ´
ÿ

i

Bg1

Bri
ri `

1

2

ÿ

i,j

B2g1

BriBrj
rirj `

1

2

ÿ

i

r2i .

It satisfies
Bg

Bri

ˇ

ˇ

ˇ

ˇ

U˝

“ 0,
B2g

BriBrj

ˇ

ˇ

ˇ

ˇ

U˝

“

#

1 if i “ j,

0 if i ‰ j.

The first equation implies that Φ restricts to U˝ Ñ CritV {An
B

pgq. The second equation implies that we may
shrink V so that Φ: U˝ Ñ CritV {An

B
pgq is an isomorphism, which we assume. Therefore, taking the full

critical locus relative to B we get that Φ restricts to an isomorphism CritU˝{Bpf˝q Ñ CritV {Bpgq. □

We next show that any critical morphism is locally of the form as in Example 3.21; the following is a
family version of [Joy15, Proposition 2.23].

Proposition 3.23. Let Φ: pU, fq Ñ pV, gq be a critical morphism of LG pairs over B and x P CritU{Bpfq.
Then there is an open immersion ı : pU˝, f˝q Ñ pU, fq, an étale morphism ȷ : pV ˝, g˝q Ñ pV, gq, a point
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x˝ P CritU˝{Bpf˝q mapping to x, a critical morphism Φ˝ : pU˝, f˝q Ñ pV ˝, g˝q, a trivial orthogonal bundle
pE, qq Ñ U and an étale morphism α : V ˝ Ñ E such that α˚pf ˝ πE ` qEq “ g˝ and the diagram

U E

U˝ V ˝

U V

0E

Φ˝

ı

ı

ȷ

α

Φ

is commutative.

Proof. As a first step, we construct a local splitting of Φ: U Ñ V . For this, consider an open neighborhood
U˝ Ă U of x affine over B together with an étale morphism c : U˝ Ñ AnB . Consider the unramified morphism
U˝ ãÑ U

Φ
ÝÑ V . By [EGAIV, Corollaire 18.4.7] we may find a commutative diagram

U˝ Φ1

//

��

V 1

��
U

Φ // V,

where V 1 Ñ V is an étale morphism and Φ1 a closed immersion. Possibly shrinking V 1 (and, correspondingly,
U˝) we may assume that V 1 Ñ V Ñ B is affine. Then c lifts to p1 : V 1 Ñ AnB such that p1 ˝ Φ1 “ c. Let
f˝ : U˝ Ñ A1 be the restriction of f to U˝ and g1 : V 1 Ñ A1 the restriction of g to V 1.

Since Φ1 : U˝ Ñ V 1 is a regular immersion, by shrinking V 1 we can find a function r : V 1 Ñ Am such that
U˝ is the zero locus of r and in the fiber square

U˝ �
� Φ1

//

c

��
l

V 1

pp1,rq

��
AnB
� � p1,0q // An`m

B ,

the vertical arrows are étale.
By assumption we have a commutative diagram

CritU˝{Bpf˝q //

��

CritV 1{Bpg1q

��
U˝ Φ1

// V 1

Thus, Bg1

Brj
|U˝ lies in the ideal generated by Bf˝

Bci
. Since p1 ˝ Φ˝ “ c and g1 ˝ Φ1 “ f˝, we have Bg˝

Bp1
i

ˇ

ˇ

ˇ

U˝
“

Bf˝

Bci
.

So, we may write in the tp1
i, r

1
iu coordinates

Bg1

Brj

ˇ

ˇ

ˇ

ˇ

U˝

“
ÿ

i

a1
ij

Bg1

Bp1
i

ˇ

ˇ

ˇ

ˇ

U˝

for some functions a1
ij : U

˝ Ñ A1. Choose any lifts aij : V 1 Ñ A1 of a1
ij and consider

pi :“ p1
i `

ÿ

j

aijrj : V
1 ÝÑ A1.

Possibly shrinking V 1 we may assume that V 1 pp,rq
ÝÝÝÑ An`m

B is étale. Moreover, in the tpi, riu coordinates we
have

Bg1

Brj

ˇ

ˇ

ˇ

ˇ

U˝

“ 0.
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Let V ˝ “ U˝ ˆAn
B
V 1 with the projection p̃ : V ˝ Ñ U . Then we obtain a commutative diagram

U˝ Φ˝

//

��

V ˝

��
U

Φ // V

with vertical maps étale and with Φ˝ : U˝ Ñ V ˝ an immersion as it is the composite U˝ Ñ U˝ ˆAn
B
U˝ Ñ

U˝ ˆAn
B
V 1 of an open immersion and a closed immersion. Since pp, rq : V 1 Ñ An`m

B is étale, so is its base
change pp̃, rq : V ˝ Ñ U ˆ Am. Let g˝ be the restriction of g to V ˝.

Since g˝ ˝ Φ˝ “ f˝ and Bg˝

Brj
|U˝ “ 0, we see that g˝ ´ f˝ ˝ p̃ vanishes to the second order along U˝ ãÑ V ˝.

Thus, shrinking V ˝ we may find qij P OV ˝ such that

g˝ “ f˝ ˝ p̃`
ÿ

i,j

qijrirj ,

where qij is a symmetric invertible matrix. Using the Gram–Schmidt process, we may assume that qij “ 0
for i ‰ j and qii are nowhere vanishing functions on V ˝. Possibly replacing V ˝ by an étale cover so that qii
admit square roots, we obtain an étale morphism α “ pp̃,

?
qrq : V ˝ Ñ E “ U ˆ Am, so that if we equip E

with the trivial quadratic form qAm we get α˚pf ` qAmq “ g1. □

Example 3.24. Consider an LG pair pV, gq over B and a B-point σ : B Ñ CritV {Bpgq of the relative critical
locus. Let x P B. Assume that g is relatively Morse at σ, i.e. σ is an inclusion of a smooth connected
component. Then σ : pB, g|σq Ñ pV, gq is a critical morphism. In this case Proposition 3.23 reduces to the
relative Morse lemma: we may find an open neighborhood B˝ Ă B of x, an étale morphism V ˝ Ñ V , a lift
σ˝ : B˝ Ñ CritV ˝{Bpg|V ˝ q of σ and étale coordinates y : V ˝ Ñ AmB such that

g|V ˝ “

m
ÿ

i“1

y2i .

The following proposition shows that any two critical charts are locally related by a zigzag of critical
morphisms; this is a family version of [Joy15, Theorem 2.20].

Proposition 3.25. Let X Ñ B be a morphism of schemes equipped with a relative d-critical structure
s. Let pU, f, uq and pV, g, vq be two critical charts and x P CritU{Bpfq, y P CritV {Bpgq points such that
upxq “ vpyq. Then there are open immersions pU˝, f˝, u˝q Ñ pU, f, uq and pV ˝, g˝, v˝q Ñ pV, g, vq, a critical
chart pW,h,wq, critical morphisms

pU˝, f˝, u˝q
Φ

ÝÑ pW,h,wq
Ψ

ÐÝ pV ˝, g˝, v˝q

and points x˝ P CritU˝{Bpf˝q, y˝ P CritV ˝{Bpg˝q which map to x and y.

Proof. Using Proposition 3.22 we may find an open neighborhood V ˝ Ă V of y, a critical chart pṼ , g̃, ṽq

which admits an open immersion into AnB and a critical morphism Ξ: pV ˝, g˝, v˝q Ñ pṼ , g̃, ṽq. Moreover, by
construction Ξ restricts to an isomorphism CritV ˝{Bpg˝q – CritṼ {Bpg̃q.

Consider the diagram

CritU{Bpfq ˆX CritV ˝{Bpg˝q

vv ((
U Ṽ // AnB .

Since CritU{Bpfq ˆX CritV ˝{Bpg˝q Ñ U is an immersion, we may find a Cartesian diagram

(3.8) R //

��

CritU{Bpfq ˆX CritV ˝{Bpg˝q

��
U˝ // U
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with U˝ Ñ U open with x P R and a commutative diagram

R //

��

CritU{Bpfq ˆX CritV ˝{Bpg˝q

��
U˝ Θ // AnB

Shrinking U˝ further, we may assume that Θ: U˝ Ñ AnB factors through Ṽ Ă AnB . The Cartesian diagram
(3.8), the fact that CritV ˝{Bpg˝q Ñ X is a monomorphism and the Cartesian diagram from Proposition 4.1
imply that R – CritU˝{Bpf˝q, where f˝ “ f |U˝ . Let u˝ “ u|CritU˝{Bpf˝q. Thus, we get a commutative
diagram

R – CritU˝{Bpf˝q //

��

CritV ˝{Bpg˝q

��
U˝ Θ // Ṽ

with CritU˝{Bpf˝q Ñ CritV ˝{Bpg˝q an open immersion.
Using the functoriality of the description of SX{B from Proposition 3.7(3) with respect to Θ we obtain a

commutative diagram

0 // SX{B |R // OṼ {I2
R,Ṽ

//

��

Ω1
Ṽ {B

{IR,Ṽ Ω1
Ṽ {B

��
0 // SX{B |R // OU˝ {I2

R,U˝
// Ω1
U˝{B{IR,U˝Ω1

U˝{B

Using that sf˝ “ sg˝ on R we thus obtain that f˝ ´ g ˝ Θ P I2
R{U˝ . Shrinking U˝, we may find a (trivial)

orthogonal bundle pE1, q1q Ñ Ṽ together with a section s1 of Θ˚E1, vanishing on R, such that

f˝ ´ g̃ ˝ Θ “ q1ps1q.

Now let W 1 “ E1 equipped with the function g̃ ˝ πE1 ` qE1 : W 1 Ñ A1.
Shrinking U˝ we may choose an étale morphism y : U˝ Ñ AmB , i.e. étale coordinates on U˝ Ñ B near

x. Consider the hyperbolic quadratic form qm on A2m given by
řm
i“1 yizi and let E “ E1 ˆ A2m with the

sum quadratic form q “ q1 ‘ qm. Consider the section s “ ps1, y1, . . . , ym, 0, . . . , 0q of Θ˚E. By construction
Ω1
E{B Ñ Ω1

U˝{B is surjective, so Φ: pU˝, f˝q Ñ pW, g̃ ˝ πE ` qEq given by the section s is unramified. Since
s1 vanishes on R, Φ is a critical morphism.

Define Ψ̃ : pṼ , g̃q Ñ pW, g̃ ˝ πE ` qEq to be the zero section which is a critical morphism by Example 3.21.
We set

Ψ: pV ˝, g˝q
Ξ

ÝÑ pṼ , g̃q
Ψ̃

ÝÑ pW, g̃ ˝ πE ` qEq,

which is a composite of critical morphisms. □

Finally, any critical chart can be replaced by a minimal chart at a point.

Proposition 3.26. Let pV, gq be an LG pair over B and y P CritV {Bpgq a point. Then there is an
open subscheme V ˝ Ă V , a smooth B-scheme U , a point x P CritU{Bpfq, a function f : U Ñ A1 and
a critical morphism Φ: pU, fq Ñ pV ˝, g|V ˝ q, such that Φpxq “ y, CritU{Bpfq Ñ U is minimal at x and
Φ: CritU{Bpfq Ñ CritV ˝{Bpg|V ˝ q is an isomorphism.

Proof. Consider the short exact sequence

0 ÝÑ TCritV {Bpgq{B,y Ñ TV {B,y ÝÑ Ny ÝÑ 0

and consider an arbitrary splitting TV {B,y – TCritV {Bpgq{B,y ‘ Ny. In a neighborhood V ˝ Ă V of y we may
extend it to an isomorphism

TV ˝{B – TCritV {Bpgq{B,y b OV ˝ ‘ Ny b OV ˝ .
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With respect to this decomposition let dg|V ˝ “ α ` β for

α P Ω1
CritV {Bpgq{B,y b OV ˝ , β P N_

y b OV ˝ .

Consider U “ β´1p0q with f “ g|U and the morphism ∇β : TV ˝{B Ñ N_
y b OV ˝ .

We have Hesspfqy “ p∇dfqy : TV ˝{B,y Ñ Ω1
V ˝{B,y which is nondegenerate on Ny by Proposition 3.14(1).

Thus, possibly shrinking V ˝ to a smaller neighborhood of y we may assume that ∇β is surjective, i.e. U Ñ B
is smooth. Moreover, CritU{Bpfq “ CritV ˝{Bpg|V ˝ q as both are defined by the equations α “ β “ 0 in V ˝. □

3.4. Gluing objects on critical charts. We will use the results comparing different critical charts from
Section 3.3 to glue objects over schemes equipped with relative d-critical structures. We begin with the
following general paradigm for gluing. Consider a site C and a functor π : F Ñ C. We consider a collection
of morphisms of F called localization morphisms, which satisfies the following properties:

(1) The collection of localization morphisms is closed under composition and it contains identities.
(2) For every localization morphism x Ñ z and any morphism y Ñ z the fiber product xˆz y exists, it

is preserved by π and xˆz y Ñ y is a localization morphism.
We say F is locally connected if the following conditions are satisfied:
(1) For every X P C there is a collection of objects txau of F together with a covering tπpxaq Ñ Xu.
(2) For every x, y P F together with morphisms πpxq Ñ z Ð πpyq in C, there are collections of localization

morphisms txa Ñ xu and tya Ñ yu such that for each a there exists a diagram xa Ñ za Ð ya in F,
and tπpxaq ˆz πpyaq Ñ πpxq ˆz πpyqu is a cover.

Example 3.27. Suppose π : F Ñ C is a Cartesian fibration, so that it is classified by a presheaf F̃ : Cop Ñ

Cat. Consider the class of π-Cartesian morphisms as the class of localization morphisms on F. Then F is
locally connected precisely if the sheafification of F̃ is connected.

Proposition 3.28. Let C be a site, πi : Fi Ñ C for i “ 1, 2 two functors, where F1 Ñ C is locally connected
and F2 Ñ C is a Cartesian fibration satisfying descent. Consider a functor F : F1 Ñ F2 over C satisfying
the following conditions:

(1) For every f : x Ñ y in F1 the morphism F pfq : F pxq Ñ F pyq in F2 is π2-Cartesian.
(2) Given two morphisms f1, f2 : x Ñ y such that π1pf1q “ π1pf2q we have F pf1q “ F pf2q.

Then there is a Cartesian section s of π2 : F2 Ñ C determined by the following conditions:
‚ For an object x P F1 we have an isomorphism ix : spπ1pxqq

„
ÝÑ F pxq.

‚ For a morphism f : x Ñ y in F1 there is a commutative diagram

spπ1pxqq spπ1pyqq

F pxq F pyq

spπ1pfqq

ix iy

F pfq

Proof. The proof is similar to the proofs of [Joy15, Theorem 2.28] and [Bra+15, Theorem 6.9]. For an object
X P C consider a collection txa | a P Au of objects of F1 together with a cover

(3.9) tπ1pxaq Ñ X | a P Au.

Since F1 is locally connected, for every a, b P A there is a set Dab and for each d P Dab there are morphisms

tx1d
a Ñ xau and tx1d

b Ñ xbu and objects tydu of F1 together with morphisms x1d
a

Φd

ÝÝÑ yd
Ψd

ÐÝÝ x1d
b such that for

every a, b P A

(3.10) tπ1px1d
a q ˆX π1px1d

b q Ñ π1pxaq ˆX π1pxbq | d P Dabu

is a cover.
Since F2 satisfies descent, using the cover (3.9) we have to specify an isomorphism

αab : F pxaq|π1pxaqˆXπ1pxbq
„

ÝÑ F pxbq|π1pxaqˆXπ1pxbq

for every a, b P A which satisfies the cocycle conditions

(3.11) αbc ˝ αab “ αac, αaa “ id.
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We proceed to the definition of αab. By descent, using (3.10) to construct αab it is enough to construct,
for every d P Dab,

αdab : F pxaq|π1px1d
a qˆXπ1px1d

b q

„
ÝÑ F pxbq|π1px1d

a qˆXπ1px1d
b q

such that for every d, e P Dab we have

(3.12) αdab|π1px1d
a qˆXπ1px1d

b qˆXπ1px1e
a qˆXπ1px1e

b q “ αeab|π1px1d
a qˆXπ1px1d

b qˆXπ1px1e
a qˆXπ1px1e

b q.

We have isomorphisms Φd : x1d
a

„
ÝÑ yd|π1px1d

a q and Ψd : x1d
b

„
ÝÑ yd|π1px1d

b q and we define

αdab “ F pΨdq´1 ˝ F pΦdq.

To show (3.12), using the condition of local connectedness, we get a collection of localization morphisms
ty1d
c Ñ ydu and ty1e

c Ñ yeu together with zigzags y1d
c

Φc
ÝÝÑ zc

Ψc
ÐÝÝ y1e

c such that

tπ1py1d
c q ˆX π1py1e

c q Ñ π1pydq ˆX π1pyequ

is a cover.
Since x1d

a Ñ xa and y1d
c Ñ yd are localization morphisms, we can form the fiber product

x1de
ac “ y1d

c ˆyd x
1d
a ˆxa

x1e
a ˆye y

1e
c .

Then we have a (non-commutative) diagram

x1de
ac y1d

c

zc

y1e
c x1de

bc

Φd

Φe

Φc

Ψc

Ψe

Ψd

in F1. Using the functoriality of F as well as the second assumption in the statement, we get, on the cover

tπ1py1de
ac q ˆX π1py1de

bc q Ñ π1px1d
a q ˆX π1px1d

b q ˆX π1px1e
a q ˆX π1px1d

b qu,

that

αdab “ F pΨdq´1 ˝ F pΦdq

“ F pΨdq ˝ F pΦcq
´1 ˝ F pΦcq ˝ F pΦdq

“ F pΨeq´1 ˝ F pΨcq
´1 ˝ F pΨcq ˝ F pΦeq

“ F pΨeq´1 ˝ F pΦeq “ αeab.

This finishes the construction of αab and shows that it is independent of the choices of the intermediate
zigzags. Let us next check the cocycle conditions (3.11). The condition αaa “ id follows from F pidq “ id
since we can choose the zigzag for xa and itself to be given by the identity maps. Let a, b, c P A. Using local
connectedness we can choose localizations tx1f

i Ñ xiu for i “ a, b, c such that

tπ1px1f
a q ˆX π1px1f

b q ˆX π1px1f
c q Ñ π1pxaq ˆX π1pxbq ˆX π1pxcqu

and an object y together with morphisms Φi : x
1f
i Ñ y for i “ a, b, c. Then we have

αab|π1px1f
a qˆXπ1px1f

b qˆXπ1px1f
c q

“ α´1
Φb

˝ αΦa

αbc|π1px1f
a qˆXπ1px1f

b qˆXπ1px1f
c q

“ α´1
Φc

˝ αΦb

αac|π1px1f
a qˆXπ1px1f

b qˆXπ1px1f
c q

“ α´1
Φc

˝ αΦa .

This implies that αbc ˝αab “ αac on π1px1f
a q ˆX π1px1f

b q ˆX π1px1f
c q. As we can cover π1pxaq ˆX π1pxbq ˆX

π1pxcq by such morphisms, this proves the claim. □
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Remark 3.29. Consider the setting of Proposition 3.28 when π1 : F1 Ñ C is a Cartesian fibration (see
Example 3.27). Then the sheafification of F1 has trivial π0. So, a morphism to F2 defines a global object
precisely if all the obstructions coming from the nontrivial π1 vanish; this is guaranteed by the second
condition in Proposition 3.28.

Corollary 3.30. Let X Ñ B be a morphism of schemes equipped with a relative d-critical structure s and F

a sheaf of categories over X in the Zariski topology. Fix a locally constant function d : X Ñ Z{2Z. Consider
the following data:

(1) For every critical chart pU, f, uq, such that dimpU{Bq ” d pmod 2q, we have an object

xu P ΓpCritU{Bpfq,Fq.

(2) For every critical morphism Φ: pU, f, uq Ñ pV, g, vq of even relative dimension we have an isomor-
phism

JΦ : xu
„

ÝÑ pxvq|CritU{Bpfq.

which satisfy the following conditions:

(1) For a composite pU, f, uq
Φ

ÝÑ pV, g, vq
Ψ

ÝÑ pW,h,wq of critical morphisms of even relative dimension
we have

JΨ˝Φ “ pJΨq|CritU{Bpfq ˝ JΦ.

(2) For the identity critical morphism pU, f, uq
id

ÝÑ pU, f, uq we have

Jid “ id.

(3) Given two critical morphisms Φ1,Φ2 : pU, f, uq Ñ pV, g, vq of even relative dimension such that Φ1 “

Φ2 : CritU{Bpfq Ñ CritV {Bpgq, we have an equality

JΦ1 “ JΦ2 .

Then there is an object x P ΓpX,Fq restricting to xu on each critical chart and with JΦ as the isomorphisms
of these local objects for critical morphisms.

Proof. Consider the following category CritChartsdpX{Bq:
‚ Its objects are critical charts pU, f, uq for pX Ñ B, sq with dimpU{Bq ” d pmod 2q.
‚ Its morphisms are critical morphisms of critical charts of even relative dimension.

We have a natural functor π1 : CritChartsdpX{Bq Ñ XZar to the Zariski site ofX given by sending pU, f, uq ÞÑ

CritU{Bpfq. As the class of localization morphisms we take open immersions of critical charts. Given a critical
chart pU, f, uq we may construct a new critical chart pUˆA1, f‘x2, uq of dimension one higher. Thus, the fact
that π1 : CritChartsdpX{Bq Ñ XZar is locally connected follows from Proposition 3.25. Let π2 :

ş

F Ñ XZar

be the Grothendieck construction applied to the sheaf of categories F. Then the data given in the statement
determines a functor F : CritChartsdpX{Bq Ñ

ş

F over XZar satisfying the conditions of Proposition 3.28,
whence the claim. □

Restricting Corollary 3.30 to sheaves of sets we obtain the following statement.

Corollary 3.31. Let X Ñ B be a morphism of schemes equipped with a relative d-critical structure s and
F a sheaf of sets over X in the Zariski topology. Fix a locally constant function d : X Ñ Z{2Z. Consider the
following data:

(1) For every critical chart pU, f, uq, such that dimpU{Bq ” d pmod 2q, we have an element xu P

ΓpCritU{Bpfq,Fq.
which satisfy the following condition:

(1) For every critical morphism Φ: pU, f, uq Ñ pV, g, vq of even relative dimension we have an equality
xu “ pxvq|CritU{Bpfq.

Then there is a section x P ΓpX,Fq restricting to xu on each critical chart.
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3.5. Virtual canonical bundle. We are now going to define the virtual canonical bundle of a relative
d-critical structure on a morphism of schemes X Ñ B, which is a line bundle on the reduced scheme Xred.
For this, we begin by defining the canonical quadratic form associated to a critical morphism. Observe
that in the local model of a critical morphism Φ: pU, fq Ñ pV, gq as in Proposition 3.23 there is a canonical
isomorphism

(3.13) NU{V |U˝ – NU{E |U˝ – E|U˝ .

In particular, the normal bundle of U Ñ V admits a quadratic form étale locally. We will now show that it
extends to a global quadratic form.

Proposition 3.32. Let Φ: pU, fq Ñ pV, gq be a critical morphism of LG pairs over B. Then there is a
nondegenerate quadratic form qΦ on the normal bundle NU{V |CritU{Bpfq which is uniquely determined by the
following property:

(1) Consider a local form of the critical morphism Φ as in Proposition 3.23. Then under the natural
isomorphism NU{V |U˝ – E|U˝ (3.13) the quadratic form qΦ identifies with the quadratic form q on
E.

Moreover, it satisfies the following properties:

(2) For another critical morphism Ψ: pV, gq Ñ pW,hq consider the unique splitting of the short exact
sequence

0 ÝÑ NU{V |CritU{Bpfq ÝÑ NU{W |CritU{Bpfq ÝÑ NV {W |CritU{Bpfq ÝÑ 0

obtained by taking the orthogonal complement of NU{V |CritU{Bpfq Ă NU{W |CritU{Bpfq with respect to
qΨ˝Φ. Then the resulting isomorphism

NU{W |CritU{Bpfq – NU{V |CritU{Bpfq ‘ NV {W |CritU{Bpfq

sends the quadratic form qΨ˝Φ to qΦ ` qΨ.
(3) Let Φ1 : pU, fq Ñ pV, gq be another critical morphism between the same critical charts. Then

vol2qΦ |CritU{Bpfqred “ vol2qΦ1
|CritU{Bpfqred .

(4) Consider a commutative diagram

pU1, f1q
Φ1 //

πU

��

pV1, g1q

πV

��
pU2, f2q

Φ2 // pV2, g2q

with πU and πV smooth morphisms and Φ1 and Φ2 critical morphisms such that U1 Ñ V1 ˆV2
U2 is

étale. Then under the isomorphism π˚
UNU2{V2

– NU1{V1
we have qΦ2

ÞÑ qΦ1
.

(5) For a pair of critical morphisms Φi : pUi, fiq Ñ pVi, giq of LG pairs over Bi under the isomorphism

NU1ˆU2{V1ˆV2
|CritU1ˆU2{B1ˆB2

pf1‘f2q – NU1{V1
|CritU1{B1

pf1q ‘ NU2{V2
|CritU2{B2

pf2q

we have qΦ1ˆΦ2 ÞÑ qΦ1 ` qΦ2 .
(6) If Φ: pU,´fq Ñ pV,´gq is a morphism of LG pairs over B equal to Φ on the level of underlying

schemes, then qΦ “ ´qΦ.

Proof. Since we can cover the critical locus CritU{Bpfq by the local models as in Proposition 3.23, uniqueness
is clear. To show existence, we have to show that the quadratic form is independent of the choice of the local
form of the critical morphism. For this, suppose pU˝

1 , V
˝
1 , E1, q1q and pU˝

2 , V
˝
2 , E2, q2q are two choices of the

data as in Proposition 3.23. Let

U “ U˝
1 ˆU U

˝
2 , V “ V ˝

1 ˆV V
˝
2 .
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Let R “ CritU{Bpfq and let p : R Ñ B be the projection. Then we have a commutative diagram of short
exact sequences

0 TU{B |R TE1{B |R E1|R 0

0 TU{B |R TV {B |R NU{V |R 0

0 TU{B |R TE2{B |R E2|R 0

id

id

„

„

„

„

Choose local splittings TE1{B |R – TU{B |R ‘E1|R and TE2{B |R – TU{B |R ‘E2|R. Denote the composite
isomorphisms by

t : E1|R
„

ÝÑ E2|R,

ˆ

id s
0 t

˙

: TU{B |R ‘ E1|R
„

ÝÑ TU{B |R ‘ E2|R.

Under the vertical isomorphisms the quadratic form Hesspgq on TV {B |R restricts to Hesspfq`q1 and Hesspfq`

q2, respectively. Therefore, for v P TU{B |R and w P E1|R we have

Hesspfqpvq ` q1pwq “ Hesspfqpv ` spwqq ` q2ptpwqq.

By considering the associated symmetric bilinear form we get that spwq P KerpHesspfqq. Thus, q1pwq “

q2ptpwqq, i.e. t : pE1|R, q1q Ñ pE2|R, q2q preserves quadratic forms. So, qΦ is well-defined.
Let us now check the remaining properties:
(2) It is enough to establish this equality locally. For this, apply Proposition 3.23 to get pU˝, V ˝

1 , E1, q1q

fitting into a commutative diagram

U E1

U˝ V ˝
1

U VΦ

Similarly, apply Proposition 3.23 to get pV ˝
2 ,W

˝, E2, q2q fitting into a commutative diagram

V E2

V ˝
2 W ˝

V WΨ

Let
U “ U˝ ˆV V

˝
2 .

Then we get a diagram

U E1 ˆV E2

U W ˝

U WΨ˝Φ

Thus, under the local isomorphism of NU{W and E1 ‘ E2|U we see that qΨ˝Φ is sent to q1 ` q2.
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(3) We have to show that the function vol2qΦ{vol2qΦ̃ on CritU{Bpfqred is identically 1. This can be
checked pointwise on CritU{Bpfqred. For a k-point b P B let Rb “ CritU{Bpfq ˆB Spec k “

CritUˆBSpec k{ Spec kpfq be the corresponding fiber product which carries a d-critical structure relative
to Spec k. Then it is sufficient to show that vol2qΦ “ vol2qΦ̃ when restricted to Rred

b for every b. But
this is shown in [Joy15, Theorem 2.27].

(4) It is enough to establish this claim locally. Apply Proposition 3.23 to get pU˝
2 , V

˝
2 , E, qq fitting into

a commutative diagram
U2

// E

U˝
2

Φ˝
2 //

OO

��

V ˝
2

OO

��
U2

Φ2 // V2

By property (1) under the isomorphism NU˝
2 {V ˝

2
– E|U˝

2
we have qΦ2 ÞÑ q.

Then Φ˝
2 ˆΦ1 : U

˝
2 ˆU2 U1 Ñ V ˝

2 ˆV2 V1 has a local model given by the pullback of U2 Ñ E. Thus,
again by property (1) we get that under the isomorphism NU˝

2 ˆU2
U1{V ˝

2 ˆV2
V1

– E|U˝
2 ˆU2

U1
we have

qΦ1
ÞÑ q.

(5) The claim follows from property (2) as we may write Φ1 ˆ Φ2 as the composite pid ˆ Φ2q ˝ pΦ1 ˆ idq

of critical embeddings.
(6) The claim is local and follows from the fact that given a local model of Φ: pU, fq Ñ pV, gq as in

Proposition 3.23 specified by a trivial orthogonal bundle pE, qq Ñ U the local model of Φ: pU,´fq Ñ

pV,´gq is specified by the same data with the trivial orthogonal bundle pE,´qq Ñ U .
□

Given a critical morphism Φ: pU, fq Ñ pV, gq we denote by PΦ Ñ CritU{Bpfq the Z{2Z-graded orienta-
tion µ2-torsor for the orthogonal bundle pNU{V |CritU{Bpfq, qΦq. Then Proposition 3.32 implies the following
properties of PΦ:

(1) Given another critical morphism Ψ: pV, gq Ñ pW,hq we obtain an isomorphism

ΞΦ,Ψ : PΨ˝Φ
„

ÝÑ PΨ|CritU{Bpfq bµ2
PΦ

by combining (3.1) and Proposition 3.32(2).
(2) If Φ1 : pU, fq Ñ pV, gq is another critical morphism equal to Φ on the critical loci, there is a canonical

isomorphism
PΦ – PΦ1

given by the identity on volume forms, using Proposition 3.32(3).
(3) Given a diagram

pU1, f1q
Φ1 //

πU

��

pV1, g1q

πV

��
pU2, f2q

Φ2 // pV2, g2q

with horizontal morphisms critical morphisms, vertical morphisms smooth and U1 Ñ V1ˆV2
U2 étale,

there is a canonical isomorphism

(3.14) PΦ1 – pCritU1{Bpf1q Ñ CritU2{Bpf2qq˚PΦ2

given by the identity on volume forms, using Proposition 3.32(4).
(4) Given a pair of critical morphisms Φi : pUi, fiq Ñ pVi, giq of LG pairs over Bi, so that Φ1 ˆΦ2 : pU1 ˆ

U2, f1 ‘ f2q Ñ pV1 ˆV2, g1 ‘ g2q is a critical morphism of LG pairs over B1 ˆB2, there is a canonical
isomorphism

(3.15) PΦ1
b PΦ2

– PΦ1ˆΦ2
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defined via the isomorphism (3.1), using Proposition 3.32(5).
(5) If Φ: pU,´fq Ñ pV,´gq is the same morphism between the opposite LG pairs, there is a canonical

isomorphism

(3.16) PΦ – PΦ

defined via the isomorphism (3.2), using Proposition 3.32(6).
The quadratic form qΦ for a critical morphism allows us to define the virtual canonical bundle as follows.

Theorem 3.33. Let X Ñ B be a morphism of schemes equipped with a relative d-critical structure s. Then
there is a line bundle Kvir

X{B on Xred, the virtual canonical bundle, uniquely determined by the following
conditions:

(1) For every critical chart pU, f, uq its restriction to CritU{Bpfqred is canonically isomorphic to Kb2
U{B |CritU{Bpfqred .

(2) For every critical morphism Φ: pU, f, uq Ñ pV, g, vq the corresponding isomorphism

JΦ : Kb2
U{B |CritU{Bpfqred

„
ÝÑ Kb2

V {B |CritU{Bpfqred

fits into a commutative diagram

Kb2
U{B |CritU{Bpfqred

idbvol2qΦ

++

JΦ // Kb2
V {B |CritU{Bpfqred

Kb2
U{B |CritU{Bpfqred b pdetN_

U{V qb2|CritU{Bpfqred ,

ip∆q
2

33

where the diagonal morphism on the right is determined by the short exact sequence

∆: 0 ÝÑ N_
U{V ÝÑ Ω1

V {B |U ÝÑ Ω1
U{B ÝÑ 0.

For every point x P X there is an isomorphism

κx : K
vir
X{B,x

„
ÝÑ detpΩ1

X{B,xqb2

uniquely determined by the following condition:
(3) For every critical chart pU, f, uq with a point y P CritU{Bpfq such that upyq “ x the isomorphism

Kb2
U{B,y – Kvir

X{B,x
κx

ÝÑ detpΩ1
X{B,xqb2

coincides with the composite of the natural isomorphism of determinant lines induced by the exact
sequence

0 ÝÑ N_
X{U,x ÝÑ Ω1

U{B,y ÝÑ Ω1
X{B,x ÝÑ 0

as well as the squared volume form on NX{U,x induced by the quadratic form Hesspfqx.
In addition, we have the following isomorphisms:

(4) For a pair pX1 Ñ B1, s1q, pX2 Ñ B2, s2q of morphisms of schemes equipped with relative d-critical
structures consider the relative d-critical structure s1 ‘ s2 on X1 ˆX2 Ñ B1 ˆB2. Then there is an
isomorphism

(3.17) Kvir
X1{B1

bKvir
X2{B2

– Kvir
X1ˆX2{B1ˆB2

uniquely determined by the condition that for every point px1, x2q P X1 ˆX2 there is a commutative
diagram

Kvir
X1{B1,x1

bKvir
X2{B2,x2

(3.17) //

κx1bκx2

��

Kvir
X1ˆX2{B1ˆB2,px1,x2q

κpx1,x2q

��
detpΩ1

X1{B1,x1
qb2 b detpΩ1

X2{B2,x2
qb2 „ // detpΩ1

X1ˆX2{B1ˆB2,px1,x2q
qb2.
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(5) For a morphism of schemes X Ñ B equipped with a relative d-critical structure s let Kvir
X{B,s be the

virtual canonical bundle. For d : X Ñ Z{2Z there is an isomorphism

(3.18) Rd : K
vir
X{B,s – Kvir

X{B,´s

squaring to the identity.

Proof. Consider the Zariski stack on X whose value on an open immersion R Ñ X is given by the groupoid
PicRred of line bundles on Rred. We may then apply Corollary 3.30 to glue the objects Kb2

U{B |CritU{Bpfqred

defined for a critical chart pU, f, uq using the isomorphisms JΦ for a critical morphism. The relevant conditions
of Corollary 3.30 are verified as follows:

(1) The first condition follows from Proposition 3.32(2).
(2) The second condition follows since NU{U “ 0 with the zero quadratic form.
(3) The third condition follows from Proposition 3.32(3).

The uniqueness of the isomorphism κx is clear. The existence will follow once we show that the condition
is compatible with critical morphisms pU, f, uq Ñ pV, g, vq. Since this is a pointwise statement, it reduces to
the statement about d-critical loci over a field which is shown in [Joy15, Theorem 2.28(iv)].

In a critical chart pU1, f1, u1q for X1 and pU2, f2, u2q for X2 we define the isomorphism (3.17) to be the
obvious isomorphism

Kb2
U1{B1

|CritU1{B1
pf1qred bKb2

U2{B2
|CritU2{B2

pf2qred – Kb2
U1ˆU2{B1ˆB2

|CritU1ˆU2{B1ˆB2
pf1‘f2qred ,

under the identification of Proposition 3.18. Since the quadratic form qΦ is compatible with products by
Proposition 3.32(5), JΦ is also compatible with products, so the above isomorphism is compatible with
critical morphisms.

In a critical chart pU, f, uq for X we define the isomorphism Rd to be given by the multiplication by
p´1qdimpU{Bq`d on Kb2

U{B |CritU{Bpfqred . By Proposition 3.32(6) we have qΦ “ ´qΦ. Since

vol2´qΦ “ p´1qdimpV {Bq´dimpU{Bqvol2qΦ ,

we have
JΦ “ p´1qdimpV {Bq´dimpU{BqJΦ,

so thus defined isomorphism is compatible with critical morphisms. □

Remark 3.34. In the setting of Theorem 3.33 assume that B is a point. In this case, the map κx has also
appeared in [KPS24, (3.13)]. We note that our choice of κx differs from the one in loc. cit. by p´1qrkΩX{B,x .
See [KPS24, Remark 3.36] for the origin of the sign.

3.6. Deformation of morphisms of LG pairs. In this section we fix a scheme B P Schsepft. Given a
pair Φ0,Φ1 of étale morphisms pU, fq Ñ pV, gq of LG pairs over B which induce equal morphisms on relative
critical loci and which satisfy an extra condition we show that, étale locally, they can be extended to an
A1-family Φt : pU, fq Ñ pV, gq. The following is a family version of [Bra+15, Proposition 3.4].

Proposition 3.35. Let Φ0,Φ1 : pU, fq Ñ pV, gq be étale morphisms of LG pairs over B and u P CritU{Bpfq

be a point. Assume that

(3.19) Φ0|CritU{Bpfq “ Φ1|CritU{Bpfq : CritU{Bpfq ÝÑ CritV {Bpgq

and

(3.20) pdΦ1|´1
u ˝ dΦ0|u ´ idq2 “ 0: TU{B,u Ñ TU{B,u.

Then we can find étale morphisms of LG pairs over B ˆ A1,

pW,hq

ΨU

ww

ΨV

''
pU ˆ A1, f ‘ 0q pV ˆ A1, g ‘ 0q
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and a map w : A1 Ñ W such that ΨU ˝ w “ pu, idq : A1 Ñ U ˆ A1, ΨV ˝ w “ pv, idq : A1 Ñ V ˆ A1, and

(3.21) CritW {BˆA1phq

ΨU

zz

ΨV

%%
CritU{Bpfq ˆ A1 Φ0“Φ1 // CritV {Bpgq ˆ A1,

W0

ΨU,0

~~

ΨV,0

  
U

Φ0 // V,

W1

ΨU,1

~~

ΨV,1

  
U

Φ1 // V

commute, where Wt, ΨU,t : Wt Ñ U , and ΨV,t : Wt Ñ V are the fibers of W , ΨU , and ΨV at t P A1.

For a scheme X P Schsepft, a vector bundle E Ñ X and a section s P ΓpX,Eq we denote by ZXpsq the zero
section of s as a subscheme of X. The key to prove Proposition 3.35 is the following perturbation lemma.

Lemma 3.36 (Perturbation). Let pU, fq ãÑ pV, gq be a closed embedding of codimension r of LG pairs
over B. Assume that there exist a vector bundle E over V of rank r, a section s P ΓpV,Eq, a cosection
σ P ΓpV,E_q, and a 2-tensor a P ΓpV,E b Eq such that U “ ZV psq as subschemes of V and

g “ pσ b σqpaq ` σpsq P ΓpV,OV {I2
U{V q.

Then we can find a closed embedding p rU, 0q ãÑ prV , rgq of LG pairs over B, an étale morphism p rV , rgq Ñ pV, gq

of LG pairs over B, and commutative diagrams

(3.22) Z
rU pσq
� � //

��

rU �
� // rV

��
ZU pσq

� � // U �
� // V,

Z
rU paq
� � //

��

rU �
� // rV

��
ZU paq

� � // U �
� // V,

rU �
� // rV

��
U0 :“ ZU pσ, aq

� � //

99

U �
� // V

for some dotted arrows, such that

(3.23) T
rU{B |U0 “ TU{B |U0

as subspaces of T
rV {B |U0 – TV {B |U0 .

Proof. Choose a p0, 2q-tensor c P ΓpV,E_ b E_q such that

g “ pσ b σqpaq ` σpsq ` cps, sq P ΓpV,OV q.

We first define rV :“ Zprτq Ď E b E as the zero locus of the section

rτ :“ a|EbE ` τ ` c|EbEpτ, τq P ΓpE b E,E b E|EbEq,

where τ is the tautological section, and c|EbEpτ, τq is the image of c|EbE b τ b τ under the contraction map

c13,25 : pE_ b E_q b pE b Eq b pE b Eq : pα1, α2, α3, α4, α5, α6q ÞÑ α1pα3q ¨ α2pα5q ¨ α4 b α6.

We then define rU :“ Zprsq Ď rV as the zero locus of the section

rs :“ s|
rV ´ σ|

rV pτ |
rV q P Γp rV ,E|

rV q,

where σ|
rV pτ |

rV q is the image of σ|
rV b τ |

rV under the contraction map

c13 : E
_ b pE b Eq Ñ E : pα1, α2, α3q ÞÑ α1pα3q ¨ α2.

Then the function rg :“ g|
rV : rV Ñ A1 vanishes on rU :“ Z

rV prsq “ ZEbEprτ , s´ σpτqq,

rg|
rU “ ppσ b σqpaq ` σpsq ` cps, sqq |

rU “ ppσ b σqpaq ` σpσpτqq ` cpσpτq, σpτqqq |
rU

“ pσ b σqpa` τ ` cpτ, τqq|
rU “ pσ b σqprτq|

rU “ 0.

The existence of the first dotted arrow Z
rU pσq Ñ ZU pσq “ ZV ps, σq over V in (3.22) follows from:

Z
rU pσq “ Z

rV prs, σq Ď Z
rV psq.

The existence of the second dotted arrow Z
rU paq Ñ ZU paq “ ZV ps, aq over V in (3.22) is equivalent to:

Z
rU paq “ Z

rV prs, aq “ ZEbEprτ , rs, aq Ď ZEbEpsq.
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Since ZEbEpa, τq ãÑ ZEbEpa, rτq is an étale closed embedding, the complement is closed, and thus we have
such dotted arrow for the open subschemes

rV ˝ :“ rV ´ pZ
rV paq ´ ZV paqq Ď rV , rU˝ :“ rU X rV ˝ Ď rU.

We define the third dotted arrow U0 Ñ rU in (3.22) as the canonical closed embedding

U0 :“ ZU pσ, aq “ ZV ps, σ, aq “ ZEbEpτ, s, σ, aq Ď ZEbEprτ , rsq “ Z
rV prsq “ rU,

under the identification of V with the zero section 0: V Ñ E b E. By direct computations of de Rham
differentials, we can show that

‚ rV ãÑ E b E Ñ V is étale near Z
rV paq Ě U0;

‚ rU is smooth over B near Z
rU pτ, σq “ U0 since U “ ZV psq is smooth over B;

‚ T
rU{B |U0 “ TU{B |U0 under the identification T

rV {B |U0 “ TV {B |U0 .

Consequently, we have Lemma 3.36 after replacing rV and rU with suitable open subschemes containing
U0. □

We now prove Proposition 3.35 using Lemma 3.36 and Lemma 3.37 below.

Proof of Proposition 3.35. Choose an étale coordinate y : V Ñ AnB near v P V after shrinking V if necessary.
Consider the zero locus W 1 :“ Zpzq Ď U ˆB V ˆ A1 of the section

(3.24) z :“ y ˝ pr2 ´ pp1 ´ tqx0 ˝ pr1 ` tx1 ˝ pr1q P ΓpU ˆB V ˆ A1,OnUˆBVˆA1q,

where x0 :“ y ˝ Φ0 : U Ñ AnB , x1 :“ y ˝ Φ1 : U Ñ AnB , and t :“ pr3 : U ˆB V ˆ A1 Ñ A1. Then W 1 has most
of the desired properties: the projection maps

W 1

pr13

{{

pr23

##
U ˆ A1 V ˆ A1

are étale since Bz
By “ id and Bz

Bx0
“ 1 ´ tp1 ´ Bx1

Bx0
q is invertible by (3.20); the induced triangles

(3.25)
CritW 1{BˆA1pf |W 1 q

pr13zz

pr23

$$
CritU{Bpfq ˆ A1

Φ0“Φ1

//

D

;;

CritV {Bpgq ˆ A1,

W 1
0 :“ W 1 ˆA1 t0u

pr1
||

pr2

""
U

Φ0

//

D

99

V,

W 1
1 :“ W 1 ˆA1 t1u

pr1
||

pr2

##
U

Φ1

//

D

::

V

commute after shrinking W 1, since the graphs of the three lower horizontal arrows in (3.25) are sections of
the three étale maps induced by pr13; we have a map w1 :“ pu, v, idq : A1 Ñ W 1 Ď U ˆB V. However, W 1 is
not sufficient to have Proposition 3.35 since

f ˝ pr1 ‰ g ˝ pr2 in W 1 Ď U ˆB V ˆ A1.

The computations in Lemma 3.37 below ensure that we can apply Lemma 3.36 above to the closed
embedding W 1 ãÑ U ˆB V ˆ A1 and its function f ˝ pr1 ´ g ˝ pr2. Then we can find:

‚ an étale morphism e : R Ñ U ˆB V ˆ A1,
‚ a smooth closed subscheme W Ď R such that h :“ f ˝ pr1 ˝ e|W “ g ˝ pr2 ˝ e|W , and
‚ a map w1 : A1 Ñ W 1 Ď U ˆB V ˆ A1 lifts to a map w : A1 Ñ W Ď R via the third dotted arrow in

(3.22) since the 2-tensor a in Lemma 3.37 vanishes on tpu, vqu ˆ A1.
Moreover, the induced maps

(3.26) ΨU : W ãÑ R Ñ U ˆB V ˆ A1 pr13
ÝÝÝÑ U ˆ A1, ΨV : W ãÑ R Ñ U ˆB V ˆ A1 pr23

ÝÝÝÑ V ˆ A1

are étale near the image of w, since the tangent space remains the same by (3.23); the commutativity of the
first triangle in (3.21) follows from the commutativity of the first triangle in (3.25) and the first dotted arrow
in (3.22); the commutativity of the remaining two triangles in (3.21) follows from the commutativity of the
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remaining two triangles in (3.25) and the second dotted arrow in (3.22) since the 2-tensor a in Lemma 3.37
vanishes on W 1

0 YW 1
1. □

We need the following lemma to complete the proof of Proposition 3.35.

Lemma 3.37. In the situation of Proposition 3.35, there exist
‚ an open subscheme V ˝ Ď V containing v,
‚ an open subscheme S Ď pU ˆB V ˆ A1q containing tpu, vqu ˆ A1,
‚ an étale coordinate y : V ˝ Ñ AnB,
‚ a section a P ΓpS,pr˚

1 pTU{B b TU{Bq|Sq that vanishes in ptpu, vqu ˆ A1q Y pS ˆA1 t0, 1uq,

‚ an isomorphism of vector bundles b : O‘n
S – pr˚

1TU{B |S,
such that we have

pf ‘ p´gq ‘ 0q “ pdf b dfqpaq ` df ˝ bpzq P ΓpS,OS{I2
Zpzq{Sq,

where z is defined as in (3.24) and df P ΓpS, pr˚
1Ω

1
U{B |Sq is the pullback of df P ΓpU,Ω1

U{Bq.

Proof. Choose an étale coordinate y :“ pym, yqq : V Ñ AmB ˆB AqB such that the Hessian at v P V is:

(3.27)
B2g

By2
|v “

«

B
2g

BymBym |v
B
2g

BymByq |v
B
2g

ByqBym |v
B
2g

ByqByq |v

ff

“

„

0 0
0 id

ȷ

.

Indeed, this is always possible after shrinking V and a coordinate change of y by GLm`q.
Let x0 :“ y ˝ Φ0 and x1 :“ y ˝ Φ1 be the induced coordinates. Then there is a q ˆ q-matrix N such that

(3.28)
ˆ

id ´
Bx1
Bx0

˙

|u “

„

0 ˚

0 N

ȷ

, where N t “ ´N, N2 “ 0

Indeed, (3.19) gives Bxm
1

Bxm
0

|u “ 0; the formula B
2g

Bx2
1

|u “
B
2g

By2 |v “
B
2g

Bx2
0

|u gives
ˆ

Bx1
Bx0

˙t

|u

„

0 0
0 id

ȷ ˆ

Bx1
Bx0

˙

|u “

„

0 0
0 id

ȷ

.

and hence Bxq
1

Bxm
0

|u “ 0 and Bxq
1

Bxq
0

|tu “ ´
Bxq

1

Bxq
0

|u; (3.20) gives Bxq
1

Bxq
0

|2u “ 0.

We also note that there exists a matrix L P HomU pO
‘m`q
U ,O‘m`q

U q of functions on U such that

(3.29) x0 ´ x1 “ L ¨
Bf

Bx0
, where L|u “

„

˚ ˚

0 N

ȷ

.

Indeed, the existence of a matrix satisfying the first formula follows from (3.19). Moreover, (3.27) gives
CritV {Bpgq Ď ZV pyqq and hence we can find a q ˆ pm` qq-matrix M of functions on V such that

yq “ M ¨
Bg

By
, where M |v “

“

0 1
‰

.

Then we have
xq0 ´ xq1 “ Φ˚

0 pMq
Bf

Bx0
´ Φ˚

1 pMq
Bf

Bx1
“

ˆ

Φ˚
0 pMq ´ Φ˚

1 pMq
Bx0
Bx1

˙

Bf

Bx0
,

where
´

Φ˚
0 pMq ´ Φ˚

1 pMq Bx0

Bx1

¯

|u “
“

0 N
‰

by (3.28). Hence we have (3.29) as claimed.
We claim that there exists a matrix A of functions on S Ď U ˆB V ˆ A1 such that

(3.30) pf ‘ p´gq ‘ 0q “

ˆ

Bf

Bx0

˙t

¨A ¨
Bf

Bx0
in Zpzq, where A|ptpu,vquˆA1qYpSˆA1t0,1uq “ 0.

Since we have (3.29) and pf ‘ p´gq ‘ 0q|Zpz,tp1´tqq “ 0 after shrinking S, it suffices to find A such that

(3.31) pf ‘ p´gq ‘ 0q “

ˆ

Bf

Bx0

˙t

¨A ¨
Bf

Bx0
in Zpz, px0 ´ x1qb3q, where A|tpu,vquˆA1 “ 0,

where px0 ´ x1qb3 P ΓpU, pOq`m
U qb3q. Indeed, we have

f ‘ p´gq ‘ 0 “
Bg

By
¨ px0 ´ yq ` px0 ´ yqt ¨

B2g

By2
¨ px0 ´ yq in Zppx0 ´ yqb3q(3.32)
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“
Bg

By
¨ px1 ´ yq ` px1 ´ yqt ¨

B2g

By2
¨ px1 ´ yq in Zppx1 ´ yqb3q.(3.33)

Then the restriction of p1 ´ tqˆ(3.32)`tˆ(3.33) to Zpzq is:

(3.34) pf ‘ p´gq ‘ 0q “
1

2
tp1 ´ tqpx0 ´ x1qt ¨

B2f

Bx20
¨ px0 ´ x1q in Zpz, px0 ´ x1qb3q.

Consider the matrix

A :“
1

2
tp1 ´ tq ¨ Lt ¨

B2f

Bx20
¨ L.

Then the left equality in (3.31) follows from (3.34) and the left equality in (3.29). The right equality in
(3.31) follows from the right equality in (3.29) and (3.27).

By the left equality in (3.30), there exists a matrix B1 of functions on S Ď U ˆ V ˆ A1 such that

(3.35) f ‘ ´g ‘ 0 “

ˆ

Bf

Bx0

˙t

¨A ¨
Bf

Bx0
`

ˆ

Bf

Bx0

˙t

¨B1 ¨ z in Zpzb2q.

By pulling back (3.35) to Zpzq and taking the differential, we get

Bf

Bx0
´

Bg

By

ˆ

p1 ´ tq ` t
Bx1
Bx0

˙

“

ˆ

Bf

Bx0

˙t

¨
BA

Bx0
¨

Bf

Bx0
`

˜

ˆ

Bf

Bx0

˙t

¨A ¨
B2f

Bx20

¸t

in Zpzq,

where BA
Bx0

P HomSpO
q`m
S ,Oq`m

S b O
q`m
S q and

´

Bf
Bx0

¯t

¨ BA
Bx0

is its contraction in the first factor. Hence

Bg

By
“ B ¨

Bf

Bx0
in Zpzq, where B :“

ˆ

1 ´ t

ˆ

1 ´
Bx1
Bx0

˙˙´1
˜

1 ´

ˆ

Bf

Bx0

˙t

¨
BA

Bx0
´

ˆ

B2f

Bx20

˙t

¨At

¸

.

Since A|tpu,vquˆA1 “ 0, Bf
Bx0

|u “ 0, and
´

1 ´ Bx1

Bx0

¯2

“ 0, B is invertible.
Applying the partial differential of (3.35) by the y-coordinate and pulling back to Zpzq, we get

Bg

By
“ B1 ¨

Bf

Bx0
in Zpzq.

Then B1 ¨
Bf

Bx0
´B ¨

Bf
Bx0

vanishes on Zpzq and hence we get

f ‘ ´g ‘ 0 “

ˆ

Bf

Bx0

˙t

¨A ¨
Bf

Bx0
`

ˆ

Bf

Bx0

˙t

¨B ¨ z in Zpzb2q,

as desired. □

4. Functoriality of d-critical structures

4.1. Pullbacks of d-critical structures. In the definition of relative d-critical structures (see Defini-
tion 3.15) we have considered critical charts which are Zariski open. We may replace this condition by
requiring étale or smooth critical charts; the goal of this section is to show that the resulting notion of a
relative d-critical structure does not change (see Theorem 4.3). We begin with the following observation
regarding smooth functoriality of relative critical loci.

Proposition 4.1. Let pV, gq be an LG pair over B. Let π : U Ñ V be a smooth morphism and denote
f “ π˚g. Then we have a Cartesian diagram

CritU{Bpfq //

��

U

π

��
CritV {Bpgq // V.
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Proof. Consider the diagram

U

((zz
V

ΓdBg

##

T˚pV {Bq ˆV U

''
π1ww

T˚pV {Bq T˚pU{Bq

where the square is Cartesian and the composite ΓdBf : U Ñ T˚pU{Bq is given by the graph of dBf . Since
U Ñ V is smooth, T˚pV {BqˆV U Ñ T˚pU{Bq is injective. Therefore, the zero locus of U Ñ T˚pV {BqˆV U
(i.e. CritV {Bpgq ˆV U) coincides with the zero locus of ΓdBf : U Ñ T˚pU{Bq (i.e. CritU{Bpfq). □

We will now prove the following technical statement, which will be used to recognize minimal critical
charts; it is a family version of [Joy15, Proposition 2.7].

Proposition 4.2. Let X Ñ B be a morphism of schemes equipped with a relative d-critical structure s, a
point x P X, a smooth B-scheme U , a closed immersion ı : X ãÑ U and a function f : U Ñ A1 which satisfy
the following properties:

(1) ιX,U psq “ f P OU{I2
X,U (see Proposition 3.7(3) for the notation).

(2) ı : X Ñ U is minimal at x.
Then there is an open neighborhood U˝ Ă U of ıpxq such that CritU˝{Bpf |U˝ q ˆU X Ñ X is an open
immersion.

Proof. Since s is a relative d-critical structure on X Ñ B, we may find a critical chart pV, g, vq at x. Let
X˝ Ă X be the image of v : CritV {Bpgq Ñ X and denote by ȷ : X˝ Ñ V the corresponding closed immersion.
By Proposition 3.26 we may further assume that ȷ : X˝ Ñ V is minimal at x. Let s˝ “ s|X˝ .

The morphism X˝ ıˆȷ
ÝÝÑ U ˆB V is an immersion into a smooth B-scheme, so by Proposition 1.13(1),

possibly shrinking X˝, we may find a factorization of this morphism as X˝ ȷ̃
ÝÑ Ṽ

πUˆπV
ÝÝÝÝÝÑ U ˆB V , where Ṽ

is a smooth B-scheme and ȷ̃ is a closed immersion minimal at x. The morphisms

ȷ̃˚ : Ω1
Ṽ {B,ȷ̃pxq

Ñ Ω1
X˝{B,x, ı˚ : Ω1

U{B,ıpxq Ñ Ω1
X˝{B,x, ȷ˚ : Ω1

V {B,ȷpxq Ñ Ω1
X˝{B,x

are all isomorphisms as the corresponding immersions are minimal at x. Therefore,

π˚
U : Ω1

U{B,ıpxq Ñ Ω1
Ṽ {B,ȷ̃pxq

, π˚
V : Ω1

V {B,ȷpxq Ñ Ω1
Ṽ {B,ȷ̃pxq

are isomorphisms. Therefore, possibly shrinking Ṽ (and, correspondingly, X˝), we may assume that πU : Ṽ Ñ

U and πV : Ṽ Ñ V are étale. We will now compare CritU{Bpfq and CritV {Bpgq using the correspondence
V

πV
ÐÝÝ Ṽ

πU
ÝÝÑ U .

(1) Consider the diagram

X˝

&& $$

ȷ̃

**

CritV {Bpgq ˆV Ṽ //

��

CritV {Bpgq

��
Ṽ

πV // V

where the square is Cartesian. By Proposition 4.1 we have CritV {Bpgq ˆV Ṽ – CritṼ {Bpg̃q, where
g̃ “ π˚

V g. Since X˝ Ñ CritV {Bpgq is an open immersion and CritṼ {Bpg̃q Ñ CritV {Bpgq is étale, the
morphism X˝ Ñ CritṼ {Bpg̃q is étale and, therefore, its image is open. Similarly, ȷ̃ and CritṼ {Bpg̃q Ñ

Ṽ are closed immersions, so X˝ Ñ CritṼ {Bpg̃q is a closed immersion. Therefore, its image is also
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closed. Thus, shrinking Ṽ we may assume that X˝ Ñ CritṼ {Bpg̃q is an isomorphism. Thus, pṼ , g̃q

provides a critical chart for pX Ñ B, sq near x.
(2) Let I be the ideal defining the closed immersion X˝ – CritṼ {BpG̃q Ñ Ṽ . Let f̃ “ π˚

Uf and x̃ “ ȷ̃pxq.
By assumption we have ιX˝,Ṽ ps˝q “ f̃ P OṼ {I2. Since pV, g, vq is a critical chart we also get
ιX˝,Ṽ ps˝q “ g̃ P OṼ {I2. Thus, f̃ ´ g̃ P I2. Shrinking Ṽ (and X˝ so that X˝ – CritṼ {B̃pg̃q remains
true) we may choose étale coordinates tz1, . . . , znu on Ṽ , which is a smooth B-scheme. Then we may
find a symmetric matrix aij P OṼ such that

f̃ ´ g̃ “
ÿ

i,j

aij
Bg̃

Bzi

Bg̃

Bzj
.

Taking the derivative, we obtain

Bf̃

Bzk
“

Bg̃

Bzk
`

ÿ

i,j

Baij
Bzk

Bg̃

Bzi

Bg̃

Bzj
`

ÿ

i,j

2aij
B2g̃

BziBzk

Bg̃

Bzj
.

We can write it as
dB f̃ “ pid ` αqdB g̃,

where we introduce the matrix

αij “
ÿ

k

Bakj
Bzi

Bg̃

Bzk
`

ÿ

k

2akj
B2g̃

BziBzk
.

Since x̃ P CritṼ {Bpg̃q, we have Bg̃
Bzk

px̃q “ 0. Since the closed immersion ȷ̃ is minimal at x, by

Proposition 3.14 we have B
2g̃

BziBzk
px̃q “ 0. Thus, αpx̃q “ 0 and hence, shrinking Ṽ and X˝, we may

arrange pid ` αq to be invertible. Thus, we get CritṼ {Bpf̃q “ CritṼ {Bpg̃q.
(3) Consider the diagram

CritṼ {Bpf̃q //

��

Ṽ

��
CritU{Bpfq // U

which is Cartesian by Proposition 4.1. The composite CritṼ {Bpf̃q – X˝ Ñ X
ı

ÝÑ U is an immersion,
so it is a monomorphism. Therefore, CritṼ {Bpf̃q Ñ CritU{Bpfq Ñ U is a monomorphism and
hence CritṼ {Bpf̃q Ñ CritU{Bpfq is a monomorphism. Since πU : Ṽ Ñ U is étale, we have that
CritṼ {Bpf̃q Ñ CritU{Bpfq is étale. Therefore, by [Stacks, Tag 025G] we get that CritṼ {Bpf̃q Ñ

CritU{Bpfq is an open immersion. As πU : Ṽ Ñ U is étale, U˝ “ πU pṼ q Ă U is open. Thus, we get
that CritṼ {Bpf̃q Ñ CritU˝{Bpf |U˝ q is a surjective open immersion, hence an isomorphism.

□

The following is a family version of [Joy15, Proposition 2.8].

Theorem 4.3. Let Y Ñ B be a morphism of schemes equipped with a section t P ΓpY, SY {Bq, π : X Ñ Y a
smooth morphism and let s “ π˚t P ΓpX, SX{Bq.

(1) If t is a relative d-critical structure, then s is a relative d-critical structure. Explicitly, for every point
x P X we may find a critical chart pU, f, uq for X Ñ B around x, a critical chart pV, g, vq for Y Ñ B
around πpxq together with a smooth morphism π̃ : pU, fq Ñ pV, gq which fits into a commutative
diagram

X

π

��

CritU{Bpfq
uoo

��

// U

π̃

��
Y CritV {Bpgq

voo // V
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(2) If s is a relative d-critical structure and π is surjective, then t is a relative d-critical structure.

Proof. In the first point Y Ñ B has a relative d-critical structure, so it is locally of finite type. In the second
point X Ñ B is locally of finite type, so by [Stacks, Tag 01T8] we also get that Y Ñ B is locally of finite
type.

Let x P X be a point and y “ πpxq P Y . By Proposition 1.14 we may find a diagram

X

π

��

X˝ ı //

π˝

��

oo U

π̃
��

Y Y ˝
ȷ //oo V

with X˝ Ă X and Y ˝ Ă Y open neighborhoods of x and y, π̃ : U Ñ V smooth and ı : X˝ Ñ U and ȷ : Y ˝ Ñ V
closed immersions into smooth B-schemes minimal at x and y. Possibly shrinking X˝, Y ˝, U, V we may find
a function g : V Ñ A1 such that ιY ˝,V ptq “ g P OV {I2

Y ˝,V . Let f “ π̃˚g, so that ιX˝,U psq “ f P OU{I2
X˝,U .

We now claim that s is a relative d-critical structure in a neighborhood of x if, and only if, we can
shrink U to a neighborhood of x so that CritU{Bpfq ˆU X

˝ Ñ X˝ becomes an open immersion. Indeed,
if this morphism is an open immersion, pU, fq provides a critical chart at x. The converse is provided by
Proposition 4.2. The same claim applies to t.

Since π̃ : U Ñ V is smooth, by Proposition 4.1 we have CritU{Bpfq – CritV {BpgqˆV U . Thus, CritU{BpfqˆU

X˝ Ñ X˝ is an open immersion if, and only if, CritV {Bpgq ˆV X
˝ Ñ X˝ is an open immersion.

(1) Assume that s is a relative d-critical structure. Then shrinking V we get that CritV {BpgqˆV Y
˝ Ñ Y ˝

is an open immersion. By base change CritV {Bpgq ˆV X
˝ Ñ X˝ is also an open immersion. By the

above argument we get that pX Ñ B, sq is a relative d-critical structure in a neighborhood of x.
Varying x we get that pX Ñ B, sq is a relative d-critical structure.

(2) Assume that s is a relative d-critical structure and π is surjective. By the above argument we may
shrink V so that CritV {Bpgq ˆV X

˝ Ñ X˝ is an open immersion. By faithfully flat descent for open
immersions [Stacks, Tag 02L3] this implies that CritV {Bpgq ˆV Y ˝ Ñ Y ˝ is an open immersion.
Again, the above argument implies that t is a relative d-critical structure near y. As π is surjective,
we may vary x P X to cover Y , so we get that t is a relative d-critical structure.

□

In Theorem 4.3 we have described a smooth functoriality of critical charts. We will also need a description
of a smooth functoriality for critical morphisms of critical charts. The following statement is an analog of
Proposition 3.25 for smooth morphisms of schemes equipped with relative d-critical structures. While we do
not know how to show that the zigzag factorization in Proposition 3.25 can be made smooth functorial (this
is claimed in the proof of [Ben+15, Proposition 4.5]), the following alternative local model (with U˝ Ñ U
being étale rather than an open immersion) is sufficient.

Proposition 4.4. Let pX2 Ñ B, s2q be a morphism of schemes equipped with a d-critical structure, π : X1 Ñ

X2 a smooth morphism and let s1 “ π˚s2 P ΓpX1, SX1{Bq. Consider critical charts pU1, f1, u1q and pV1, f1, v1q

of X1 and pU2, f2, u2q and pV2, f2, v2q of X2 together with smooth morphisms πU : pU1, f1q Ñ pU2, f2q and
πV : pV1, f1q Ñ pV2, f2q compatible with π. Let x1 P CritU1{Bpf1q and y1 P CritV1{Bpg1q be points with
u1px1q “ v1py1q and let x2 “ πU px1q and y2 “ πV py1q. Then there is a commutative diagram

pU1, f1, u1q

πU

��

pU˝
1 , f

˝
1 , u

˝
1qoo Φ1 //

π˝
U

��

pW1, h1, w1q

πW

��

pV ˝
1 , g

˝
1 , v

˝
1q //Ψ1oo

π˝
V

��

pV1, g1, v1q

πV

��
pU2, f2, u2q pU˝

2 , f
˝
2 , u

˝
2qoo Φ2 // pW2, h2, w2q pV ˝

2 , g
˝
2 , v

˝
2q //Ψ2oo pV2, g2, v2q

with pU˝
i , f

˝
i , u

˝
i q étale critical charts and the rest Zariski critical charts, pU˝

i , f
˝
i , u

˝
i q Ñ pUi, fi, uiq an étale

morphism surjective at xi, pV ˝
i , g

˝
i q Ñ pVi, giq an open immersion surjective at yi, Φi,Ψi critical morphisms,

vertical morphisms smooth and U˝
1 Ñ W1 ˆW2

U˝
2 and V ˝

1 Ñ W1 ˆW2
V ˝
2 étale.

Proof. Let V ˝
2 be an open neighborhood of y2 which admits an étale morphism V ˝

2 Ñ AnB over B and
V ˝
1 “ π´1

V pV ˝
2 q. Shrinking V ˝

1 further, we may assume that there is an étale morphism V ˝
1 Ñ AdV ˝

2
over V ˝

2 .
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Replacing Ṽ (equipped with an open immersion to AnB) by V ˝
2 (equipped with an étale morphism to AnB)

in the proof of Proposition 3.25, we obtain an étale critical chart pU˝
2 , f

˝
2 , u

˝
2q of X2 with an étale morphism

pU˝
2 , f

˝
2 , u

˝
2q Ñ pU2, f2, u2q and a commutative diagram

CritU˝
2 {Bpf˝

2 q //

��

CritV ˝
2 {Bpg˝

2q

��
U˝
2

Θ2 // V ˝
2

of B-schemes. Repeating the same argument with U1 and V ˝
1 (as V ˝

2 -schemes), we obtain an étale critical
chart pU˝

1 , f
˝
1 , u

˝
2q of X1 which fits into a commutative diagram

U1

πU

��

U˝
1

π˝
U

��

Θ1 //oo V ˝
1

//

π˝
V

��

V1

πV

��
U2 U˝

2

Θ2 //oo V ˝
2

// V2.

Passing to the critical loci of the middle square, we get a commutative diagram

CritU˝
1 {Bpf˝

1 q
Θ1 //

π˝
U

��

CritV ˝
1 {Bpg˝

1q

π˝
V

��
CritU˝

2 {Bpf˝
2 q

Θ2 // CritV ˝
2 {Bpg˝

2q,

where both horizontal morphisms are étale and vertical morphisms smooth. Thus,

Θ˚
1Ω

1
CritV ˝

1 {Bpg˝
1q{CritV ˝

2 {Bpg˝
2q ÝÑ Ω1

CritU˝
1 {Bpf˝

1 q{CritU˝
2 {Bpf˝

2 q

is an isomorphism. In particular,

(4.1) Θ˚
1Ω

1
V ˝
1 {V ˝

2
ÝÑ Ω1

U˝
1 {U˝

2

is an isomorphism in a neighborhood of x1. Thus, shrinking U˝
1 we may assume this morphism is an

isomorphism.
Continuing with the rest of the proof of Proposition 3.25, shrinking U˝

1 and U˝
2 we obtain a trivial

orthogonal bundle pE2, q2q over V ˝
2 with a section s2 P Θ˚

2E2 such that

f˝
2 ´ g˝

2 ˝ Θ2 “ qpsq

and such that Φ2 : pU˝
2 , f

˝
2 q Ñ pW2 “ E2, g

˝
2˝πE2`qE2q given by s2 is a critical morphism. Let Ψ2 : pV ˝

2 , g
˝
2q Ñ

pW2, g
˝
2 ˝ πE2 ` qE2q be the zero section which is again a critical morphism.

Let pE1, q1q “ pπ˝
V q˚pE2, q2q and s1 “ pπ˝

U q˚s2. Define Φ1 : pU˝
1 , f

˝
1 q Ñ pW1 “ E1, g

˝
1 ˝ πE1

` qE1
q

using s1 and Ψ1 : pV ˝
1 , g

˝
1q Ñ pW1, g

˝
1 ˝ πE1

` qE1
q to be the zero section. Let πW : W1 Ñ W2 be the

obvious projection. By Example 3.21 Ψ1 is a critical morphism. Moreover, by construction Φ1 restricts to
Θ1 : CritU˝

1 {Bpf˝
1 q Ñ CritV ˝

2 {Bpg˝
2q. Thus, to show that Φ1 is a critical morphism, we have to show that it is

unramified. For this, consider the commutative diagrams

U˝
1

Φ1 //

π˝
U

��

W1

πE1 //

πW

��

V ˝
1

π˝
V

��
U˝
2

Φ2 // W2

πE2 // V ˝
2 .

By construction the right square is Cartesian, so

π˚
E1

Ω1
V ˝
1 {V ˝

2
ÝÑ Ω1

W1{W2

is an isomorphism. Using (4.1) we get that

Φ˚
1Ω

1
W1{W2

ÝÑ Ω1
U˝

1 {U˝
2
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is an isomorphism. Therefore, Φ1 factors into a composite of an étale morphism U˝
1 Ñ W1 ˆW2 U

˝
2 and an

unramified morphism W1 ˆW2 U
˝
2 Ñ W1, hence it is unramified. □

Using Theorem 4.3 we establish smooth functoriality of the virtual canonical bundle.

Proposition 4.5. Let pY Ñ B, tq be a morphism of schemes equipped with a relative d-critical structure and
π : X Ñ Y a smooth morphism. Consider the pullback relative d-critical structure on X Ñ B. Then there is
a natural isomorphism

Υπ : K
vir
Y {B |Xred bKb2

X{Y |Xred – Kvir
X{B .

It satisfies the following properties:

(1) Υid “ id.
(2) For a composite X π

ÝÑ Y
σ

ÝÑ Z of smooth morphisms with a relative d-critical structure on Z Ñ B
and pullback relative d-critical structures on X Ñ B and Y Ñ B the diagram

(4.2) Kvir
Z{B |Xred bKb2

X{Z |Xred

Υσ˝π // Kvir
X{B

Kvir
Z{B |Xred bKb2

Y {Z |Xred bKb2
X{Y |Xred

Υσbid //

idbip∆q
2

OO

Kvir
Y {B |Xred bKb2

X{Y |Xred

Υπ

OO

commutes, where the left vertical morphism is induced by the short exact sequence

∆: 0 ÝÑ π˚Ω1
Y {Z ÝÑ Ω1

X{Z ÝÑ Ω1
X{Y ÝÑ 0.

(3) For a point x P X the diagram

(4.3) Kvir
Y {B,πpxq

bKb2
X{Y,x

Υπ |x //

κπpxqbid

��

Kvir
X{B,x

κx

��
detpΩ1

Y {B,πpxq
qb2 bKb2

X{Y,x

ip∆q
2

// detpΩ1
X{B,xqb2

commutes, where the bottom isomorphism is induced by the short exact sequence

∆: 0 ÝÑ Ω1
Y {B,πpxq ÝÑ Ω1

X{B,x ÝÑ Ω1
X{Y,x ÝÑ 0.

Proof. Let x P X be a point, y its image in Y and b its image in B. Let Xb and Yb be the fibers of X Ñ B
and Y Ñ B at b P B. We will first construct the isomorphism Υπ in a neighborhood of x, possibly depending
on additional choices.

By Theorem 4.3(1) we may find a smooth morphism π̃ : U Ñ V of smooth B-schemes, a function g : V Ñ

A1 with f “ π̃˚g and a commutative diagram

(4.4) X

π

��

CritU{Bpfq
uoo

��

// U

π̃

��
Y CritV {Bpgq

voo // V

with the square on the right Cartesian by Proposition 4.1, such that pU, f, uq defines a critical chart for X
near x (so that there is a point x1 P CritU{Bpfq with upx1q “ x) and pV, g, vq defines a critical chart for
Y near y (so that there is a point y1 P CritV {Bpgq such that vpy1q “ y). By definition we have canonical
isomorphisms

v˚Kvir
Y {B – Kb2

V {B |CritV {Bpgqred , u˚Kvir
X{B – Kb2

U{B |CritU{Bpfqred .
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Under these isomorphisms we define Υπ|CritU{Bpfqred to be the composite isomorphism

Kb2
V {B |CritU{Bpfqred bKb2

CritU{Bpfq{CritV {Bpgq
|CritU{Bpfqred

„

��
Kb2
V {B |CritU{Bpfqred bKb2

U{V |CritU{Bpfqred

ip∆q
2

��
Kb2
U{B |CritU{Bpfqred

where the first morphism is obtained from the isomorphism KCritU{Bpfq{CritV {Bpgq – KU{V |CritU{Bpfq coming
from the Cartesian square

CritU{Bpfq //

��

U

��
CritV {Bpgq // V

and the second morphism comes from the short exact sequence

∆: 0 ÝÑ π̃˚Ω1
V {B ÝÑ Ω1

U{B ÝÑ Ω1
U{V ÝÑ 0.

The claim that the diagram (4.3) commutes reduces to the same claim about d-critical loci Xb and Yb
which is shown in [Joy15, Proposition 2.30].

Now consider two choices tpU1, f1, u1q, pV1, g1, v1q, π̃1u and tpU2, f2, u2q, pV2, g2, v2q, π̃2u fitting into a dia-
gram (4.4) and let Υ1

π and Υ2
π be the two local models of the isomorphism Υπ defined using these local data.

Then for every point x̃ P CritU1{Bpf1q ˆX CritU2{Bpf2q with image x in X and y in Y both Υ1
π|x and Υ2

π|x

fit into the same commutative diagram (4.3). Therefore, they are equal. This proves that

Υ1
π|CritU1{Bpf1qˆXCritU2{Bpf2q “ Υ2

π|CritU1{Bpf1qˆXCritU2{Bpf2q

and hence we obtain a global isomorphism Υπ independent of choices.
It is enough to establish both properties of the isomorphism Υπ pointwise, as they involve comparing

isomorphisms of line bundles on reduced schemes. Property (1) is immediate from (4.3).
Now consider the setting of property (2). Applying the commutative diagram (4.3), diagram (4.2) re-

stricted to x P X (with y “ πpxq P Y and z “ σpyq P Z) becomes

(4.5) detpΩ1
Z{B,zqb2 bKb2

X{Z,x

ip∆XÑZÑBq
2

// detpΩ1
X{B,xqb2

detpΩ1
Z{B,zqb2 bKb2

Y {Z,y bKb2
X{Y,x

ip∆Y ÑZÑBq
2

bid //

idbip∆XÑY ÑZq
2

OO

detpΩ1
Y {B,yqb2 bKb2

X{Y,x,

ip∆XÑY ÑBq
2

OO
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where the individual isomorphisms are induced by the following double short exact sequence:

0

∆XÑYÑB:

0

∆XÑYÑZ:

0

∆YÑZÑB : 0 Ω1
Z{B,z Ω1

Y {B,y Ω1
Y {Z,y 0

∆XÑZÑB : 0 Ω1
Z{B,z Ω1

X{B,x Ω1
X{Z,x 0

0 0 Ω1
X{Y,x Ω1

X{Y,x 0

0 0 0

The commutativity of the diagram (4.5) follows from the corresponding property of determinant lines, see
[KPS24, (2.4)]. □

4.2. Base change of d-critical structures. Recall that for a commutative diagram of schemes

X 1 X

B1 B

there is a natural pullback map

(4.6) A2,expX{B, kq ÝÑ A2,expX 1{B1, kq.

We have the following base change property of the relative critical locus.

Proposition 4.6. Let pU, fq be an LG pair over B. Let B1 Ñ B be a morphism and consider the fiber
product

U 1 //

��

U

��
l

B1 // B

Let f 1 : U 1 Ñ A1 be the pullback of f to U 1, so that pU 1, f 1q is an LG pair over B1. Then there is a natural
isomorphism

CritU{Bpfq ˆB B
1 – CritU 1{B1 pf 1q

under which sf maps to sf 1 .

Proof. Let R “ CritU{Bpfq and R1 “ CritU 1{Bpf 1q. By definition we have fiber products

R //

��

U

��
B // T˚pU{Bq,

R1 //

��

U 1

��
B1 // T˚pU 1{B1q.

Applying the base change functor p´q ˆB B
1 to the first square we get a fiber product

R ˆB B
1 //

��

U 1

��
B1 // T˚pU{Bq ˆB B

1.
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Using T˚pU{Bq ˆB B
1 – T˚pU 1{B1q, by the universal property of fiber products we obtain an isomorphism

R ˆB B
1 – R1.

Let us now show that under this isomorphism sf is sent to sf 1 . The description of the sheaf SR{B

using the embedding R Ñ U given in Proposition 3.7 is compatible with base change. Thus, the pullback
SR{B |R1 Ñ SR1{B1 fits into a commutative diagram

0 // SR{B |R1

ιR,U //

��

OU{I2
R,U

ˇ

ˇ

R1

dB //

��

Ω1
U{B{IR,UΩ1

U{B

ˇ

ˇ

ˇ

R1

��
0 // SR1{B1

ιR1,U1
// OU 1 {I2

R1,U 1

dB1 // Ω1
U 1{B1 {IR1,U 1Ω1

U 1{B1

Thus, it is enough to show that ιR,U psf q is sent to ιR1,U 1 psf 1 q. But this immediately follows from Proposi-
tion 3.10. □

The above proposition allows us to define base change of d-critical structures.

Theorem 4.7. Let X Ñ B be a morphism of schemes equipped with a section s P ΓpX, SX{Bq. Let B1 Ñ B
be a morphism and consider the fiber product

X 1 //

��

X

��
B1 // B

Denote by s1 P ΓpX 1, SX1{B1 q the pullback of s P ΓpX, SX{Bq.

(1) If s is a relative d-critical structure, then s1 is a relative d-critical structure.
(2) If s1 is a relative d-critical structure and B1 Ñ B is an étale cover, then s is a relative d-critical

structure.

Proof. In the first point X Ñ B has a relative d-critical structure, so it is locally of finite type. In the second
point X 1 Ñ B1 is locally of finite type and B1 Ñ B is an étale cover, so by faithfully flat descent [Stacks,
Tag 02KX] we get that X Ñ B is locally of finite type.

Let x1 P X 1 be a point and x P X its image in X. By [Stacks, Tag 0CBL] we may find morphisms
X Ð X˝ Ñ U , where X˝ Ñ X is an open immersion surjective at x, U is a smooth B-scheme and X˝ Ñ U
is a closed immersion minimal at x. Let X 1 Ð X˝1 Ñ U 1 be the base change of this correspondence along
B1 Ñ B. We obtain a diagram

U 1 // U

X˝1 //

��

OO

X˝

OO

��
X 1 //

��

X

��
B1 // B

where all squares are Cartesian. Therefore, X˝1 Ñ X 1 is an open immersion surjective at x1, U 1 is a smooth
B1-scheme and X˝

1

Ñ U 1 is minimal at x1. Possibly shrinking X˝, U we may find a function f : U Ñ A1

such that ιX˝,U “ f P OU{I2
X˝,U . Let f 1 be the composite X 1 Ñ X

f
ÝÑ A1.

As in the proof of Theorem 4.3, s is a relative d-critical structure near x if, and only if, we can shrink
U to a neighborhood of x so that CritU{Bpfq ˆU X

˝ Ñ X˝ becomes an open immersion. The same claim
applies to s1.
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(1) Assume that s is a relative d-critical structure. Then by the above argument shrinking U we get that
CritU{Bpfq ˆU X

˝ Ñ X˝ is an open immersion. By Proposition 4.6 its base change along B1 Ñ B
is CritU 1{B1 pf 1q ˆU 1 X˝1 Ñ X˝1 which is therefore also an open immersion. By the above argument
we get that s1 is a relative d-critical structure in a neighborhood of x1. Varying x1 we get that s1 is
a relative d-critical structure.

(2) Assume that s is a relative d-critical structure and B1 Ñ B is an étale cover. By the above argument
shrinking U 1 we get that CritU 1{Bpfq ˆU 1 X˝1 Ñ X˝1 is an open immersion. Since B1 Ñ B is
universally open [Stacks, Tag 01UA], U 1 Ñ U is open. Therefore, we may shrink U so that U 1 is still
the base change of U along B1 Ñ B. By the faithfully flat descent for open immersions [Stacks, Tag
02L3] we get that CritU{Bpfq ˆU X

˝ Ñ X˝ is an open immersion and hence, by the above argument,
that s is a relative d-critical structure in a neighborhood of x. Since X 1 Ñ X is surjective, this
implies that we may vary x1 P X 1 to cover X, so we get that s is a relative d-critical structure.

□

Combining Theorem 4.3 and Theorem 4.7 we obtain the following.

Corollary 4.8. Consider a diagram of schemes

X 1 //

��

X

��
B1 // B

where X 1 Ñ X ˆB B
1 is smooth, s P ΓpX, SX{Bq and let s1 P ΓpX 1, SX1{B1 q be the pullback.

(1) If s is a relative d-critical structure, then s1 is a relative d-critical structure.
(2) If s1 is a relative d-critical structure, B1 Ñ B is an étale cover and X 1 Ñ XˆBB

1 is surjective, then
s is a relative d-critical structure.

Using Theorem 4.7 we can establish the following compatibility of the virtual canonical bundle with
respect to base change.

Proposition 4.9. Let X Ñ B be a morphism of schemes equipped with a relative d-critical structure s P

ΓpX, SX{Bq. Let B1 Ñ B be a morphism of schemes and consider the fiber product

X 1 //

��

X

��
B1 // B

Denote by s1 P ΓpX 1, SX1{B1 q the pullback of s P ΓpX, SX{Bq. Then there is an isomorphism

Υ: Kvir
X{B |pX1qred

„
ÝÑ Kvir

X1{B1

compatible with compositions of Cartesian squares. Moreover, for a point x1 P X 1 and its image x P X the
diagram

(4.7) Kvir
X{B,x

Υ|x //

κx

��

Kvir
X1{B1,x1

κx1

��
detpΩ1

X{B,xqb2 „ // detpΩ1
X1{B1,x1 q

b2

commutes.

Proof. A cover of X by critical charts pU, f, uq defines a cover of X 1 by critical charts pU 1 “ U ˆB B
1, f 1 “

f |U 1 , u1 “ u ˆ idq. Thus, it is enough to construct the isomorphism Υ for each critical chart pU, f, uq and
show that the diagram (4.7) commutes. The latter condition ensures that the locally defined isomorphisms
glue into a global isomorphism Υ .

54



Let pU, f, uq be a critical chart for X and pU 1, f 1, u1q the corresponding critical chart for X 1. By definition
we have canonical isomorphisms

u˚Kvir
X{B – Kb2

U{B |CritU{Bpfqred , pu1q˚Kvir
X1{B1 – Kb2

U 1{B1 |CritU1{B1 pf 1qred .

We define Υ|CritU1{B1 pf 1qred to be the isomorphism

Kb2
U{B |CritU1{B1 pf 1qred – Kb2

U 1{B1 |CritU1{B1 pf 1qred

coming from the bottom Cartesian square in

X 1 //

��

X

��
U 1 //

��

U

��
B1 // B.

The above diagram of Cartesian squares defines an isomorphism of short exact sequences

0 // N_
X{U,x

//

„

��

Ω1
U{B,x

//

„

��

Ω1
X{B,x

//

„

��

0

0 // N_
X1{U 1,x1

// Ω1
U 1{B1,x1

// Ω1
X1{B1,x1

// 0

The Hessian quadratic form on Ω1
U{B,x restricts to the Hessian quadratic form on Ω1

U 1{B1,x1 . Thus, using the
description of κx from Theorem 3.33(3) we obtain a commutative diagram

Kb2
U{B,x

Υ|x //

κx

��

KU 1{B1,x1

κx1

��
detpΩ1

X{B,xqb2 „ // detpΩ1
X1{B1,x1 q

b2.

For a critical morphism Φ: pU, f, uq Ñ pV, g, vq its base change along B1 Ñ B defines a crtical morphism
Φ1 : pU 1, f 1, u1q Ñ pV 1, g1, v1q. Moreover, under the natural isomorphism NU{V |U 1 – NU 1{V 1 the quadratic
form qΦ restricts to the quadratic form qΦ1 . Thus, using the description of the gluing isomorphisms JΦ for
the virtual canonical bundle from Theorem 3.33(2) we get that ΥV |CritU1{B1 pf 1qred “ ΥU . In particular, there
is a global isomorphism Kvir

X{B |pX1qred – Kvir
X1{B1 which restricts to ΥU in each critical chart. □

Combining Proposition 4.5 and Proposition 4.9 we obtain the following.

Corollary 4.10. Consider a diagram of schemes

X 1
p //

��

X

��
B1

p // B,

where X 1 Ñ X 1 ˆB X is smooth, and a relative d-critical structure s P ΓpX, SX{Bq. Let s1 P ΓpX 1, SX1{B1 q be
the pullback. Then there is an isomorphism

ΥX1ÑX : Kvir
X{B |pX1qred bKb2

X1{XˆBB1 |pX1qred
„

ÝÑ Kvir
X1{B1 .

It satisfies the following properties:
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(1) For the diagram
X

��

X

��
B B

we have ΥXÑX “ id.
(2) For a commutative diagram

X2 //

��

X 1 //

��

X

��
B2 // B1 // B,

with X2 Ñ X 1 ˆB1 B2 and X 1 Ñ X ˆB B
1 smooth, a relative d-critical structure s P ΓpX, SX{Bq and

s1, s2 its pullbacks to X 1 Ñ B1 and X2 Ñ B2, the diagram

Kvir
X{B |pX2qred bKb2

X1{XˆBB1 |pX2qred bKb2
X2{X1ˆB1B2 |pX2qred

ΥX1ÑXbid

��

idbip∆q
2

// Kvir
X{B |pX2qred bKb2

X2{XˆBB2 |pX2qred

ΥX2ÑX

��
Kvir
X1{B1 |pX2qred bKb2

X2{X1ˆB1B2 |pX2qred
ΥX2ÑX1 // Kvir

X2{B2

commutes, where the top horizontal isomorphism is induced by the short exact sequence

∆: 0 ÝÑ Ω1
X1{XˆBB1 |X2 ÝÑ Ω1

X2{XˆBB2 ÝÑ Ω1
X2{X1ˆB1B2 ÝÑ 0.

(3) For a point x P X 1 the diagram

Kvir
X{B,ppx1q

bKb2
X1{XˆBB1,x1

ΥX1ÑX |x1 //

κppx1qbid

��

Kvir
X1{B1,x1

κx1

��
detpΩ1

X{B,ppx1q
qb2 bKb2

X1{XˆBB1,x1

ip∆q
2

// detpΩ1
X1{B1,x1 q

b2

commutes, where the bottom horizontal isomorphism is induced by the short exact sequence

∆: 0 ÝÑ Ω1
X{B,x ÝÑ Ω1

X1{B1,x1 ÝÑ Ω1
X1{XˆBB1,x1 ÝÑ 0.

4.3. D-critical structures on stacks. We now extend the notion of relative d-critical structures to higher
Artin stacks. Let X Ñ B be a geometric morphism of stacks. In Section 1.5 we have defined the space
A2,expX{B,´1q of relative exact two-forms of degree ´1. In particular, we again have a sheaf on the big
étale site of X denoted by SX{B so that

ΓpX, SX{Bq “ π0pA2,expX{B,´1qq.

For a morphism of schemes X Ñ B let DCritpX{Bq Ă ΓpX, SX{Bq be the set of relative d-critical
structures. By Corollary 4.8 we see that the collection of relative d-critical structures defines a functor

DCrit : Funp∆1,Schq
op
0smooth ÝÑ Set

satisfying étale descent. Using (1.3) we obtain the notion of a relative d-critical structure on a geometric
morphism of stacks as follows.

Definition 4.11. Let X Ñ B be a geometric morphism. A relative d-critical structure on X Ñ B is a
section s P ΓpX, SX{Bq which satisfies the following property: for every diagram

X 1 //

��

X

��
B1 // B,
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where X 1 Ñ B1 is a morphism of schemes, X 1 Ñ X ˆB B
1 is smooth and s1 P ΓpX 1, SX1{B1 q is the pullback

of s, we have that s1 is a relative d-critical structure.

Remark 4.12. If X Ñ B is a morphism of schemes, Corollary 4.8 ensures that Definition 4.11 is compatible
with Definition 3.15.

Using (1.3) we get an extension of Corollary 4.8 to geometric morphisms.

Proposition 4.13. Consider a commutative diagram of stacks

X 1 //

��

X

��
B1 // B,

where X Ñ B is geometric and X 1 Ñ X ˆB B
1 is smooth (in particular, X 1 Ñ B1 is geometric). Consider

s P ΓpX, SX{Bq and let s1 P ΓpX 1, SX1{B1 q be the pullback.
(1) If s is a relative d-critical structure, then s1 is a relative d-critical structure.
(2) If s1 is a relative d-critical structure, B1 Ñ B is an étale cover and X 1 Ñ XˆBB

1 is surjective, then
s is a relative d-critical structure.

We will now define the virtual canonical bundle associated to a relative d-critical structure on stacks.

Proposition 4.14. Let X Ñ B be a geometric morphism of stacks equipped with a relative d-critical structure
s. There is a line bundle Kvir

X{B on Xred, the virtual canonical bundle, uniquely determined by the
following conditions:

(1) If X Ñ B is a morphism of schemes, then Kvir
X{B coincides with the virtual canonical bundle defined

in Theorem 3.33.
(2) For every commutative diagram of stacks

X 1
p //

π1

��

X

π

��
B1

p // B

with π, π1 geometric and X 1 Ñ XˆBB
1 a smooth morphism (so that X 1 Ñ B1 has a pullback relative

d-critical structure by Corollary 4.8), we have a canonical isomorphism

ΥX1ÑX : Kvir
X{B |pX1qred bKb2

X1{XˆBB1 |pX1qred
„

ÝÑ Kvir
X1{B1 .

(3) For a commutative diagram of stacks

X2
q //

π2

��

X 1
p //

π1

��

X

π

��
B2

q // B1
p // B

with π2, π1, π geometric morphisms, X2 Ñ X 1 ˆB1B2 and X 1 Ñ XˆBB
1 smooth, a relative d-critical

structure s P ΓpX, SX{Bq and s1, s2 its pullbacks to X 1 Ñ B1 and X2 Ñ B2, the diagram

Kvir
X{B |pX2qred bKb2

X1{XˆBB1 |pX2qred bKb2
X2{X1ˆB1B2 |pX2qred

ΥX1ÑXbid

��

idbip∆q
2

// Kvir
X{B |pX2qred bKb2

X2{XˆBB2 |pX2qred

ΥX2ÑX

��
Kvir
X1{B1 |pX2qred bKb2

X2{X1ˆB1B2 |pX2qred
ΥX2ÑX1 // Kvir

X2{B2

commutes, where the top horizontal isomorphism is induced by the fiber sequence

∆: LX1{XˆBB1 |X2 ÝÑ LX2{XˆBB2 ÝÑ LX2{X1ˆB1B2 .
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For every point x P X there is an isomorphism

κx : K
vir
X{B,x

„
ÝÑ detpτě0LX{B,xqb2

which coincides with κx defined in Theorem 3.33 for X Ñ B a morphism of schemes and which satisfies the
following property:

(4) Let

X 1
p //

π1

��

X

π

��
B1

p // B

be a diagram of stacks as in (2). For a point x1 P X 1 the diagram

Kvir
X{B,ppx1q

bKb2
X1{XˆBB1,x1

ΥX1ÑX |x1 //

κppx1qbid

��

Kvir
X1{B1,x1

κx1

��
detpτě0LX{B,ppx1qqb2 bKb2

X1{XˆBB1,x1

ip∆x1Ñxq
2

// detpτě0LX1{B1,x1 qb2

commutes, where the bottom horizontal isomorphism is induced by the fiber sequence

∆x1Ñx : τ
ě0LX{B,ppx1q ÝÑ τě0LX1{B1,x1 ÝÑ LX1{XˆBB1,x1 .

In addition, the virtual canonical bundle satisfies the following properties:
(5) For a pair X1 Ñ B1, X2 Ñ B2 of geometric morphisms of stacks equipped with relative d-critical

structures there is an isomorphism

(4.8) Kvir
X1{B1

bKvir
X2{B2

– Kvir
X1ˆX2{B1ˆB2

,

which is unital, commutative and associative and such that the isomorphism ΥX1ÑX from (2) is
compatible with products. Moreover, (4.8) is uniquely determined by the condition that for every
point px1, x2q P X1 ˆX2 there is a commutative diagram

Kvir
X1{B1,x1

bKvir
X2{B2,x2

(4.8) //

κx1bκx2

��

Kvir
X1ˆX2{B1ˆB2,px1,x2q

κpx1,x2q

��
detpτě0LX1{B1,x1

qb2 b detpτě0LX2{B2,x2
qb2 „ // detpτě0LX1ˆX2{B1ˆB2,px1,x2qqb2.

(6) For a locally constant function d : X Ñ Z{2Z there is an isomorphism

(4.9) Rd : K
vir
X{B,s – Kvir

X{B,´s

squaring to the identity. For a pair X1 Ñ B1, X2 Ñ B2 of geometric morphisms of stacks equipped
with relative d-critical structures s1, s2 the diagram

Kvir
X1{B1,s1

bKvir
X2{B2,s2

(4.8) //

Rd1
bRd2

��

Kvir
X1ˆX2{B1ˆB2,s1‘s2

Rd1‘d2

��
Kvir
X1{B1,´s1

bKvir
X2{B2,´s2

(4.8) // Kvir
X1ˆX2{B1ˆB2,´ps1‘s2q

commutes. For a commutative diagram of stacks as in (2) the diagram

Kvir
X{B,s|pX1qred bKb2

X1{XˆBB1

ΥX1ÑX //

Rdbid

��

Kvir
X1{B1,s1

Rd`dimpX1{XˆBB1q

��
Kvir
X{B,´s|pX1qred bKb2

X1{XˆBB1

ΥX1ÑX// Kvir
X1{B1,´s1
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commutes.

Proof. Consider the functor
PicK2 : Funp∆1,Stkq

geometric,op
0smooth ÝÑ Gpd

defined as follows:
‚ For a geometric morphism of stacks X Ñ B we assign the groupoid PicpXredq of line bundles on
Xred.

‚ For a commutative diagram

X 1
p //

π1

��

X

π

��
B1

p // B

with X Ñ B geometric and X 1 Ñ X ˆB B
1 smooth, we assign the functor PicpXredq Ñ PicppX 1qredq

which sends a line bundle L on Xred to p˚LbKb2
X1{XˆBB1 |pX1qred .

‚ For a commutative diagram

X2
q //

π2

��

X 1
p //

π1

��

X

π

��
B2

q // B1
p // B

with X Ñ B geometric, X 1 Ñ X ˆB B
1 and X2 Ñ X 1 ˆB1 B2 smooth, to a natural isomorphism

between the composite

L ÞÑ p˚LbKb2
X1{XˆBB1 |pX1qred ÞÑ q˚p˚LbKb2

X1{XˆBB1 |pX2qred bKb2
X2{X1ˆB1B2 |pX2qred

and L ÞÑ q˚p˚LbKb2
X2{XˆBB2 |pX2qred given by id b ip∆q2, where

∆: LX1{XˆBB1 |X2 ÝÑ LX2{XˆBB2 ÝÑ LX2{X1ˆB1B2 .

Consider also the functor

DCrit : Funp∆1,Stkq
geometric,op
0smooth ÝÑ Set ÝÑ Gpd

given by sending a geometric morphism X Ñ B to the set of relative d-critical structures.
The restrictions of the functors PicK2 and DCrit to morphisms of schemes satisfies étale descent (étale

descent for line bundles in the case of PicK2 and étale descent for relative d-critical structures proven in Theo-
rem 4.7(2) for DCrit); therefore, using (1.3) both PicK2 and DCrit extend to functors on Funp∆1,Stkq

geometric
0smooth .

By Corollary 4.10 we have a natural transformation

Funp∆1,Schq
op
0smooth Gpd

DCrit

PicK2

Kvir

defined as follows:
‚ For a morphism of schemes X Ñ B equipped with a relative d-critical structure we assign the virtual

canonical bundle Kvir
X{B on Xred.

‚ For a commutative diagram

X 1
p //

π1

��

X

π

��
B1

p // B
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of schemes with X 1 Ñ X ˆB B
1 smooth, a relative d-critical structure on X Ñ B and its pullback

relative d-critical structure on X 1 Ñ B1 we assign the isomorphism

ΥX1ÑX : Kvir
X{B |pX1qred bKb2

X1{XˆBB1 |pX1qred
„

ÝÑ Kvir
X1{B1

Using (1.3) with V “ Funp∆1,Gpdq we see that the natural transformation Kvir : DCrit Ñ PicK2 extends
from morphisms of schemes to geometric morphisms of stacks.

For a commutative diagram of stacks as in (3) together with a point x2 P X2 with x1 “ qpx2q and x “ ppx1q

the diagram

detpτě0LX{B,xq bKb2
X1{XˆBB1,x1 bKb2

X2{X1ˆB1B2,x2

ip∆x1Ñxq
2

bid

��

idbip∆q
2

// detpτě0LX{B,xq bKb2
X2{XˆBB2,x2

ip∆x2Ñxq
2

��
detpτě0LX1{B1,x1 q bKb2

X2{X1ˆB1B2,x2

ip∆x2Ñx1 q
2

// detpτě0LX2{B2,x2 q

commutes, as can be seen by applying [KPS24, (2.4)] to the double fiber sequence

∆x1Ñx : τ
ě0LX{B,x

∆x2Ñx1:

τě0LX1{B1,x1

∆:

LX1{XˆBB1,x1

∆x2Ñx : τ
ě0LX{B,x τě0LX2{B2,x2 LX2{XˆBB2,x2

0 LX2{X1ˆB1B2,x2 LX2{X1ˆB1B2,x2 .

Using this fact and property (3) of the isomorphism Υ, the construction of the isomorphism κx reduces
to the construction of κx for schemes which is compatible with Υ for smooth morphisms of schemes by
Theorem 3.33(3).

The isomorphism (4.8) is established for morphisms of schemes in Theorem 3.33(4). By construction
of the virtual canonical bundle of stacks to show that the isomorphism extends to stacks and ΥX1ÑX is
compatible with products, it is enough to establish this claim for a pair

X 1
1

//

��

X1

��
B1

1
// B1

X 1
2

//

��

X2

��
B1

2
// B2

of commutative diagrams of schemes as in property (2). It is also enough to establish compatibility for every
point px1

1, x
1
2q P X 1

1 ˆ X 1
2. Using property (4) the compatibility reduces to the fact that the isomorphisms

ip∆x1Ñxq2 are compatible with direct sums.
The isomorphism Rd is constructed for morphisms of schemes in Theorem 3.33(5). The compatibility of

Rd with products is obvious. The compatibility with the isomorphism ΥX1ÑX when X 1 Ñ X ˆB B
1 is an

isomorphism is also obvious. By construction of ΥX1ÑX for a general smooth morphism X 1 Ñ X ˆB B
1 it is

thus enough to consider the case B1 “ B and X 1 Ñ X smooth. Moreover, this compatibility can be checked
on critical charts, so by Theorem 4.3(1) we may assume that there is a smooth morphism pU, f, uq Ñ pV, g, vq

of critical charts for X 1 Ñ X locally near a point in X 1. In this case ΥX1ÑX is determined by the natural
isomorphism pU Ñ V q˚Kb2

V {B bKb2
U{V – Kb2

U{B . The isomorphism Rd acts by p´1qdimpV {Bq`d on Kb2
V {B . The

isomorphism Rd`dimpX1{Xq acts by p´1qdimpU{Bq`d`dimpX1
{Xq on Kb2

U{B . Since dimpU{V q “ dimpX 1{Xq, the
claim follows. □

4.4. Pushforwards of d-critical structures. In addition to the pullback functoriality of differential forms
given by (4.6), we will also consider a “pushforward” functoriality [Par24] given as follows. Consider geometric
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morphisms X π
ÝÑ B

p
ÝÑ S of stacks. Using the fiber sequence

π˚LB{S ÝÑ LX{S ÝÑ LX{B

we obtain a morphism
µXÑBÑS : SX{B ÝÑ π˚LB{S .

In particular, if X is equipped with a section s P ΓpX, SX{Bq, there is a canonical induced morphism, the
moment map

µs : X ÝÑ T˚pB{Sq,

which comes with a homotopy

(4.10) hs,p : µ
˚
sλB{S „ dSundpsq

in A1pX{S, 0q.

Definition 4.15. LetX Ñ B
p

ÝÑ S be geometric morphisms of stacks together with a section s P ΓpX, SX{Bq.
The d-critical pushforward p˚pX, sq is the fiber product

p˚pX, sq //

��

X

µs

��
B

0 // T˚pB{Sq.

The d-critical pushforward R “ p˚pX, sq comes equipped with a canonical section p˚s P ΓpR, SR{Sq

obtained as follows. Consider the following commutative diagram:

A1pT˚pB{Sq{S, 0q
0˚

//

µ˚
s

��

A1pB{S, 0q

pRÑBq
˚

��
A1pX{S, 0q

pRÑXq
˚

// A1pR{S, 0q

A0pX, 0q
pRÑXq

˚

//

dS

OO

A0pR, 0q

dS

OO

Consider the function f “ undpsq P A0pX, 0q. Using the bottom commutative square we get a homotopy
dSpf |Rq „ pR Ñ Xq˚pdSfq in A1pR{S, 0q. Using the homotopy hs,p : dSf „ µ˚

sλB{S given by (4.10) as well
as the top commutative square we get a homotopy pR Ñ Xq˚pdSfq „ pR Ñ Bq˚0˚λB{S . But 0˚λB{S “ 0, so
in total we get a nullhomotopy of dSpf |Rq. Thus, we obtain a section p˚s P ΓpR, SR{Sq with the underlying
function undpp˚sq “ f |R : R Ñ A1.

D-critical pushforwards are functorial in the following sense: given geometric morphisms of stacks X Ñ

B
p

ÝÑ S
q

ÝÑ T together with a section s P ΓpX, SX{Bq we have an isomorphism

q˚pp˚pX, sq, p˚sq – pq ˝ pq˚pX, sq

constructed using the Cartesian square (1.7). Moreover, under this isomorphism we have q˚pp˚sq “ pq˝pq˚s.

Example 4.16. Let p : U Ñ B be a smooth morphism of schemes and f : U Ñ A1. We have SU{U – OU
and hence f defines a section f P SU{U . Then p˚pU, fq “ CritU{Bpfq and p˚f “ sf .

The following statement generalizes Example 4.16.

Proposition 4.17. Let U Ñ B
p

ÝÑ S be smooth morphisms of schemes and f : U Ñ A1. The closed
immersion p˚pCritU{Bpfq, sf,B1

q Ñ CritU{Bpfq identifies

p˚pCritU{Bpfq, sf,Bq – CritU{Spfq.

Moreover, under this isomorphism p˚sf,B on p˚pCritU{Bpfq, sf q goes to sf,S on CritU{Spfq.
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Proof. The isomorphism p˚pCritU{Bpfq, sf,Bq – CritU{Spfq follows from the existence of the following dia-
gram, where all squares are Cartesian:

CritU{Spfq //

��

CritU{Bpfq //

µsf,B

��

U

ΓdSf

��
U

Γ0 // T˚pB{Sq ˆB1
U //

��

T˚pU{Sq

��
U

Γ0 // T˚pU{Bq

Let RB “ CritU{Bpfq and R “ p˚pCritU{Bpfq, sf q. Consider the commutative diagram

SRB{S |R
ip //

pRÑRBq
˚

��

SRB{B |R

pRÑRBq
˚

��
SR{S

ip // SR{B

of sheaves on R. Since p : B Ñ S is smooth, the horizontal morphisms ip are injective. Therefore, it is
enough to show that

ippp˚sf,Bq “ ippsf,Sq.

But by definition of the pushforward p˚sf,B we have

ippp˚sf,Bq “ pR Ñ R1q˚sf,B .

Consider the commutative diagram

SRB{B |R
ιRB,U //

pRÑRBq
˚

��

OU{I2
RB ,U

|R

��
SR{B

ιR,U // OU{I2
R,U

defined in Proposition 3.7(3) with the horizontal morphisms injective. By Proposition 3.10 we get

ιRB ,U psf,Bq “ rf s P OU{I2
RB ,U , ιR,U pippsf,Sqq “ rf s P O{I2

R,U

which implies that pR Ñ RBq˚sf,B “ ippsf,Sq and hence, using the above equalities, p˚sf,B “ sf,S . □

As a corollary, we obtain that d-critical pushforwards preserve relative d-critical structures on schemes.

Corollary 4.18. Consider morphisms of schemes X Ñ B
p

ÝÑ S, where p is smooth, equipped with a relative
d-critical structure s P ΓpX, SX{Bq. Then p˚s is a relative d-critical structure on p˚pX, sq Ñ S.

Proof. Since s is a relative d-critical structure, we have a collection tUa, fau of LG pairs over B together
with morphisms ua : CritUa{Bpfaq Ñ X such that tua : CritUa{Bpfaq Ñ Xu is a Zariski cover. Then

tp˚pCritUa{Bpfaq, sfa,Bq Ñ p˚pX, squ

is also a Zariski cover. But by Proposition 4.17 we have p˚pCritUa{Bpfaq, sfa,Bq – CritUa{Spfaq compatibly
with relative d-critical structures, so we get a Zariski cover tCritUa{Spfaq Ñ p˚pX, squ by critical charts. □

The d-critical pushforward has the following compatibility with pullbacks.

Proposition 4.19. Consider a commutative diagram of stacks

X 1 //

��

B1
p1

//

��

S1

��
X // B

p // S
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with all morphisms geometric, equipped with a section s P ΓpX, SX{B1
q and let s1 P ΓpX 1, SX1{B1 q be the

pullback. Assume that B1 Ñ B ˆS S
1 is smooth.

(1) The above diagram can be extended to a commutative diagram

(4.11) p1
˚pX 1, s1q //

��

X 1 //

��

B1
p1

//

��

S1

��
p˚pX, sq // X // B1

p // S

so that p1
˚s

1 is equal to the pullback of p˚s under the leftmost vertical morphism and the leftmost
square is Cartesian.

(2) If B1 Ñ B and X 1 Ñ X ˆB B
1 are smooth (respectively, smooth surjective), then so is p1

˚pX 1, s1q Ñ

p˚pX, sq. Moreover, in this case there is a fiber sequence

LB1{BˆSS1 |p1
˚pX1,s1q ÝÑ Lp1

˚pX1,s1q{p˚pX,sqˆSS1 ÝÑ LX1{XˆBB1 |p1
˚pX1,s1q.

Proof. We have a commutative diagram

SX{B |X1

µXÑBÑS //

��

pX Ñ Bq˚LB{S |X1

��
SX1{B

µX1ÑBÑS //

��

pX 1 Ñ Bq˚LB{S

��
SX1{B1

µX1ÑB1ÑS1 // pX 1 Ñ B1q˚LB1{S1

Therefore, we obtain a commutative diagram

X
µs // T˚pB{Sq

X 1
µ1
s //

µs1
&&

OO

T˚pB{Sq ˆB B
1

��

OO

T˚pB1{S1q,

where the morphism µ1
s : X

1 Ñ T˚pB{Sq ˆB B
1 is given by the composite

µ1
s : X

1 Ñ X ˆB B
1 µsˆid

ÝÝÝÝÑ T˚pB{Sq ˆB B
1 – T˚pB ˆS B

1{S1q ˆBˆSS1 B1.

Since B1 Ñ B ˆS S
1 is smooth, in the Cartesian square

T˚pB ˆS S
1{S1q ˆBˆSS1 B1 //

��

T˚pB1{S1q

��
B1 0 // T˚pB1{B ˆS S

1q
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the bottom morphism is a closed immersion and hence the top morphism is a closed immersion, hence a
monomorphism. Thus, the top square

p1
˚pX 1, s1q //

��

X 1

µ1
s

��
B1 0 //

��

T˚pB{Sq ˆB B
1

��
B

0 // T˚pB{Sq

is Cartesian. Since the bottom square is Cartesian as well, this implies that the outer square is Cartesian.
But then in the diagram

p1
˚pX 1, s1q //

��

X 1

��
p˚pX, sq //

��

X

µs

��
B

0 // T˚pB{Sq

the bottom square is Cartesian by definition and the outer square is Cartesian by what we have just shown.
Therefore, the top square is Cartesian, which establishes the first claim.

The morphism p1
˚pX 1, s1q Ñ p˚pX, sq factors as the composite

(4.12) p1
˚pX 1, s1q Ñ p˚pX, sq ˆB B

1 Ñ p˚pX, sq.

The first morphism in (4.12) is a base change of X 1 Ñ X ˆB B
1 and the second morphism is a base change

of B1 Ñ B. This implies the second claim. □

We obtain the following extension of Corollary 4.18 to geometric morphisms.

Corollary 4.20. Consider geometric morphisms of stacks X Ñ B
p

ÝÑ S, where p is smooth, equipped with a
relative d-critical structure s P ΓpX, SX{Bq. Then p˚s is a relative d-critical structure on p˚pX, sq Ñ S.

Proof. By Proposition 4.19(1) the claim reduces to the case S a scheme. Then we can find a commutative
diagram

X 1 //

��

B1
p1

//

��

S

X // B
p // S

with X 1 Ñ B1 a morphism of schemes and B1 Ñ B and X 1 Ñ X ˆB B1 smooth surjective. By Proposi-
tion 4.13(1) s1 is a relative d-critical structure on X 1 Ñ B1. By Corollary 4.18 p1

˚s
1 is a relative d-critical

structure on p1
˚pX 1, s1q Ñ S. By Proposition 4.19(2) the morphism p1

˚pX 1, s1q Ñ p˚pX, sq is smooth and
surjective. Therefore, by descent (Proposition 4.13) we get that p˚s is a relative d-critical structure on
p˚pX, sq Ñ S. □

Let us now describe virtual canonical bundles of d-critical pushforwards.

Proposition 4.21. Consider geometric morphisms of stacks X Ñ B
p

ÝÑ S, where p is smooth, equipped with
a relative d-critical structure s P ΓpX, SX{Bq. There is an isomorphism

Σp : K
vir
X{B |p˚pX,sqred bKb2

B{S |p˚pX,sqred
„

ÝÑ Kvir
p˚pX,sq{S

which satisfies the following properties:
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(1) It is functorial for compositions: Σid “ id and given another smooth morphism q : S Ñ T with
R “ pq ˝ pq˚pX, sqred the diagram

(4.13) Kvir
X{B |R bKb2

B{S |R bKb2
S{T |R

idbip∆q
2

//

Σpbid

��

Kvir
X{B |R bKb2

B{T |R

Σq˝p

��
Kvir
p˚pX,sq{S |R bKb2

S{T |R
Σq // Kvir

pq˝pq˚pX,sq{T

commutes, where the top horizontal morphism is induced by the fiber sequence

∆: p˚LS{T ÝÑ LB{T ÝÑ LB{S .

(2) Consider a commutative diagram of stacks

(4.14) X 1 //

��

B1
p1

//

��

S1

��
X // B

p // S

with all morphisms geometric, equipped with a section s P ΓpX, SX{Bq and let s1 P ΓpX 1, SX1{B1 q

be the pullback. Assume that p : B Ñ S, B1 Ñ B ˆS S
1 and X 1 Ñ X ˆB B1 are smooth. Let

R1 “ p1
˚pX 1, s1qred. Then the diagram

Kvir
X{B |R1 bKb2

B{S |R1 bKb2
X1{XˆBB1 |R1 bKb2

B1{BˆSS1 |R1

Σpbid //

ΥX1ÑXbid

��

Kvir
p˚pX,sq{S |R1 bKb2

X1{XˆBB1 |R1 bKb2
B1{BˆSS1 |R1

idbip∆2q
2

��
Kvir
X1{B1 |R1 bKb2

B{S |R1 bKb2
B1{BˆSS1 |R1

idbip∆1q
2

��

Kvir
p˚pX,sq{S |R1 bKb2

p1
˚pX1,s1q{p˚pX,sqˆSS1 |R1

Υp1
˚

pX1,s1qÑp˚pX,sq

��
Kvir
X1{B1 |R1 bKb2

B1{S1 |R1

Σp1
// Kvir

p1
˚pX1,s1q{S1 ,

commutes, where
∆1 : LB{S |B1 ÝÑ LB1{S1 ÝÑ LB1{BˆSS1

and
∆2 : LB1{BˆSS1 |p1

˚pX1,s1q ÝÑ Lp1
˚pX1,s1q{p˚pX,sqˆSS1 ÝÑ LX1{XˆBB1 |p1

˚pX1,s1q.

(3) For a function d : X Ñ Z{2Z the diagram

Kvir
X{B,s|p˚pX,sqred bKb2

B{S |p˚pX,sqred
Σp //

Rdbid

��

Kvir
p˚pX,sq{S,p˚s

Rd`dimpB{Sq

��
Kvir
X{B,´s|p˚pX,sqred bKb2

B{S |p˚pX,sqred
Σp // Kvir

p˚pX,sq{S,´p˚s

commutes.
(4) Σp is compatible with products.

Proof. As in the proof of Proposition 4.14 it is enough to construct these isomorphisms for morphisms of
schemes.

Let pU, f, uq be a critical chart for X, where pU, fq is viewed as an LG pair over B. Let u : CritU{Spfq –

p˚pCritU{Bpfq, sf q
u

ÝÑ p˚X, where the first isomorphism is provided by Proposition 4.1. Then pU, f, uq, where
pU, fq is viewed as an LG pair over S, is a critical chart for p˚pX, sq. A critical morphism Φ: pU, f, uq Ñ

pV, g, vq of critical charts on X gives rise to a critical morphism Φ: pU, f, uq Ñ pV, g, vq of critical charts on
p˚pX, sq. By Corollary 4.18 this collection of critical charts covers p˚pX, sq. By Corollary 3.31 it is thus
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sufficient to construct the isomorphism Σp restricted to each such critical chart and check an equality of
these isomorphisms for every critical morphism of critical charts on X.

Let pU, f, uq be a critical chart for X and pU, f, uq the corresponding critical chart for p˚pX, sq. By
definition we have canonical isomorphisms

u˚Kvir
X{B – Kb2

U{B |CritU{Bpfqred , u˚Kvir
p˚pX,sq{S – Kb2

U{S |CritU{Spfqred .

We define Σp|CritU{Spfqred to be the isomorphism

ip∆U q2 : Kb2
U{B |CritU{Spfqred bKb2

B{S |CritU{Spfqred
„

ÝÑ Kb2
U{S |CritU{Spfqred

associated to the exact sequence

∆U : 0 ÝÑ Ω1
B{S |U ÝÑ Ω1

U{S ÝÑ Ω1
U{B ÝÑ 0.

Now consider a critical morphism Φ: pU, f, uq Ñ pV, g, vq of critical charts on X. Recall that the normal
bundle NU{V |CritU{Bpfq carries a nondegenerate quadratic form qΦ. Let R “ CritU{Spfqred. Consider the
diagram

(4.15) Kb2
B{S |R bKb2

U{B |R

idbvol2qΦ //

ip∆U q
2

��

Kb2
B{S |R bKb2

U{B |R b pdetN_
U{V qb2|R

idbip∆1q
2

//

ip∆U q
2

bid

��

Kb2
B{S |R bKb2

V {B |R

ip∆V q
2

��
Kb2
U{S |R

idbvol2qΦ // Kb2
U{S |R b pdetN_

U{V qb2|R
ip∆2q

2

// Kb2
V {S |R,

where the individual isomorphisms are induced by the following double short exact sequence:

0

∆V:

0

∆U:

0

0 0 Ω1
B{S |U Ω1

B{S |U 0

∆2 : 0 N_
U{V Ω1

V {S |U Ω1
U{S 0

∆1 : 0 N_
U{V Ω1

V {B |U Ω1
U{B 0

0 0 0

The top horizontal morphism in (4.15) gives an isomorphism of the two models of Kb2
B{S |R b Kvir

X{B |R in
the critical charts U and V . The bottom horizontal morphism gives an isomorphism of the two models of
Kvir
p˚pX,sq{S in the critical charts U and V . The outer vertical morphisms are the local models of Σp. The

square on the left commutes by naturality. The commutativity of the square on the right follows from the
corresponding property of determinant lines, see [KPS24, Corollary 2.3].
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Functoriality of Σ with respect to compositions, property (1), follows from a commutativity of the diagram
of determinant lines as in [KPS24, Lemma 2.4] associated to the double short exact sequence

0 0 0

0 Ω1
S{T |U Ω1

S{T |U 0 0

0 Ω1
B{T |U Ω1

U{T Ω1
U{B 0

0 Ω1
B{S |U Ω1

U{S Ω1
U{B 0

0 0 0

Let us now show property (2). We can factor (4.14) as

X 1

��
X ˆB B

1 //

��

B1

��
X ˆS S

1 //

��

B ˆS S
1

��

// S1

��
X // B // S,

where all squares are Cartesian. Using the functoriality with respect to compositions of Σ (property (1))
and Υ (Proposition 4.14(3)), property (2) for a general diagram (4.14) follows from the following particular
cases:

(1) Both squares in (4.14) are Cartesian. Let pU, f, uq be a critical chart on X and pU 1, f 1, u1q its base
change along B1 Ñ B which defines a critical chart of X 1. Let R1 “ CritU 1{S1 pf 1qred. Then we have
to prove a commutativity of the diagram

Kb2
U{B |R1 bKb2

B{S |R1

ip∆U q
2

//

„

��

Kb2
U{S |R1

„

��
Kb2
U 1{B1 |R1 bKb2

B1{S1 |R1

ip∆U1 q
2

// Kb2
U 1{S1 |R1

which follows from the naturality of the isomorphisms ip∆q.
(2) In (4.14) the left square is Cartesian and B “ S “ S1. As before, let pU, f, uq be a critical chart on

X and pU 1, f 1, u1q its base change along B1 Ñ B which defines a critical chart of X 1. Let pU, f, uq

be the corresponding critical chart of p˚pX, sq, where pU, fq is viewed as an LG pair over B and
pU 1, f 1, u1q be the corresponding critical chart of p1

˚pX 1, s1q, where pU 1, f 1q is viewed as an LG pair
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over B. Let R1 “ CritU 1{Bpf 1qred. Then we have to prove a commutativity of the diagram

Kb2
U{B |R1 bKb2

B1{B |R1

„

��

Kb2
U{B |R1 bKb2

B1{B |R1

„

��
Kb2
U{B |R1 bKb2

U 1{U |R1

ip∆1
U q

2

��
Kb2
U 1{B1 |R1 bKb2

B1{B |R1

ip∆U1 q
2

// Kb2
U 1{B |R1 ,

where
∆1
U : 0 ÝÑ Ω1

U{B |U 1 ÝÑ Ω1
U 1{B ÝÑ Ω1

U 1{U ÝÑ 0.

But ∆1
U and ∆U 1 are the two short exact sequences associated to the direct sum decomposition

Ω1
U 1{B – Ω1

U{B |U 1 ‘ Ω1
B1{B |U 1 , so the corresponding isomorphisms ip∆1

U q and ip∆U 1 q agree.
(3) B1 “ B and S1 “ S. By Theorem 4.3(1) we may find a smooth morphism π̃ : U 1 Ñ U of smooth

B-schemes, a function f : U Ñ A1 with f 1 “ π̃˚f and a commutative diagram

X 1

��

CritU 1{Bpf 1q
u1

oo //

��

U 1

π̃

��
X CritU{Bpfq

uoo // U

so that pU, f, uq is a critical chart for X and pU 1, f 1, u1q is a critical chart for X 1 and, moreover, we
may cover X and X 1 by critical charts of this form. Let R1 “ CritU 1{Spf 1qred. Then we have to prove
a commutativity of the diagram

Kb2
B{S |R1 bKb2

U{B |R1 bKb2
U 1{U |R1

ip∆U q
2

bid //

idbip∆1q
2

��

Kb2
U{S |R1 bKb2

U 1{U |R1

ip∆2q
2

��
Kb2
B{S |R1 bKb2

U 1{B |R1

ip∆U1 q
2

// Kb2
U 1{S |R1 ,

where ∆1 and ∆2 are the short exact sequences

∆U:

0

∆U 1:

0 0

0 Ω1
B{S |U 1 Ω1

B{S |U 1 0 0

∆2 : 0 Ω1
U{S |U 1 Ω1

U 1{S Ω1
U 1{U 0

∆1 : 0 Ω1
U{B |U 1 Ω1

U 1{B Ω1
U 1{U 0

0 0 0

The commutativity of the diagram follows from a commutativity of the diagram of determinant lines
as in [KPS24, Lemma 2.4].

Properties (3) and (4) are straightforward. □
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4.5. Orientations for relative d-critical structures. Using the virtual canonical bundle we define ori-
entations for relative d-critical structures.

Definition 4.22. Let X Ñ B be a geometric morphism of stacks equipped with a relative d-critical structure
s. An orientation of pX Ñ B, sq is a pair pL, oq consisting of a Z{2Z-graded line bundle L together with
an isomorphism o : Lb2 – Kvir

X{B .

For simplicity of notation we will often denote an orientation simply by o with the graded line bundle L

being implicit.

Remark 4.23. In the above definition we consider graded orientations as in [KPS24]. In [Bra+15] the
authors consider an analogous notion where L is an ungraded line bundle.

There is a natural notion of isomorphisms of orientations: an isomorphism pL1, o1q Ñ pL2, o2q is given by
an isomorphism f : L1 Ñ L2 of graded line bundles such that the diagram

Lb2
1

o1 ""

fb2

// Lb2
2

o2||
Kvir
X{B

commutes.
We have the following functoriality of orientations:
(1) Consider a commutative diagram of stacks

X 1 //

π1

��

p // X

π

��
B1

p // B

with X 1 Ñ X ˆB B1 a smooth morphism. Consider a relative d-critical structure s on X Ñ B
and its pullback s1 to X 1 Ñ B1. For an orientation pL, oq there is an orientation pL|pX1qred b

KX1{XˆBB1 |pX1qred , p
˚oq, of pX 1 Ñ B1, s1q, where

p˚o : pL|pX1qred bKX1{XˆBB1 |pX1qredqb2 „
ÝÑ Lb2|pX1qred bKb2

X1{XˆBB1 |pX1qred

obid
ÝÝÝÑ Kvir

X{B |pX1qred bKb2
X1{XˆBB1 |pX1qred

ΥX1ÑX
ÝÝÝÝÝÑ Kvir

X1{B1 .

For a composable pair

X2

��

q // X 1 //

π1

��

p // X

π

��
B2

q // B1
p // B

of commutative diagram of stacks as above the natural isomorphism q˚KX1{XˆBB1 bKX2{X1ˆB1B2 –

KX2{XˆBB2 induces an isomorphism of orientations

(4.16) q˚p˚o – pq ˝ pq˚o

using Proposition 4.14(3).
(2) Consider geometric morphisms of stacks X Ñ B

p
ÝÑ S, where p is smooth and X Ñ B is equipped

with a relative d-critical structure s and an orientation pL, oq. Then there is an orientation pL|p˚pX,sqredb

KB{S |p˚pX,sqred , p˚oq, where

p˚o : pL|p˚pX,sqred bKB{S |p˚pX,sqredqb2 „
ÝÑ Lb2|p˚pX,sqred bKb2

B{S |p˚pX,sqred

obid
ÝÝÝÑ Kvir

X{B |p˚pX,sqred bKb2
B{S |p˚pX,sqred
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Σp
ÝÝÑ Kvir

p˚pX,sq{S .

Given another smooth morphism q : S Ñ T we obtain an isomorphism

(4.17) q˚p˚o – pq ˝ pq˚o

using Proposition 4.21(1). For a commutative diagram of stacks

(4.18) X 1 //

q

��

B1
p1

//

��

S1

��
X // B

p // S

with B Ñ S,B1 Ñ BˆS S
1 and X 1 Ñ X ˆB B

1 smooth and relative d-critical structure s on X Ñ B
and its pullback s1 on X 1 Ñ B1 we have a diagram

p1
˚pX 1, s1q //

q

��

S1

��
p˚pX, sq // S.

Then using Proposition 4.21(2) we obtain an isomorphism

(4.19) q˚p˚o – p1
˚q

˚o.

(3) For a geometric morphism of stacks X Ñ B equipped with a relative d-critical structure s and an
orientation pL, oq of parity d : X Ñ Z{2Z there is an orientation pL, oq of pX Ñ B,´sq, where

(4.20) o : Lb2 o
ÝÑ Kvir

X{B,s
Rd

ÝÝÑ Kvir
X{B,´s.

SinceRd squares to the identity, the identity morphism of graded line bundles induces an isomorphism
of orientations

(4.21) poq – o.

For a commutative diagram of stacks

X 1 //

π1

��

p // X

π

��
B1

p // B

with X 1 Ñ X ˆB B
1 smooth, a relative d-critical structure on X Ñ B and an orientation o and its

pullback to X 1 Ñ B1, using Proposition 4.14(6) we obtain an isomorphism

(4.22) p˚o – p˚o.

For morphisms X Ñ B
p

ÝÑ S, where p is smooth and X Ñ B is equipped with a relative d-critical
structure s and an orientation o, using Proposition 4.21(3) we obtain an isomorphism

(4.23) p˚o – p˚o.

(4) For a pair X1 Ñ B1, X2 Ñ B2 of geometric morphisms of stacks equipped with relative d-critical
structures s1, s2 and orientations pL1, o1q, pL2, o2q there is an orientation pL1 b L2, o1 b o2q of X1 ˆ

X2 Ñ B1 ˆB2 equipped with the relative d-critical structure s1 ‘ s2, where

o1 b o2 : pL1 b L2qb2 „
ÝÑ pL1qb2 b pL2qb2 o1,o2

ÝÝÝÑ Kvir
X1{B1

bKvir
X2{B2

(4.8)
ÝÝÝÑ Kvir

X1ˆX2{B1ˆB2
.

This construction is unital and associative in the obvious sense. It is also commutative in the
following sense: for the swapping isomorphism σ : X2 ˆX1 Ñ X1 ˆX2 using the symmetry of (4.8)
we obtain an isomorphism

(4.24) σ˚po1 b o2q – o2 b o1,
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which on the level of underlying graded line bundles is the usual swapping isomorphism σ˚pL1bL2q –

L2 b L1 of ungraded line bundles multiplied by the Koszul sign p´1qdegpL1q degpL2q. For i “ 1, 2 let

X 1
i

//

π1
i

��

pi // Xi

πi

��
B1
i

pi // Bi

be a commutative diagram of stacks with X 1
i Ñ XiˆBiB

1
i smooth, equipped with an oriented relative

d-critical structure psi, oiq on Xi Ñ Bi and its pullback on X 1
i Ñ B1

i. Then using the compatibility
of the isomorphism (4.8) with ΥX1

iÑXi
we obtain an isomorphism

(4.25) pp1 ˆ p2q˚po1 b o2q – pp˚
1o1q b pp˚

2o2q

given by the obvious isomorphism involving the Koszul sign. For i “ 1, 2 let Xi Ñ Bi
pi

ÝÑ Si be
morphisms of stacks, where p is smooth and Xi Ñ Bi is equipped with an oriented relative d-critical
structure psi, oiq. Then using the compatibility of Σpi with products we obtain an isomorphism

(4.26) pp1 ˆ p2q˚po1 b o2q – pp1,˚o1q b pp2,˚o2q

again given by the obvious isomorphism involving the Koszul sign.

Given a geometric morphism X Ñ B, we denote by DCritorpX{Bq the groupoid of oriented relative
d-critical structures ps,L, oq on X Ñ B. The assignment pX Ñ Bq ÞÑ DCritorpX{Bq determines a functor

DCritor : Funp∆1,Schq
op
0smooth ÝÑ Gpd.

Since DCritp´q and the stack of graded line bundles satisfy étale descent, so does DCritorp´q.
We will use canonical orientations of relative critical loci defined as follows:

(1) For the identity morphism Y Ñ Y of stacks equipped with a relative d-critical structure specified
by a function f : Y Ñ A1 there is a canonical trivialization Kvir

Y {Y – OY red which corresponds to
the identity isomorphism under κy for every y P Y . We define the canonical orientation ocanY {Y of

pY
id

ÝÑ Y, fq to be the even line bundle OY red whose square is equipped with the above isomorphism
to Kvir

Y {Y .
(2) More generally, suppose p : Y Ñ B is a smooth geometric morphism of stacks together with a function

f : Y Ñ A1. The relative critical locus CritY {Bpfq Ñ B is a d-critical pushforward of pY
id

ÝÑ Y, fq

along p and we call the pushforward orientation the canonical orientation ocanCritY {Bpfq{B “ p˚o
can
Y {Y

whose underlying graded line bundle is KY {B |CritY {Bpfqred .

Example 4.24. Suppose p : U Ñ B is a smooth morphism of schemes equipped with a function f : U Ñ A1.
The morphism p : U Ñ B provides a critical chart for X “ CritU{Bpfq Ñ B. In this case the isomorphism
ocanCritU{Bpfq{B : Kb2

U{B |CritU{Bpfqred – Kvir
X{B coincides with the canonical isomorphism from Theorem 3.33(1).

For a critical morphism Φ: pU, fq Ñ pV, gq of LG pairs overB of even relative dimension recall the µ2-torsor
PΦ parametrizing orientations of the orthogonal bundle pNU{V |CritU{Bpfq, qΦq. Via the above description it
can also be interpreted as a µ2-torsor parametrizing isomorphisms ocanCritU{Bpfq{B Ñ ocanCritV {Bpgq{B |CritU{Bpfq of
canonical orientations.

We have the following functoriality of canonical orientations:

(1) Consider a commutative diagram

Y 1
p1

//

��

Y

��
B1 // B
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of geometric morphisms of stacks, where Y Ñ B and Y 1 Ñ Y ˆB B
1 are smooth, together with a

function f : Y Ñ A1. Let f 1 : Y 1 Ñ A1 its pullback to Y 1, so that we obtain a commutative diagram

CritY 1{B1 pf 1q
p //

��

CritY {Bpfq

��
B1

p // B.

The natural isomorphism p1˚KY {B bKY 1{YˆBB1 – KY 1{B1 of graded line bundles induces an isomor-
phism

(4.27) p˚ocanCritY {Bpfq – ocanCritY 1{B1 pf 1q

of orientations, using (4.19) applied to the diagram

Y 1

��

Y 1 //

��

B1

��
Y Y // B.

(2) Consider smooth geometric morphisms of stacks Y p
ÝÑ B1

q
ÝÑ B2 together with a function f : Y Ñ A1.

The natural isomorphism KY {B1
bp˚KB1{B2

– KY {B2
of graded line bundles induces an isomorphism

(4.28) q˚o
can
CritY {B1

pfq{B1
– ocanCritY {B2

pfq{B2

of orientations, using (4.17) applied to the morphisms Y “ Y
p

ÝÑ B1
q

ÝÑ B2.
(3) δ. Consider a smooth morphism of stacks Y Ñ B equipped with a function f : Y Ñ A1. The identity

morphism of graded line bundles induces an isomorphism

(4.29) ocanCritY {Bpfq{B – ocanCritY {Bp´fq{B

of orientations, using (4.23) applied to Y “ Y Ñ B.
(4) For a pair of smooth morphisms Y1 Ñ B1 and Y2 Ñ B2 equipped with functions f1 : Y1 Ñ A1 and

f2 : Y2 Ñ A1 the natural isomorphism KY1{B1
bKY2{B2

– KY1ˆY2{B1ˆB2
induces an isomorphism

(4.30) ocanCritY1{B1
pf1q{B1

b ocanCritY2{B2
pf2q{B2

– ocanCritY1ˆY2{B1ˆB2
pf1‘f2q{B1ˆB2

of orientations, using Proposition 4.21(4).

If X Ñ B is a morphism of schemes equipped with a relative d-critical structure s and an orientation o,
we can compare in each critical chart o and the canonical orientation. This gives rise to the following data:

(1) For a critical chart pU, f, uq of pX Ñ B, sq with dimpU{Bq pmod 2q equal to the parity of o we have
a µ2-torsor QoU,f,u on CritU{Bpfq parametrizing isomorphisms o|CritU{Bpfq Ñ ocanCritU{Bpfq{B .

(2) For a critical morphism Φ: pU, f, uq Ñ pV, g, vq of even relative dimension we have an isomorphism

ΛΦ : QoV,g,v|CritU{Bpfq
„

ÝÑ PΦ bµ2
QoU,f,u

of µ2-torsors coming from the composition o|CritU{Bpfq Ñ ocanCritU{Bpfq{B Ñ ocanCritV {Bpgq{B |CritU{Bpfq. It

is associative for a composite pU, f, uq
Φ

ÝÑ pV, g, vq
Ψ

ÝÑ pW,h,wq of critical morphisms of even relative
dimension via the isomorphism ΞΦ,Ψ : PΨ˝Φ

„
ÝÑ PΨ|CritU{Bpfq bµ2 PΦ.

(3) Consider a commutative diagram

X 1
p //

��

X

��
B1

p // B
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with X 1 Ñ X ˆB1 B smooth with the pullback relative d-critical structure on X 1 Ñ B1. Consider a
commutative diagram

U 1 //

��

U

��
B1

p // B

with U 1 Ñ U ˆB1 B smooth, where pU, f, uq is a critical chart for X Ñ B and pU 1, f 1, u1q is a critical

chart for X 1 Ñ B1. Then the composite p˚o|CritU1{B1 pf 1q Ñ p˚ocanCritU{Bpfq{B

(4.27)
ÝÝÝÝÑ ocanCritU1{B1 pf 1q{B1

determines an isomorphism of µ2-torsors

(4.31) QoU,f,u|CritU1{B1 pf 1q – Qp
˚o
U 1,f 1,u1 .

(4) For a critical chart pU, f, uq of pX Ñ B, sq and another smooth morphism q : B Ñ S the composite

q˚o|CritU{Spfq Ñ q˚o
can
CritU{Bpfq{B

(4.28)
ÝÝÝÝÑ ocanCritU{Spfq{S determines an isomorphism of µ2-torsors

(4.32) QoU,f,u|CritU{Bpfq – Q
q˚o
U,f,u.

(5) For a critical chart pU, f, uq of pX Ñ B, sq the composite o Ñ ocanCritU{Bpfq{B

(4.29)
ÝÝÝÝÑ ocanCritU{Bp´fq{B

determines an isomorphism of µ2-torsors

(4.33) QoU,f,u – QoU,´f,u.

(6) For another morphism of schemes X 1 Ñ B1 equipped with a relative d-critical structure s1, an orien-

tation o1 and a critical chart pU 1, f 1, u1q the composite ob o1 Ñ ocanCritU{Bpfq{B b ocanCritU1{B1 pf 1q{B1

(4.30)
ÝÝÝÝÑ

ocanCritUˆU1{BˆB1 pf‘f 1q{BˆB1 determines an isomorphism of µ2-torsors

(4.34) QoU,f,u bQo
1

U 1,f 1,u1 – Qobo1

UˆU 1,f‘f 1,uˆu1 .

5. Perverse pullbacks

The goal of this section is to construct a perverse pullback functor for a morphism of higher Artin stacks
equipped with a relative d-critical structure. Locally the perverse pullback will be given by the functor of
vanishing cycles. To glue it into a global functor, we will construct the stabilization isomorphisms for critical
morphisms of critical charts. All schemes are assumed to be separated and of finite type over C.

5.1. Vanishing cycles for orthogonal bundles. As the first step to construct stabilization isomorphisms,
we will construct them for stabilizations defined by an orthogonal bundle. Given an orthogonal bundle pE, qq

over a scheme U we consider the diagram

E
qE //

πE

��

A1

U.

0E

AA

as in Section 3.1. We will be interested in the following functorialities of orthogonal bundles:
(1) (Base change) Let p : V Ñ U be a morphism of schemes and consider the pullback orthogonal bundle

F “ p˚E over V . Let pE : F Ñ E be the corresponding projection morphism. Let g :“ f˝p : V Ñ A1.
We have a pullback diagram

(5.1)

V F

l

U E

0F

p pE

0E
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The isomorphism detpF q – p˚ detpEq induces an isomorphism

(5.2) orF – p˚orE .

(2) (Isotropic reduction) Given an isotropic subbundle K Ď E, we can form a “Lagrangian correspon-
dence” D : F 99K E, that is, a correspondence

D

πD{F

sm.surj

wwww

� t

cl.emb
iD{E

''
F E

with D :“ KK and F :“ KK{K the reduction of E by K. Then we have a fiber square

(5.3) D
πD{F

zzzz

� r

iD{E

$$
F – F_

r�

π_
D{F $$

l E – E_

i_D{Ezzzz
D_

and a commutative square

(5.4) D
πD{F

~~~~

� p

iD{E

  
F

qF   

E

qE~~
A1

Consider the hyperbolic localization functor

LocD :“ pπD{F q˚i
!
D{E : Db

c pEq Ñ Db
c pF q.

Then we have a natural transformation

(5.5) ExLocϕ : ϕf˝πF `qF
LocD ÝÑ LocDϕf˝πE`qE

given by the composite

ϕf˝πF `qF
pπD{F q˚i

!
D{E

Exϕ
˚

ÝÝÝÑ pπD{F q˚ϕf˝πD`qF ˝πD{F
i!D{E

Ex!
ϕ

ÝÝÑ pπD{F q˚i
!
D{Eϕf˝πE`qE

and natural isomorphisms

(5.6) LocDp0Eq˚ “ pπD{F q˚i
!
D{Ep0Eq˚

Ex!
˚

ÝÝÝÑ pπD{F q˚p0Dq˚ – p0F q˚

and

(5.7) LocDπ
:

E “ pπD{F q˚i
!
D{Eπ

:

E – pπD{F q˚π
:

D{Fπ
:

F rrkpF q ´ rkpDqs – π:

F ,

where the last isomorphism is given by the composite

id
unit

ÝÝÑ
„

pπD{F q˚π
˚
D{F

purπD{F
ÝÝÝÝÝÑ

„
pπD{F q˚π

:

D{F rrkpF q ´ rkpDqs.

Remark 5.1. The natural transformation ExLocϕ is not necessarily invertible. But Lemma 5.3 below shows
that it becomes invertible after composing with π:

E .

We are ready to define the stabilization isomorphisms for quadratic bundles.
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Theorem 5.2. For a scheme U , a function f : U Ñ A1 and an orthogonal bundle E of even rank on U there
exists a natural isomorphism

stabE : p0Eq˚ϕf p´q
„

ÝÑ ϕf˝πE`qE
π:

Epp´q bµ2 orEq

of functors PervpUq Ñ PervpEq uniquely determined by the following properties:
(1) (Smooth base change) For a smooth morphism of schemes p : V Ñ U , the diagram

p:

Ep0Eq˚ϕf p´q
stabE //

Ex!
ϕ,Ex!

˚

��

p:

Eϕf˝πE`qE
π:

Epp´q bµ2 orEq

Ex!
ϕb(5.2)

��
p0F q˚ϕgp

:p´q
stabF // ϕg˝πF `qF

π:

F pp:p´q bµ2
orF q

commutes, where g :“ f ˝ p, F :“ p˚E, and pE :“ p|F .
(2) (Isotropic reduction) Given an isotropic subbundle K Ď E, the diagram

p0F q˚ϕf p´q
stabF //

(5.6)„

��

ϕf˝πF `qF
π:

F pp´q bµ2 orF q
(5.7)b(3.3)

„
// ϕf˝πF `qF

LocDπ
:

Epp´q b orEq

ExLoc
ϕ

��
LocDp0Eq˚ϕf p´q

stabE // LocDϕf˝πE`qE
π:

Epp´q bµ2
orEq

commutes, where D :“ KK and F :“ KK{K.

From now on E will be an orthogonal bundle of even rank over a scheme U . The rest of the section is
devoted to the construction of the stabilization isomorphisms and a proof of their properties. One plausible
way of constructing stabilization isomorphisms is to consider the local isomorphisms given by the Thom–
Sebastiani isomorphism for trivial orthogonal bundles and glue them. However, we then need to show that
these local isomorphisms are compatible with the transition maps along changing the orthogonal coordinates
which is quite non-trivial—we need a relative version of [Bra+15, Proposition 3.4]. Instead, we will use
special orthogonal Grassmannians which are smooth with connected fibers so that a smooth-local construction
without considering the transition maps will be sufficient (as the pullback on perverse sheaves is then fully
faithful). In the special orthogonal Grassmannians we have Lagrangian subbundles so that we can define
the stabilization isomorphisms via reduction by the Lagrangian subbundle.

5.1.1. Case 1: stabilization isomorphism for metabolic bundles. Assume that there exists a Lagrangian sub-
bundle M Ď E. Then the reduction of E by M is just U . We define the stabilization natural transformation

(5.8) stabME : 0E,˚ϕf ÝÑ ϕf˝πE`qE
π:

E

of functors PervpUq Ñ PervpEq as follows. For any F P PervpUq the sheaf ϕf˝πE`qE
pπ:

EFq is supported on the
zero section of E by Proposition 2.21(1). Using (5.6) we see that the functor LocM : Db

c pEq Ñ Db
c pUq defines

a left inverse to p0Eq˚ : D
b
c pUq Ñ Db

c pEq. Therefore, stabME is uniquely determined by the commutative
square

(5.9) LocM0E,˚ϕf
stabME // LocMϕf˝πE`qE

π:

E

ϕf

(5.6) „

OO

(5.7)
„

// ϕfLocMπ
:

E

ExLoc
ϕ

OO

Lemma 5.3. Given a Lagrangian subbundle M of an orthogonal bundle E over a scheme U , the natural
transformation

ExLocϕ : ϕfLocMπ
:

E Ñ LocMϕf˝πE`qE
π:

E

is an isomorphism.
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Proof. Since the statement is local on U , we may assume that U admits a closed immersion i : U Ñ U 1 into
a smooth scheme U 1 and there is a vector bundle M 1 on U 1 and E “ i˚E1, where E1 “ M 1 ‘ pM 1q_ equipped
with the hyperbolic quadratic form. Let M “ i˚M 1. Since i˚ is fully faithful, it is enough to show that
i˚Ex

Loc
ϕ is an isomorphism. The diagram

i˚ϕfLocMπ
:

E

ExLoc
ϕ //

Exϕ
˚,Ex!

˚

��

i˚LocMϕf˝πE`qE
π:

E

Exϕ
˚,Ex!

˚

��
ϕf 1LocM 1π:

E1i˚
ExLoc

ϕ // LocM 1ϕf 1˝πE1 `qE1π
:

E1i˚

of exchange natural transformations commutes: it follows from the compatibility of Ex!˚ and Exϕ˚ with
compositions as well as the commutative diagram from Proposition 2.21(3). As the vertical morphisms are
isomorphisms, it is enough to show that the bottom morphism is an isomorphism. Thus, we are reduced to
showing the claim for the smooth scheme U 1.

Consider the Gm-action on E1 given by the weight 1 action on M 1 and the weight p´1q-action on pM 1q_.
Then M 1 is the attractor scheme, so the attractor correspondence for this action is U 1 Ð M 1 Ñ E1. The
function qE1 : E1 Ñ A1 is Gm-invariant, so the claim follows from the fact that vanishing cycles commute
with hyperbolic restriction, [Nak17, Proposition 5.4.1]. □

In particular, stabME is a natural isomorphism.

Remark 5.4. When f “ 0, the statement of Lemma 5.3 also follows from the dimensional reduction
isomorphism as in [Dav17, Appendix A].

5.1.2. Case 2: stabilization isomorphism for oriented bundles. Assume that E has an orientation o P

ΓpU, orEq. Consider the special orthogonal Grassmannian

OG`
pEq : pT Ñ Uq ÞÑ tpositive Lagrangian subbundles on E|T u.

Let ME Ď E|OGpEq be the universal Lagrangian subbundle. Consider the projection

p : OG`
pEq Ñ U.

Lemma 5.5. The morphism p : OG`
pEq Ñ U is smooth with connected fibers.

Proof. The question is étale local on U , so we may assume that E is trivial, i.e. E “ U ˆ V for a non-
degenerate quadratic space pV, qq which admits a Lagrangian. In this case OG`

pEq – U ˆ OG`
pV q. More-

over, OG`
pV q is a homogeneous space for the special orthogonal group SOpqq. But SOpqq is smooth and

connected, which implies that OG`
pV q is smooth and connected. □

Therefore, the pullback
p: : PervpUq Ñ PervpOG`

pEqq

is fully faithful by Proposition 2.9(6b), i.e., for any F,G P PervpUq, the pullback

(5.10) p: : HomPervpUqpF,Gq
„

ÝÑ HomPervpOG`pEqqpp:F, p:Gq

is an isomorphism. We define the stabilization natural isomorphism

(5.11) staboE : 0E,˚ϕf
„

ÝÑ ϕf˝πE`qE
π:

E

of functors PervpUq Ñ PervpEq as the unique natural transformation that fits into the commutative square

p:

E0E,˚ϕf
staboE

„
//

Ex!
ϕ,Ex!

˚
„

��

p:

Eϕf˝πE`qE
π:

E

Ex!
ϕ„

��
0E|OG`pEq

,˚ϕf |OG`pEq
p:

stab
ME
E|

OG`pEq

„
// ϕf |OG`pEq

πE|V
`qE|

OG`pEq

π:

E|OG`pEq

p:,

with respect to the isomorphism (5.10), where stabME

E|OG`pEq

is the stabilization morphism defined in (5.8).
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5.1.3. Case 3: stabilization isomorphism in general. Assume now E is arbitrary. Consider the orientation
bundle orE geometrically: we have an étale surjection p : orE Ñ U and an automorphism σ : orE

„
ÝÑ orE

over U exchanging the two sheets such that σ2 “ 1.

orE
σ //

p
��

orE

p
��

U

By descent, for any F,G P PervpUq, the pullback establishes an isomorphism

(5.12) p: : HomPervpUqpF,Gq
„

ÝÑ HomPervporEqpp:F, p:Gqσ,

where p´qσ denotes the σ-invariant subspace. Hence to construct the stabilization isomorphism in general, it
suffices to know how the stabilization isomorphism from (5.11) changes under the change of the orientation.

Proposition 5.6. Let E be an orthogonal bundle over U equipped with an orientation o P ΓpU, orEq. Then

stab´o
E “ ´staboE : 0E,˚ϕf

„
ÝÑ ϕf˝πE`qE

π:

E .

Proof. Let V be the standard one-dimensional space C equipped with the quadratic form x2. The statement
is étale local, so we may assume that E “ U ˆ V 2n for some n. By definition of staboE it is enough to show
that stabM1

E “ ´stabM2

E for any two Lagrangian subbundles M1,M2 Ă E which induce different orientations
of E. In turn, by naturality of the stabilization isomorphism it is equivalent to showing that for some
A P Op2nq with detpAq “ ´1 the induced action on ϕf‘qp´ bωV 2nq is by p´1q. Using the Thom–Sebastiani
isomorphism TS this boils down to showing that x ÞÑ ´x acts by p´1q on ϕx2ωV .

The morphism q “ x2 : A1 Ñ A1 is finite, so we get an isomorphism Exϕ˚ : q˚ϕx2ωA1 – ϕxq˚ωA1 . The
sheaf q˚ωA1 P Db

c pA1q fits into a fiber sequence

j!Kr2s ÝÑ q˚ωA1 ÝÑ ωA1 ,

where j : Gm Ñ A1 is the inclusion of the complement of the origin and K is lisse of rank 1. Therefore,
pϕtq˚ωA1qt0u – K|1r2s. By proper base change, we have a short exact sequence

0 ÝÑ K|1 ÝÑ HBM
0 pq´1p1qq ÝÑ R ÝÑ 0,

where the second morphism is the trace map. Since t ÞÑ ´t acts by permuting the fibers of q´1p1q, it acts
by ´1 on K|1, which proves the claim. □

The pullback E|orE admits a tautological orientation oE . Since we have σ˚poEq “ ´oE , the map

staboEE|orE
p´q b oE : 0E|orE ,˚

ϕp˚f p´q
„

ÝÑ ϕp˚f˝πE|orE
`qE|orE

π:

E|orE
p´ bµ2

orE|orE
q

is σ-invariant and hence descends to an isomorphism

(5.13) stabE : 0E,˚ϕf p´q
„

ÝÑ ϕf˝πE`qE
π:

Ep´ bµ2 orEq.

5.1.4. Proof of Theorem 5.2. The stabilization isomorphism is given by (5.13). The uniqueness is clear:

‚ Using the base change property for the orientation torsor orE Ñ U the stabilization isomorphism
for a general even rank orthogonal bundle is uniquely determined by the stabilization isomorphism
for an oriented even rank orthogonal bundle.

‚ Using the base change property for the special orthogonal Grassmannian OG`
pEq Ñ U the sta-

bilization isomorphism for an oriented even rank orthogonal bundle is uniquely determined by the
stabilization isomorphism for a metabolic bundle.

‚ The isotropic reduction property uniquely determines the stabilization isomorphism for a metabolic
bundle using the diagram (5.9).

Let us now prove the relevant properties:
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(1) (Smooth base change) The claim is local, so we may assume that E admits a Lagrangian ME Ă E.
Let F “ p˚E, MF “ p˚ME , pE “ p|F and pM “ p|MF

. Consider the diagram

(5.14)
V MF F

U ME E

p

πMF
iMF {F

pE

πME iME {E

where both squares are Cartesian. This gives rise to a base change isomorphism

(5.15) p:LocME
– LocMF

p:

E

determined by Ex!˚. We have to show that the outer rectangle in the diagram

p:LocME
0E,˚ϕf p:ϕf p:ϕfLocME

π:

E p:LocME
ϕf˝πE`qE

π:

E

LocMF
0F,˚ϕgp

: ϕgp
: ϕgLocMF

π:

F p
: LocMF

ϕg˝πF `qF
π:

F p
:

(5.15),Ex!
ϕ,Ex!

˚

(5.6) (5.7)

Ex!
ϕ

(5.15),Ex!
ϕ

ExLoc
ϕ

(5.15),Ex!
ϕ

(5.6) (5.7) ExLoc
ϕ

commutes. This follows from the commutativity of the individual squares:
‚ The commutativity of the leftmost square follows by applying the 6-functor formalism D to the

3-cell

V

p
}}

0MF

""
U

0ME

  

MF

pM||

πMF

  
U

0E

��

ME

iME {E}}

πME

""

V

p
}}

U E U V

in the 8-category of correspondences.
‚ The commutativity of the middle square follows from the fact that the exchange natural transfor-

mation Ex!˚ intertwines the unit of the adjunction π˚
ME

% pπME
q˚ and the unit of the adjunction

π˚
MF

% pπMF
q˚.

‚ The commutativity of the rightmost square follows from Proposition 2.21(2)-(3).
(2) (Isotropic reduction) The claim is local, so we may find a Lagrangian subbundle M Ă F together

with a splitting F “ M ‘M_ and E “ F ‘K ‘K_. We have an isomorphism

(5.16) LocM‘K – LocMLocD

induced by Ex!˚. Then the claim reduces to the commutativity of the diagram

ϕfLocM‘K LocM‘Kϕf˝πE`qE

ϕfLocMLocD LocMϕf˝πF `qF
LocD LocMLocDϕf˝πE`qE

ExLoc
ϕ

(5.16) (5.16)
ExLoc

ϕ ExLoc
ϕ

which follows from Proposition 2.21(3).

5.1.5. Properties of the stabilization isomorphisms.
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Proposition 5.7. Let U be a scheme, f : U Ñ A1 a function and E,F orthogonal bundles of even rank over
U . Then the diagram

0E‘F,˚ϕf p´q
stabE‘F //

„

��

ϕf˝πE‘F `qE‘F
π:

E‘F p´ b orE‘F q

(3.1)
��

0F |E ,˚0E,˚ϕf p´q

stabE ##

ϕf˝πE˝πF |E
`qE˝πF |E

`qF |E
π:

F |E
pπ:

Ep´ bµ2
orEq bµ2

orF |E q

0F |E ,˚ϕf˝πE`qE
π:

Ep´ bµ2 orEq

stabF |E

44

is commutative.

Proof. The claim is local, so we may assume that F admits a Lagrangian subbundle M Ă F . Let K “

0 ‘ M Ă E ‘ F be the corresponding isotropic subbundle. Then KK “ E ‘ M and hence KK{K “ E.
Writing stabF |E locally as stabMF |E

the claim reduces to the isotropic reduction property of the stabilization
isomorphism from Theorem 5.2. □

Next we prove a finite base change property.

Proposition 5.8. Let U be a scheme, E an orthogonal bundle of even rank over U , f : U Ñ A1 a function
and p : V Ñ U a finite morphism. Let g :“ f ˝ p, F :“ p˚E, and pE :“ p|E. The diagram

p0Eq˚ϕfp˚p´q
stabE //

Exϕ
˚

��

ϕf˝πE`qE
π:

Epp˚p´q bµ2 orEq

Exϕ
˚,Ex!

˚b(5.2)
��

ppEq˚p0F q˚ϕgp´q
stabF // ppEq˚ϕg˝πF `qF

π:

F p´ bµ2
orF q

commutes.

Proof. The claim is local, so as in the proof of the smooth base change property we may assume that E
admits a Lagrangian ME Ă E. Let F “ p˚E and MF “ p˚ME . Diagram (5.14) induces a base change
isomorphism

(5.17) LocME
ppEq˚ – p˚LocMF

determined by Ex!˚. We have to show that the outer rectangle in the diagram

LocME
0E,˚ϕfp˚ ϕfp˚ ϕfLocME

π:

Ep˚ LocME
ϕf˝πE`qE

π:

Ep˚

p˚LocMF
0F,˚ϕg p˚ϕg p˚ϕgLocMF

π:

F p˚LocMF
ϕg˝πF `qF

π:

F

Exϕ
˚,(5.17)

(5.6) (5.7)

Exϕ
˚

Ex!
˚,(5.17),Exϕ

˚

ExLoc
ϕ

Ex!
˚,Exϕ

˚,(5.17)

(5.6) (5.7) ExLoc
ϕ

commutes. This follows from the commutativity of the individual squares:
‚ The commutativity of the leftmost square follows by applying sheaf theory D to the 3-cell

V
0MF

""
V

0MF

  

MF

pM

""
V

0F

��

MF

iMF {F~~

pM

""

ME

πME

  
V F ME U
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in the 8-category of correspondences.
‚ The commutativity of the middle square follows from the fact that the exchange natural transfor-

mation Ex!˚ intertwines the unit of the adjunction π˚
ME

% pπME
q˚ and the unit of the adjunction

π˚
MF

% pπMF
q˚.

‚ The commutativity of the rightmost square follows from Proposition 2.21(2)-(3).
□

Next we prove a compatibility with Verdier duality.

Proposition 5.9. Let U be a scheme, E an orthogonal bundle of even rank over U and f : U Ñ A1 a
function. The diagram

p0Eq˚ϕfDp´q
stabE //

Exϕ,D,Ex˚,D

��

ϕf˝πE`qE
π:

EpDp´q bµ2
orEq

Ex:,D,Exϕ,D
b(3.2)

��
Dp0Eq˚ϕ´f p´q Dϕ´f˝πE´qE

π:

Ep´ bµ2 orEq
stabEoo

commutes.

Proof. The claim is local, so we may assume E “ M ‘M_ for a pair of Lagrangian subbundles M,M_ Ă E.
The orientations of E induced by M and M_ differ by p´1qrkpEq{2. Similarly, the morphism (3.2) acts on
volume forms by p´1qrkpEq{2. Thus, we have to show that the diagram

p0Eq˚ϕfDp´q
stabME //

Exϕ,D,Ex˚,D

��

ϕf˝πE`qE
π:

EDp´q

Ex:,D,Exϕ,D

��
Dp0Eq˚ϕ´f p´q Dϕ´f˝πE´qE

π:

Ep´q
stabM

_

Eoo

commutes. For this, it is sufficient to show that it commutes after applying LocM , as in the definition of
stabME .

Consider the Cartesian diagram

U
0M //

0M_

��

M

iM
��

M_
iM_ // E.

Then we have a natural transformation H : πM_,˚i
!
M_ Ñ πM,!i

˚
M defined as the mate of the composite

isomorphism

id – πM,!0M,!0
˚
M_π˚

M_

Ex˚
!

ÝÝÝÑ πM,!i
˚
M iM_,!π

˚
M_ .

By [Bra03] (considering the Gm-action on E with M of weight 1 and M_ of weight ´1) H is an isomor-
phism on Gm-equivariant complexes; in particular, it is an isomorphism on the subcategory of constructible
complexes on E supported on U .

Using the definition of the stabilization isomorphism and commuting LocM past D the claim reduces to
the following ones:

(1) The diagram

id
„ //

„

��

πM,!0M,!

Ex˚
! // πM,!i

˚
M0E,!

fgsp0E

��
πM_,˚0M_,˚

Ex!
˚ // πM_,˚i

!
M_0E,˚

H // πM,!i
˚
M0E,˚

commutes. Plugging in the definitions of Ex!˚, H and fgsp0E as mates of the respective natural
transformations, the claim follows from the compatibility of Ex˚

! with compositions.
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(2) The diagram

πM,!i
˚
Mπ

˚
ErrkpEqs

„ //

purπE

��

πM,!π
˚
M r2rkpMqs

purπM // πM,!π
!
M

counit // id

unit

��
πM,!i

˚
Mπ

!
Er´rkpEqs πM_,˚i

!
M_π!

Er´rkpEqs
Hoo πM_,˚π

!
M_ r´2rkpMqs

„oo πM_,˚π
˚
M_

purπM_oo

commutes. Unpacking the definition of H as a mate, the commutativity of this diagram reduces to
the commutativity of

id
„ // πM,!0M,!0

˚
M_π˚

M_

Ex˚
! // πM,!i

˚
M iM_,!π

˚
M_

unit // πM,!i
˚
Mπ

!
EπE,!iM_,!π

˚
M_

id πM,!π
!
MπM_,!π

!
M_

counit,counitoo πM,!π
˚
MπM_,!π

˚
M_ r2rkpEqs

purπM
,purπM_oo πM,!i

˚
Mπ

˚
EπE,!iM_,!π

˚
M_ r2rkpEqs

purπE

OO

„oo

which follows from the compatibility of the purity isomorphism with respect to compositions.
(3) The diagram

ϕfπM_,˚i
!
M_

Exϕ
˚ //

H

��

πM_,˚ϕf˝πM_ i!M_

Ex!
ϕ // πM_,˚i

!
M_ϕf˝πE`qE

H

��
ϕfπM,!i

˚
M πM,!ϕf˝πM

i˚M
Exϕ

!oo πM,!i
˚
Mϕf˝πE`qE

Ex˚
ϕoo

commutes. Plugging in the definitions of H, Exϕ! and Ex˚
ϕ as mates, the commutativity of this

diagram follows from Proposition 2.21(3).

□

Finally, we prove a compatibility with products.

Proposition 5.10. Let U, V be schemes, E an orthogonal bundle of even rank over U and f : U Ñ A1 and
g : V Ñ A1 two functions. Let E1 “ E ˆ V be the pullback orthogonal bundle over U ˆ V . Then the diagram

p0Eq˚ϕf p´q b ϕgp´q
stabEbid //

TS

��

ϕf˝πE`qE
π:

Ep´ bµ2 orEq b ϕgp´q

TSb(5.2)
��

p0E1 q˚ϕf‘gp´ b ´q
stabE1 // ϕf˝πE`qE‘gπ

:

E1 pp´ b ´q bµ2 orE1 q

commutes.

Proof. The claim is local, so we may assume that there is a Lagrangian subbundle M Ă E. Let M 1 Ă E1 be
its pullback to U ˆ V . Then we have to show that the outside rectangle in

LocM p0Eq˚ϕf p´q b ϕgp´q

TS

��

ϕf p´q b ϕgp´q
(5.6)oo (5.7) //

TS

��

ϕfLocMπ
:

Ep´q b ϕgp´q
ExLoc

ϕ //

TS

��

LocMϕf˝πE`qE
π:

Ep´q b ϕgp´q

TS

��
LocM 1 p0E1 q˚ϕf‘gp´ b ´q ϕf‘gp´ b ´q

(5.6)oo (5.7) // ϕf‘gLocM 1π:

E1 p´ b ´q
ExLoc

ϕ // LocM 1ϕf˝πE`qE‘gπ
:

E1 p´ b ´q

commutes. But in the above diagram individual squares commute: this follows from the compatibility of the
isomorphisms Ex!˚, the unit id Ñ πM,˚π

˚
M , Exϕ˚ and Ex!ϕ with products. □
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5.2. Symmetries of vanishing cycles. In this section we construct and analyze stabilization isomorphisms
for étale morphisms of critical charts.

Let Φ: pU, fq Ñ pV, gq be a smooth morphism of LG pairs over B, so that by Proposition 4.1 Φ restricts
to a smooth morphism Φ: CritU{Bpfq Ñ CritV {Bpgq of the same relative dimension dimpU{V q. There is a
natural comparison isomorphism

ϕf pU Ñ Bq:
Ex!

ϕ
ÝÝÑ Φ:ϕgpV Ñ Bq: purΦ

ÐÝÝÝ Φ˚ϕgpV Ñ Bq:rdimpU{V qs

of functors PervpBq Ñ PervpUq. By Proposition 2.21(1) the image of these functors is supported on the
relative critical locus CritU{Bpfq and thus we get a natural isomorphism

(5.18) ExΦ : pϕf pU Ñ Bq:qp´q|CritU{Bpfq
„

ÝÑ pϕgpV Ñ Bq:qp´q|CritU{BpfqrdimpU{V qs.

Lemma 5.11. Let pU, fq
Φ

ÝÑ pV, gq
Ψ

ÝÑ pW,hq be a composite of smooth morphisms of LG pairs over B.
Then

ExΨ˝Φ “ ExΨ|CritU{Bpfq ˝ ExΦ.

Proof. The claim follows from the functoriality of Ex!ϕ with respect to compositions, Proposition 2.21(2), as
well as the functoriality of the purity isomorphism, Proposition 2.14. □

Example 5.12. Let pU, fq be an LG pair over B and pV, qq a vector space equipped with a nondegenerate
quadratic form. Let M be an orthogonal automorphism of pV, qq and consider an automorphism id ˆ M of
the LG pair pU ˆ V, f ‘ qq over B. Then

ExidˆM “ detpMqExid,

where detpMq “ ˘1 since M is orthogonal. Indeed, using the naturality of the stabilization isomorphism
from Theorem 5.2 it reduces to the fact that M : V Ñ V acts by detpMq on the orientation µ2-torsor.

The following statement, which is a family version of [Bra+15, Theorem 3.1], explains that ExΦ depends,
up to an explicit sign, only on the étale morphism

Φ|CritU{Bpfq : CritU{Bpfq ÝÑ CritV {Bpgq.

Theorem 5.13. Let Φ0,Φ1 : pU, fq Ñ pV, gq be étale morphisms of LG pairs over B. Let X “ CritU{Bpfq

and Y “ CritV {Bpgq and assume that

Φ0|X “ Φ1|X : X ÝÑ Y.

(1) Consider the induced isomorphisms

dΦ0|X , dΦ1|X : TU{B |Xred ÝÑ TV {B |Y red .

Then detpdΦ1|
´1
Xred ˝ dΦ0|Xredq : Xred Ñ A1 is a locally constant map with values ˘1.

(2) We have
ExΦ0

“ detpdΦ1|
´1
Xred ˝ dΦ0|Xredq ¨ ExΦ1

.

Proof of Theorem 5.13(1). The function ∆ “ detpdΦ1|
´1
Xred ˝dΦ0|Xredq : Xred Ñ A1 is a function on a reduced

scheme. Therefore, the equation ∆2 “ 1 can be checked pointwise on Xred. For a k-point b P B let

Ub “ U ˆB Spec k, Vb “ V ˆB Spec k

be the corresponding smooth schemes over k andXb “ CritUb
pfq. Then it is sufficient to show that ∆2|Xb

“ 1.
But this is the content of [Bra+15, Theorem 3.1 (a)]. □

Next we will prove Theorem 5.13(2) under an additional assumption.

Proposition 5.14. Consider the setting of Theorem 5.13 and suppose that for a point u P CritU{Bpfq we
have

pdΦ1|´1
u ˝ dΦ0|u ´ idq2 “ 0: TU{B,u Ñ TU{B,u.

For each perverse sheaf F P PervpBq there is an open neighborhood X˝ Ă CritU{Bpfq of u such that
ExΦ0

pFq|X˝ “ ExΦ1
pFq|X˝ .
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Proof. Applying Proposition 3.35, we obtain an LG pair pW,hq over B ˆ A1 together with étale morphisms

pW,hq

ΨU

ww

ΨV

''
pU ˆ A1, f ‘ 0q pV ˆ A1, g ‘ 0q

and a map w : A1 Ñ W satisfying the conditions of Proposition 3.35. Consider the following data:
‚ P “ pϕf pU Ñ Bq:qpFq|CritU{Bpfq P PervpCritU{Bpfqq.
‚ Q “ pϕgpV Ñ Bq:qpFq|CritU{Bpfq P PervpCritU{Bpfqq.
‚ An isomorphism α : P Ñ Q in PervpCritU{Bpfqq given by ExΦ0

.
‚ An isomorphism β : P Ñ Q in PervpCritU{Bpfqq given by ExΦ1 .
‚ An isomorphism γ : pP bRA1r1sq|CritW {BˆA1 phq Ñ pQ bRA1r1sq|CritW {BˆA1 phq given by ExΨV

˝ Ex´1
ΨU

.

From the commutative diagram
W0

ΨU,0

~~

ΨV,0

  
U

Φ0 // V,

we get γ|t“0r´1s “ α|CritW0{Bph0q, where ht : Wt Ñ A1 is the restriction of h : W Ñ A1 to the fiber at t P A1.
Similarly, from the commutative diagram

W1

ΨU,1

~~

ΨV,1

  
U

Φ1 // V,

we get γ|t“1r´1s “ β|CritW1{Bph1q. Therefore, the claim follows from [Bra+15, Proposition 2.8]. □

We are now ready to prove Theorem 5.13(2) in general.

Proof of Theorem 5.13(2). Consider a point u P CritU{Bpfq and let v “ Φ0puq “ Φ1puq. The differentials
dΦ0 and dΦ1 fit into a commutative diagram

0 // TX{B,u
//

dpΦt|Xq|u

��

TU{B,u
//

pdΦtq|u

��

Nu //

��

0

0 // TY {B,v
// TV {B,v

// Nv // 0

where both rows are exact. Choosing an arbitrary splitting of the top exact sequence and using that
Φ0|X “ Φ1|X , we get

(5.19) dΦ1|´1
u ˝ dΦ0|u “

„

id ˚

0 M

ȷ

: TX{B,u ‘ Nu Ñ TX{B,u ‘ Nu.

By Proposition 3.14(1) the Hessian Hesspfqu restricts to a nondegenerate quadratic form on Nu and by
Proposition 3.14(2) the induced morphisms pNu,Hesspfquq Ñ pNv,Hesspgqvq are orthogonal. Thus, M is an
orthogonal automorphism of pNu,Hesspfquq.

If M “ id, we are finished by Proposition 5.14 as then pdΦ1|´1
u ˝ dΦ0|u ´ idq2 “ 0. We will now adjust

the setting to put the étale morphisms in the form suitable for the application of Proposition 5.14. For
this, using Proposition 3.26 we may find an LG pair pW,hq over B, a point w P CritW {Bphq and a critical
morphism Ξ: pW,hq Ñ pU, fq which satisfies

(1) Ξpwq “ u.
(2) TCritW {Bphq,u “ TW {B,u.
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The last property implies that the normal space of Ξ: W Ñ U˝ at w is canonically isomorphic to Nu, such
that the quadratic form qΞ from Proposition 3.32 is identified with Hesspfqu. Thus, applying Proposition 3.23
to Ξ we obtain a diagram

W
0 // W ˆ Nu

W ˝ Ξ˝

//

ı

��

ı

OO

U˝

ȷ

��

α

OO

W
Ξ // U

Φt // V

with ı : pW ˝, h˝q Ñ pW,hq an open immersion and ȷ : pU˝, f˝q Ñ pU, fq and α : pU˝, f˝q Ñ pW ˆ Nu, h ‘

Hesspfquq étale morphisms of LG pairs over B. By assumption w P W ˝; denote u˝ “ Ξ˝puq P CritU˝{Bpf˝q.
Since M is orthogonal, idˆM is an automorphism of the LG pair pW ˆNu, h‘Hesspfquq over B. Thus,

we may form the fiber product

(5.20) P
π0 //

π1

��

U˝

pidˆMq˝α

��
U˝ α // W ˆ Nu

which comes equipped with a function d : P Ñ A1 given by

d “ f˝ ˝ π0 “ f˝ ˝ π1.

By the universal property there is a point p P CritP {Bpdq such that π0ppq “ π1ppq “ u˝. For t “ 0, 1 define
the étale morphisms

Θt “ Φt ˝ ȷ ˝ πt : P ÝÑ V

which send p to v. Identifying TP {B,p – TW {B,w ‘ Nu using dpα ˝ π1qp we get that

dΘ1|´1
p ˝ dΘ0|p “

„

id ˚

0 id

ȷ

: TP {B,p ÝÑ TP {B,p.

Fixing a perverse sheaf F P PervpBq, by Proposition 5.14 we get an open neighborhood P ˝ Ă CritP {Bpdq

of p such that
ExΘ0

pFq|P ˝ “ ExΘ1
pFq|P ˝ .

Using Lemma 5.11 we get

pExΦ0
|P ˝ ˝ Exȷ|P ˝ ˝ Exα|

´1
P ˝ ˝ Exα|P ˝ ˝ Exπ0

|P ˝ qpFq “ pExΦ1
|P ˝ ˝ Exȷ|P ˝ ˝ Exα|

´1
P ˝ ˝ Exα|P ˝ ˝ Exπ1

|P ˝ qpFq.

Using the commutative diagram (5.20) we get

pExidˆM |P ˝ ˝ Exα|P ˝ ˝ Exπ0
|P ˝ qpFq “ pExα|P ˝ ˝ Exπ1

|P ˝ qpFq.

By Example 5.12 we have ExidˆM “ detpMq and therefore

ExΦ0
pFq|P ˝ “ detpMq ¨ ExΦ1

pFq|P ˝ .

Using (5.19) we see that
detpMq “ detpdΦ1|´1

u ˝ dΦ0|uq.

Here P ˝ Ñ CritU{Bpfq is an étale neighborhood of u P CritU{Bpfq. Varying over different points u P

CritU{Bpfq we get that

ExΦ0
pFq “ detpdΦ1|

´1
Xred ˝ dΦ0|Xredq ¨ ExΦ1

pFq

is true on an étale cover of CritU{Bpfq and hence, by étale descent, is true on all of CritU{Bpfq. Since this
is true for every F P PervpBq, this finishes the proof. □
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5.3. Perverse pullbacks for schemes. Given an étale morphism Φ: pU, fq Ñ pV, gq of LG pairs over B,
there is a natural isomorphism (5.18)

ExΦ : pϕf pU Ñ Bq:qp´q|CritU{Bpfq
„

ÝÑ pϕgpV Ñ Bq:qp´q|CritU{Bpfq.

In the following statement we extend this isomorphism to arbitrary critical morphisms; this is a family
version of the stabilization isomorphism from [Bra+15, Theorem 5.4].

Theorem 5.15. Let Φ: pU, fq Ñ pV, gq be a critical morphism of LG pairs over B of even relative dimension.
Then there is a natural isomorphism

stabΦ : pϕf pU Ñ Bq:qp´q|CritU{Bpfq
„

ÝÑ pϕgpV Ñ Bq:qp´q|CritU{Bpfq bµ2
PΦ

of functors PervpBq Ñ PervpCritU{Bpfqq uniquely determined by the following properties:
(1) Let pU, fq be an LG pair over B and pE, qq an orthogonal bundle over U of even rank. For the zero

section 0E : pU, fq Ñ pE, f ˝ πE ` qEq we have

stabΦ “ stabE

defined in Theorem 5.2.
(2) If Φ: pU, fq Ñ pV, gq is an étale morphism of LG pairs over B, then

stabΦ “ ExΦ.

It additionally satisfies the following properties:
(3) Let Φ0,Φ1 : pU, fq Ñ pV, gq be critical morphisms of even relative dimension such that

Φ0|CritU{Bpfq “ Φ1|CritU{Bpfq : CritU{Bpfq Ñ CritV {Bpgq.

Then we have an equality

stabΦ0 “ stabΦ1 : pϕf pU Ñ Bq:qp´q|CritU{Bpfq
„

ÝÑ pϕgpV Ñ Bq:qp´q|CritU{Bpfq bµ2 PΦ.

(4) For the identity critical morphism id : pU, fq Ñ pU, fq we have stabid “ id.
(5) For a composite pU, fq

Φ
ÝÑ pV, gq

Ψ
ÝÑ pW,hq of critical morphisms of even relative dimensions we have

a commutative diagram

pϕf pU Ñ Bq:qp´q|CritU{Bpfq pϕgpV Ñ Bq:p´qq|CritU{Bpfq bµ2
PΦ

pϕhpW Ñ Bq:qp´q|CritU{Bpfq bµ2
PΨ˝Φ pϕhpW Ñ Bq:qp´q|CritU{Bpfq bµ2

PΨ|CritU{Bpfq b PΦ.

stabΦ

stabΨ˝Φ stabΨbid

idbΞΦ,Ψ

(6) For a commutative diagram

pU1, f1q
Φ1 //

πU

��

pV1, g1q

πV

��
pU2, f2q

Φ2 // pV2, g2q

with πU and πV smooth morphisms and Φ1 and Φ2 critical morphisms of even relative dimension
such that U1 Ñ V1 ˆV2

U2 is étale, the diagram

pϕf1pU1 Ñ Bq:qp´q|CritU1{Bpf1q

stabΦ1 //

ExπU

��

pϕg1pV1 Ñ Bq:qp´q|CritU1{Bpf1q bµ2
PΦ1

ExπV
b(3.14)

��
pϕf2pU2 Ñ Bq:qp´q|CritU1{Bpf1qrdimpU1{U2qs

stabΦ2 // pϕg2pV2 Ñ Bq:qp´q|CritU1{Bpf1q bµ2
π˚
UPΦ2

rdimpU1{U2qs

commutes.
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(7) For a smooth morphism p : B1 Ñ B with Φ1 : pU 1, f 1q Ñ pV 1, g1q the base change of Φ and πU : CritU 1{B1 pf 1q Ñ

CritU{Bpfq the corresponding projection, the diagram

pϕf 1 pU 1 Ñ Bq:qp´q|CritU1{B1 pf 1q

stabΦ1 //

Ex!
ϕ

��

pϕg1 pV 1 Ñ Bq:qp´q|CritU1{B1 pf 1q bµ2
PΦ1

Ex!
ϕb(3.14)

��
π:

U ppϕf pU Ñ Bq:qp´q|CritU{Bpfqq
stabΦ // π:

U ppϕgpV Ñ Bq:qp´q|CritU{Bpfq bµ2
PΦq

commutes.
(8) For a finite morphism c : B̃ Ñ B with Φ̃ : pŨ , f̃q Ñ pṼ , g̃q the base change of Φ and c̃U : Ũ Ñ U and

c̃V : Ṽ Ñ V projections, the diagram

pϕf pU Ñ Bq:c˚qp´q|CritU{Bpfq

stabΦ //

Exϕ
˚,Ex!

˚

��

pϕgpV Ñ Bq:c˚qp´q|CritU{Bpfq bµ2
PΦ

Exϕ
˚,Ex!

˚b(3.14)
��

pc̃U q˚ppϕf̃ pŨ Ñ B̃q:qp´q|CritŨ{B̃pfqq
stabΦ̃ // pc̃V q˚ppϕg̃pṼ Ñ B̃q:qp´q|CritŨ{B̃pfq bµ2

PΦ̃q

commutes.
(9) Let p : B Ñ B1 be a smooth morphism and stabBΦ the stabilization isomorphism for Φ viewed as a

morphism of LG pairs over B and stabB
1

Φ the stabilization isomorphism for Φ viewed as a morphism
of LG pairs over B1. Then the diagram

pϕf pU Ñ Bq:p:qp´q|CritU{B1 pfq

stabBΦ //

„

��

pϕgpV Ñ Bq:p:qp´q|CritU{B1 pfq bµ2
PΦ

„

��
pϕf pU Ñ B1q:qp´q|CritU{B1 pfq

stabB
1

Φ // pϕgpV Ñ B1q:qp´q|CritU{B1 pfq bµ2 PΦ

commutes.
(10) The diagram

pϕf pU Ñ Bq:Dqp´q|CritU{Bpfq pϕgpV Ñ Bq:Dqp´q|CritU{Bpfq bµ2
PΦ

pDϕ´f pU Ñ Bq:qp´q|CritU{Bpfq pDϕ´gpV Ñ Bq:qp´q|CritU{Bpfq bµ2 PΦ

stabΦ

Ex:,ϕ,Exϕ,D Ex:,ϕ,Exϕ,D
b(3.16)

stabΦ

commutes.
(11) Given another critical morphism Φ1 : pU 1, f 1q Ñ pV 1, g1q of LG pairs over B1 of even relative di-

mension, Φ ˆ Φ1 : pU ˆ U 1, f ‘ f 1q Ñ pV ˆ V 1, g ‘ g1q is a critical morphism over B ˆ B1 and the
diagram

ppϕfp
:qp´q|CritU{Bpfq b pϕf 1p1:qp´q|CritU1{B1 pf 1qq pϕgq

:qp´q|CritU{Bpfq b pϕg1q1:qp´q|CritU1{B1 pf 1q bµ2
pPΦ b PΦ1 q

ϕf‘f 1 ppˆ p1q:p´q|CritUˆU1{BˆB1 pf‘f 1q ϕg‘g1 pq ˆ q1q:p´q|CritUˆU1{BˆB1 pf‘f 1q bµ2
PΦˆΦ1

stabΦbstabΦ1

TS TSb(3.15)

stabΦˆΦ1

commutes.

Proof. Using Proposition 3.23 we may find a collection of tUa, fauaPA of LG pairs overB with open morphisms
ıa : pUa, faq Ñ pU, fq such that tRa “ CritUa{Bpfaq Ñ R “ CritU{Bpfqu is an open cover, a collection
tVa, gauaPA of LG pairs over B with étale morphisms ȷa : pVa, gaq Ñ pV, gq and a collection tEa, qauaPA of
trivial orthogonal bundles over U with étale morphisms αa : pVa, gaq Ñ pEa, f ˝ πEa

` qEa
q which fit into a
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commutative diagram

U Ea

Ua Va

U V

0Ea

Φa

ıa

ıa

ȷa

αa

Φ

By descent it is enough to construct the stabilization isomorphism stabΦ restricted to Ra and show that
these stabilization isomorphisms are equal on Rab “ Ra ˆR Rb.

By construction there is a canonical isomorphism

(5.21) PΦ|Ra
– orEa

|Ra
.

Let πU : U Ñ B and πV : V Ñ B be the natural projections. We define stabΦ|Ra as the composite

ϕf pπ:

U p´qq|Ra
bµ2

orEa
|Ra

stabEa
ÝÝÝÝÑ pϕf˝πEa`qEa

π:

Ea
π:

U p´qq|Ra

Exαa
ÐÝÝÝ pϕgaπ

:

Va
p´qq|Ra

Exȷa
ÝÝÝÑ pϕgπ

:

V p´qq|Ra
.

The above isomorphism is determined uniquely by properties (1) and (2).
We will now show the following facts:
(1) stabΦ glues into a global isomorphism over R, i.e. stabΦ|Ra

“ stabΦ|Rb
above.

(2) stabΦ is independent of the choices of the local model given in Proposition 3.23. For this, making
two choices for the local model, we again have to prove stabΦ|Ra

“ stabΦ|Rb
.

(3) Property (3) of the stabilization isomorphism holds, i.e. given two critical morphisms Φ0,Φ1 : pU, fq Ñ

pV, gq such that Φ0|CritU{Bpfq “ Φ1|CritU{Bpfq we have stabΦ0 “ stabΦ1 . For this we repeat the above
construction with Φ0 on Ua and Φ1 on Ub. We have to prove again stabΦ0

|Ra
“ stabΦ1

|Rb
.

Since Ea and Eb are trivial, we may identify the two; we denote the resulting orthogonal bundle E. Let
Uab “ Ua ˆU Ub. We have a diagram

Ua
Φa //

ıa

��

Va

ȷa ��
αa

��
Uab

==

!!

U
0E // E V

Ub
Φb //

ıb

OO

Vb

ȷb

??

αb

OO

with the two squares as well as the left triangle commutative. When we prove the first two items in the above
list, the two composite morphisms Uab Ñ V are equal (given by the composite Uab Ñ U

Φ
ÝÑ V ). When we

prove the last item in the above list, we only have the weaker statement that the two composite morphisms
Rab Ñ Uab Ñ V are equal. So, from now on we only use this weaker assumption.

For a point u P Rab we have an isomorphism E|u – E|u given by

E|u – NU{Ea,u

pdαaq|
´1
Φapuq

ÝÝÝÝÝÝÝÑ NUa{Va,u

pdȷaq|Φapuq

ÝÝÝÝÝÝÝÑ NU{V,u

pdȷbq|
´1
Φbpuq

ÝÝÝÝÝÝÝÑ NUb{Vb,u

pdαbq|Φbpuq

ÝÝÝÝÝÝÝÑ NU{Eb,u – E|u.

Let Mu : E|u Ñ E|u be the corresponding matrix; by Proposition 3.32 it is an orthogonal matrix. The two
isomorphisms PΦ|Rab

– orEa |Rab
and PΦ|Rab

– orEb
|Rab

given by (5.21) differ by detpMq in a neighborhood
of u.

By Lemma 5.11 we have to show that we have an equality

(5.22) Exαb
|Rab

˝ Exȷb |
´1
Rab

˝ Exȷa |Rab
˝ Exαa |

´1
Rab

“ detpMq ¨ id

of natural automorphisms of ϕf˝πE`qE
pπ:

Epπ:

U p´qqq|Rab
in a neighborhood of u.
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For this, let Vab “ Va ˆE Vb equipped with a function gab : Vab Ñ A1 compatible with ga and gb on Va
and Vb and consider the corresponding diagram

Va

ȷa ��
αa

��
Rab

Φab // Vab

pa

==

pb !!

// E V

Vb

ȷb

??

αb

OO

Then we have two étale morphisms

ȷa ˝ pa, ȷb ˝ pb : pVab, gabq Ñ pV, gq

of LG pairs over B such that the two composites

Rab ÝÑ CritVab{Bpgabq ÝÑ CritV {Bpgq

are equal. Identifying TVab{B,Φabpuq – TU{B,u ‘ E|u using the étale morphism Vab Ñ E we have

pdpbq|
´1
Φabpuq

˝ pdȷbq|
´1
Φbpuq

˝ pdȷaq|Φapuq ˝ pdpaq|Φapuq “

„

id 0
0 M

ȷ

Thus, we have
det

´

pdpbq|
´1
Φabpuq

˝ pdȷbq|
´1
Φbpuq

˝ pdȷaq|Φapuq ˝ pdpaq|Φapuq

¯

“ detpMq.

Applying Theorem 5.13 we get (5.22) as claimed.
Let us now show the remaining properties of the stabilization isomorphism. It is enough to establish

property (1) locally when E is a trivial orthogonal bundle. In this case the critical morphism 0E : U Ñ E is
already in a local model, so that stabΦ “ stabE by definition.

In the setting of property (2) we are again in a local model: the corresponding diagram from Proposi-
tion 3.23 is

U U

U U

Φ
��

U
Φ // V

and by definition we get stabΦ “ ExΦ.
Property (4) of the stabilization isomorphism is obvious as for the identity critical morphism we may take

E “ 0 and Ua “ U “ Va “ V in the local model given in Proposition 3.23.
It is enough to show the commutativity of the diagram from property (5) locally. For this, consider

U˝, V ˝
1 , V

˝
2 ,W

˝, pE1, q1q, pE2, q2q, U as in the proof of Proposition 3.32(2), so that we have a local model of
the critical morphism Ψ ˝ Φ as

U E1 ˆV E2

U W ˝

U WΨ˝Φ

Restricting the diagram to U , we get local isomorphisms PΦ – orE1
, PΨ – orE2

and PΨ˝Φ – orE1‘E2
.

The commutativity of the diagram then follows from Proposition 5.7.
Let us now show property (6). First assume that Φ2 is étale. As Φ1 factors through a composite of étale

morphisms U1 Ñ V1 ˆV2 U2 Ñ V1, it is also étale. In this case the commutativity of the diagram follows from
Lemma 5.11. For an arbitrary critical morphism Φ2, we may use Proposition 3.23 to assume, étale locally,
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that Φ2 is given by the zero section U2 Ñ E of an orthogonal bundle in which case stabΦ2 “ stabE . As in
the proof of Proposition 3.32(4), étale locally we have that Φ1 is given by the zero section U1 Ñ π˚

UE of the
pullback orthogonal bundle. In this case property (6) follows from the compatibility of stabE with smooth
base change, Theorem 5.2(1).

Property (7) is proven similarly to property (6): if Φ is étale, it follows from Proposition 2.21(2) and if Φ
is the zero section of an orthogonal bundle E, it follows from the compatibility of stabE with smooth base
change, Theorem 5.2(1).

Property (8) is proven similarly to properties (6) and (7): if Φ is étale, it follows from Proposition 2.21(2)
and if Φ is the zero section of an orthogonal bundle E, it follows from the compatibility of stabE with finite
base change, Proposition 5.8.

Property (9) is obvious from construction.
Property (10) follows from Proposition 2.22(2) if Φ is étale and from Proposition 5.9 if Φ is the zero

section of an orthogonal bundle.
Let us finally prove property (11). Writing Φ ˆ Φ1 “ pΦ ˆ idq ˝ pid ˆ Φ1q and using the compatibility

of the stabilization isomorphism with respect to compositions, property (5), we reduce the claim to the
case Φ1 “ id. Then if Φ is étale, the claim follows from Proposition 2.24(2). If Φ is the zero section of an
orthogonal bundle, the claim follows from Proposition 5.10. □

We are now ready to define perverse pullbacks for relative d-critical structures.

Theorem 5.16. Let π : X Ñ B be a morphism of schemes equipped with a relative d-critical structure s and
an orientation o. There is an exact functor

πφ : PervpBq ÝÑ PervpXq,

called the perverse pullback, uniquely determined by the following properties:
(1) For every critical chart pU, f, uq of pX Ñ B, sq, such that dimpU{Bq pmod 2q coincides with the

parity of o, we have a canonical natural isomorphism

(5.23) pπφpFqq|CritU{Bpfq – ϕf ppU Ñ Bq:pFqq|CritU{Bpfq bµ2
QoU,f,u.

(2) For a critical morphism Φ: pU, f, uq Ñ pV, g, vq of critical charts of even relative dimension the
diagram

pπφpFqq|CritU{Bpfq

(5.23) //

(5.23)
��

ϕf ppU Ñ Bq:pFqq|CritU{Bpfq bµ2
QoU,f,u

stabΦbid

��
ϕgppV Ñ Bq:pFqq|CritU{Bpfq bµ2 Q

o
V,g,v

idbΛΦ // ϕgppV Ñ Bq:pFqq|CritU{Bpfq bµ2 PΦ bµ2 Q
o
U,f,u

commutes.
In addition, it satisfies the following properties:

(3) Given an isomorphism of orientations o1 – o2 of the same relative d-critical structure pX Ñ B, sq,
there is a natural isomorphism πφo1 – πφo2 of the perverse pullback functors with respect to the two
orientations, which is associative. Moreover, the automorphism of an orientation pL, oq given by
multiplication on L by a sign σ P µ2 acts on πφo by the same sign µ.

(4) If R is a field, then the perverse pullback functor πφ extends uniquely to a colimit-preserving t-exact
functor

πφ : DpBq ÝÑ DpXq.

Proof. The assignment X ÞÑ PervpXq of the category of perverse sheaves forms a sheaf of categories over the
Zariski site of X. Therefore, the assignment X ÞÑ FunexpPervpBq,PervpXqq forms a sheaf of categories as
well. We may then glue the local descriptions of the perverse pullback functor πφ using Corollary 3.30, where
the relevant properties of the stabilization isomorphisms were verified in Theorem 5.15. This establishes
properties (1) and (2).

Let us now show property (3). For an isomorphism of orientations o1 – o2 using Corollary 3.31 we need
to specify the natural isomorphism πφo1 – πφo2 locally on critical charts. On a critical chart pU, f, uq we let
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it be the isomorphism Qo1U,f,u – Qo2U,f,u given by precomposing the isomorphism o2 – ocanCritU{Bpfq
with the

isomorphism o1 – o2. For an automorphism of an orientation o given by a sign σ P µ2 the corresponding
isomorphism QoU,f,u – QoU,f,u is given by acting by the same sign and hence, using the local description of
perverse pullbacks, it acts on πφ by the same sign.

Property (4) follows from Corollary 2.18 since all exact functors on Pervp´q extend uniquely to Dp´q. □

5.4. Compatibility with base change. We first establish a compatibility of perverse pullbacks with
smooth pullbacks.

Proposition 5.17. Let π : X Ñ B be a morphism of schemes equipped with an oriented relative d-critical
structure. Let p : X 1 Ñ X be a smooth morphism of schemes. Consider the pullback oriented relative d-critical
structure on X 1 Ñ B. Then there is a natural isomorphism

αp : pπ ˝ pqφp´q
„

ÝÑ p:πφp´q

of functors PervpBq Ñ PervpX 1q which satisfies the following properties:
(1) αid “ id.
(2) For a composite X2 q

ÝÑ X 1 p
ÝÑ X of smooth morphisms with an oriented relative d-critical structure

on π : X Ñ B and pullback oriented relative d-critical structures on X2 Ñ B and X 1 Ñ B we have
αp ˝ αq “ αp˝q.

If R is a field, αp extends to a natural isomorphism of functors DpBq Ñ DpX 1q.

Proof. Denote by o the orientation of X Ñ B and by o1 the pullback orientation of X 1 Ñ B. By Theorem 4.3
we may find a cover of X 1 by critical charts pU 1

a, f
1
a, u

1
aq and a cover of the image of p : X 1 Ñ X by critical

charts pUa, fa, uaq together with a smooth morphism p̃a : pU 1
a, f

1
aq Ñ pUa, faq fitting into a commutative

diagram

(5.24) X 1

p

��

CritU 1
a{Bpf 1

aq //u1
aoo

��

U 1
a

p̃a

��
X CritUa{Bpfaq

uaoo // Ua

We define αp|CritU1
a{Bpf 1

aq as the unique natural isomorphism which fits into the commutative diagram

pπ ˝ pqφp´q|CritU1
a{Bpf 1

aq pϕf 1
a
pU 1

a Ñ Bq:qp´q|CritU1
a{Bpf 1

aq bQo
1

U 1
a,f

1
a,u

1
a

pp:πφqp´q|CritU1
a{Bpf 1

aq pϕfapUa Ñ Bq:qp´q|CritU1
a{Bpf 1

aqrdimpU 1
a{Uaqs bQoUa,fa,ua

|CritU1
a{Bpf 1

aq.

(5.23)

αp|Crit
U1
a{B

pf 1
aq Exp̃ab(4.31)

(5.23),purp

We will now show that thus defined local natural isomorphisms αp|CritU1
a{Bpf 1

aq glue into a global natural
isomorphism αp. For this, we need to check that the restrictions of αp|CritU1

a{Bpf 1
aq and αp|CritU1

b
{Bpf 1

bq to
CritU 1

a{Bpf 1
aq ˆX1 CritU 1

b{Bpf 1
bq coincide. Consider the étale local model of the intersection given by Proposi-

tion 4.4:

(5.25) pU 1
a, f

1
a, u

1
aq

p̃a

��

pU 1˝
a , f

1˝
a , u

1˝
a q

Φ1
a //oo

��

pU 1
ab, f

1
ab, u

1
abq

p̃ab

��

pU 1˝
b , f

1˝
b , u

1˝
b q

Φ1
boo //

��

pU 1
b, f

1
b, u

1
bq

p̃b

��
pUa, fa, uaq pU˝

a , f
˝
a , u

˝
aq

Φa //oo pUab, fab, uabq pU˝
b , f

˝
b , u

˝
bq

Φboo // pUb, fb, ubq

with all vertical morphisms smooth and all morphisms to the pullback squares étale. Let

Rab “ CritU˝
a{Bpf˝

a q ˆX CritU˝
b {Bpf˝

b q, R1
ab “ CritU 1˝

a {Bpf 1˝
a q ˆX CritU 1˝

b {Bpf 1˝
b q.

By definition (see Theorem 5.16(2)) the composite natural isomorphism

pϕfapUa Ñ Bq:qp´q|Rab
bQoUa,fa,ua

|Rab

„
ÐÝ πφp´q|Rab

„
ÝÑ pϕfbpUb Ñ Bq:qp´q|Rab

bQoUb,fb,ub
|Rab
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is given by the composite of stabilization isomorphisms with respect to the bottom critical morphisms in
(5.25). Similarly, the composite natural isomorphism

pϕf 1
a
pU 1

a Ñ Bq:qp´q|R1
ab

bQo
1

U 1
a,f

1
a,u

1
a
|R1

ab

„
ÐÝ pπ ˝ pqφp´q|R1

ab

„
ÝÑ pϕf 1

b
pU 1

b Ñ Bq:qp´q|R1
ab

bQo
1

U 1
b,f

1
b,u

1
b
|R1

ab

is given by the composite of stabilization isomorphisms with respect to the top critical morphisms in (5.25).
The equality of the restrictions of αp|CritU1

a{Bpf 1
aq and αp|CritU1

b
{Bpf 1

bq to R1
ab therefore follows from the com-

patibility of the stabilization isomorphisms with smooth pullbacks, Theorem 5.15(6).
The functoriality of the natural isomorphism αp follows from the functoriality of the natural isomorphism

Exp, Lemma 5.11, and the functoriality of the purity isomorphism purp, Proposition 2.14.
The extension of αp to a natural transformation of functors DpBq Ñ DpX 1q is given by Corollary 2.18. □

Next we establish a compatibility of perverse pullbacks with smooth base change.

Proposition 5.18. Let

X 1
p //

π1

��

X

π

��
B1

p // B

be a commutative diagram of schemes with p : B1 Ñ B and X 1 Ñ B1 ˆB X smooth. Let s P ΓpX, SX{Bq be a
relative d-critical structure and denote by s1 P ΓpX 1, SX1{B1 q its pullback. Let o be an orientation of X Ñ B
and o1 its pullback to X 1 Ñ B1. Then there is a natural isomorphism

αp,p : pπ1qφp:p´q
„

ÝÑ p:πφp´q

of functors PervpBq Ñ PervpX 1q which satisfies the following properties:
(1) αid,id “ id.
(2) Given a diagram

X2
q //

π2

��

X 1
p //

π1

��

X

π

��
B2

q // B1
p // B

with B2 q
ÝÑ B1 p

ÝÑ B, X 1 Ñ B1 ˆB X and X2 Ñ B2 ˆB1 X 1 smooth, we have

αp,p ˝ αq,q “ αp˝q,p˝q.

If R is a field, αp,p extends to a natural transformation of functors DpBq Ñ DpX 1q.

Proof. Let us first assume that the diagram is Cartesian. Consider a cover of X by critical charts pUa, fa, uaq

and let pU 1
a, f

1
a, u

1
aq be their base change along p which define a cover of X 1 by critical charts. We define

αp,p|CritU1
a{B1 pf 1

aq as the unique natural isomorphism which fits into the commutative diagram

ppπ1qφp:qp´q|CritU1
a{B1 pf 1

aq

(5.23) //

αp,p|Crit
U1
a{B1 pf 1

aq

��

pϕf 1
a
pU 1

a Ñ Bq:qp´q|CritU1
a{B1 pf 1

aq bQo
1

U 1
a,f

1
a,u

1
a

Ex!
ϕb(4.31)

��
pp:πφqp´q|CritU1

a{B1 pf 1
aq

(5.23) // pϕfapUa Ñ Bq:qp´q|CritU1
a{Bpf 1

aq bQoUa,fa,ua
|CritU1

a{B1 pf 1
aq

The fact that these locally defined natural isomorphisms αp,p|CritU1
a{B1 pf 1

aq glue into a global natural iso-
morphism αp,p is shown as in the proof of Proposition 5.17:

‚ By Proposition 3.25 we have a Zariski local model of the intersection CritUa{Bpfaq ˆX CritUb{Bpfbq
given by

pUa, fa, uaq pU˝
a , f

˝
a , u

˝
aq

Φa //oo pUab, fab, uabq pU˝
b , f

˝
b , u

˝
bq

Φboo // pUb, fb, ubq.
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‚ Let

pU 1
a, f

1
a, u

1
aq pU 1˝

a , f
1˝
a , u

1˝
a q

Φ1
a //oo pU 1

ab, f
1
ab, u

1
abq pU 1˝

b , f
1˝
b , u

1˝
b q

Φ1
boo // pU 1

b, f
1
b, u

1
bq

be the base change of the above local model along p : B1 Ñ B which provides a Zariski local model
of the intersection CritU 1

a{B1 pf 1
aq ˆX1 CritU 1

b{B1 pf 1
bq.

‚ The compatibility of the two local models of the isomorphism αp follows from the compatibility of
the stabilization isomorphisms with smooth base change, Theorem 5.15(7).

For an arbitrary commutative diagram we factor it as

X 1

p̃

$$

π1

  

p

&&
X ˆB B

1
p1

//

��

X

π

��
B1

p // B

and then define αp,p as the composite αp̃ ˝ αp,p1 .
The functoriality of αp,p can be checked in a critical chart, where it follows from the functoriality of Ex!ϕ

with respect to compositions, Proposition 2.21(2). □

Finally, we establish a compatibility of perverse pullbacks with finite push-forwards.

Proposition 5.19. Let

X̃
c //

π̃
��

X

π

��
B̃

c // B

be a Cartesian diagram of schemes with c : B̃ Ñ B finite. Let s P ΓpX, SX{Bq be a relative d-critical structure
and denote by s̃ P ΓpX̃, SX̃{B̃q its pullback. Let o be an orientation of X Ñ B and denote by õ its pullback.
Then there is a natural isomorphism

βc : π
φc˚

„
ÝÑ c˚π̃

φ

of functors PervpB̃q Ñ PervpXq which satisfies the following properties:
(1) βid “ id.
(2) Given a diagram

˜̃X
d //

˜̃π��

X̃
c //

π̃
��

X

π

��
˜̃B

d // B̃
c // B

with ˜̃B
d

ÝÑ B̃
c

ÝÑ B a composite of finite morphisms and both squares Cartesian, we have

βc ˝ βd “ βc˝d.

(3) Let

X 1
p //

π1

��

X

π

��
B1

p // B

be a diagram of schemes with p : B1 Ñ B and X 1 Ñ B1 ˆB X smooth. Let s P ΓpX, SX{Bq be a
relative d-critical structure and denote by s1 P ΓpX 1, SX1{B1 q its pullback. Let c : B̃ Ñ B be a finite
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morphism and denote by X̃ “ X ˆB B̃, B̃1 “ B1 ˆB B̃ and X̃ 1 “ X 1 ˆB B̃ their base changes which
fit into commutative diagrams

X̃ 1 c̃ //

π̃1

��

X 1
p //

π1

��

X

π

��
B̃1 c̃ // B1

p // B

“

X̃ 1
p̃ //

π̃1

��

X̃
c //

π̃
��

X

π

��
B̃1

p̃ // B̃
c // B.

Let o be an orientation of X Ñ B and consider its pullbacks to X 1, X̃ and X̃ 1. Then the diagram

(5.26) pπ1qφc̃˚p̃
:

βc̃ //

Ex!
˚

��

c̃˚pπ̃1qφp̃:
αp̃,p̃ // c̃˚p̃

:
π̃φ

Ex!
˚

��
pπ1qφp:c˚

αp,p // p:πφc˚

βc // p:c˚π̃
φ

commutes.
If R is a field, βc extends to a natural transformation of functors DpB̃q Ñ DpXq.

Proof. Consider a cover of X by critical charts pUa, fa, uaq and let pŨa, f̃a, ũaq be their base change along c
which define a cover of X̃ by critical charts. Let ca : Ũa Ñ Ua be the projection. We define βc|CritUa{Bpfaq as
the unique natural isomorphism which fits into the commutative diagram

pπφc˚qp´q|CritUa{Bpfaq

(5.23) //

βc|CritUa{Bpfaq

��

pϕfapUa Ñ Bq:c˚qp´q bQoUa,fa,ua
|CritUa{Bpfaq

Ex!
˚bid

��
pϕfapcaq˚pŨa Ñ B̃q:qp´q bQoUa,fa,ua

|CritUa{Bpfaq

Exϕ
˚b(4.31)

��
pc˚π̃

φqp´q|CritUa{Bpfaq

(5.23) // c˚ppϕf̃apŨa Ñ B̃q:qp´q bQõ
Ũa,f̃a,ũa

q|CritUa{Bpfaq

The fact that these locally defined natural isomorphisms βc|CritUa{Bpfaq glue into a global natural isomor-
phism βc is shown as in the proof of Proposition 5.17:

‚ By Proposition 3.25 we have a Zariski local model of the intersection CritUa{Bpfaq ˆX CritUb{Bpfbq
given by

pUa, fa, uaq pU˝
a , f

˝
a , u

˝
aq

Φa //oo pUab, fab, uabq pU˝
b , f

˝
b , u

˝
bq

Φboo // pUb, fb, ubq.

‚ Let

pŨa, f̃a, ũaq pŨ˝
a , f̃

˝
a , ũ

˝
aq

Φ̃a //oo pŨab, f̃ab, ũabq pŨ˝
b , f̃

˝
b , ũ

˝
bq

Φ̃boo // pŨb, f̃b, ũbq

be the base change of the above local model along c : B̃ Ñ B which provides a Zariski local model
of the intersection CritŨa{B̃pf̃aq ˆX̃ CritŨb{B̃pf̃bq.

‚ The compatibility of the two local models of the isomorphism βp follows from the compatibility of
the stabilization isomorphisms with finite base change, Theorem 5.15(8).

The properties of βc can be checked in a critical chart. The functoriality of βc follows from the func-
toriality of Exϕ˚ and Ex!˚ with respect to compositions, Proposition 2.21(2). Property (3) follows from
Proposition 2.21(3). □

5.5. Compatibility with d-critical pushforwards. In this section we establish a compatibility of perverse
pullbacks with d-critical pushforwards. First we analyze a compatibility with d-critical pushforwards along
smooth morphisms.
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Proposition 5.20. Let π : X Ñ B be a morphism of schemes equipped with a relative d-critical structure s
and an orientation o. Let p : B Ñ S be a smooth morphism. Let p˚pX, sq be the d-critical pushforward which
fits into a commutative diagram

p˚pX, sq
i //

π

��

X

π

��
S B.

poo

Consider the orientation p˚o of p˚pX, sq. Then there is a natural isomorphism

γp : π
φp: „

ÝÑ i˚π
φ

of functors PervpSq Ñ PervpXq which satisfies the following properties:
(1) It is functorial for compositions in p.
(2) Consider a commutative diagram

(5.27) X 1 π1

//

q

��

B1
p1

//

a1

��

S1

a2

��
X

π // B
p // S

of schemes with p, a2, B1 Ñ S1 ˆS B and X 1 Ñ X ˆB B1 smooth, a relative d-critical structure
s P ΓpX, SX{Bq and s1 “ q˚s its pullback. Let

p1
˚pX 1, s1q

q

��

π1

// S1

a2

��
p˚pX, sq

π // S

be the diagram of d-critical pushforwards with i1 : p1
˚pX 1, s1q Ñ X 1 the natural inclusion. Let o be an

orientation of X and consider orientations q˚o of X 1, p˚o of p˚pX, sq and p1
˚q

˚o of p1
˚pX 1, s1q. Then

the diagram of natural isomorphisms

q:πφp:

γp

��

pπ1qφa:
1p

: „ //
αa1,qoo pπ1qφpp1q:a:

2

γp1

��
q:i˚π

φ
Ex!

˚ // i1˚q
:πφ i1˚pπ1qφa:

2

αa2,qoo

commutes.
(3) Consider a commutative diagram

X̃

q

��

π̃ // B̃

c1

��

p̃ // S̃

c2

��
X

π // B
p // S

of schemes with both squares Cartesian, c2 finite and p smooth. Let s P ΓpX, SX{Bq be a relative
d-critical structure and let s̃ “ c˚s be its pullback to X̃. Let

p̃˚pX̃, s̃q

q

��

π̃ // S̃

c2

��
p˚pX, sq

π // S
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be the Cartesian diagram of d-critical pushforwards with ĩ : p̃˚pX̃, s̃q Ñ X̃ the natural inclusion. Let
o be an orientation of X and consider orientations q˚o of X̃, p˚o of p˚pX, sq and p̃˚q

˚o of p̃˚pX̃, s̃q.
Then the diagram of natural isomorphisms

πφp:pc2q˚

γp

��

Ex!
˚ // πφpc1q˚p̃

:
βc1 // q˚π̃

φp̃:

γp̃

��
i˚π

φpc2q˚

βc2 // i˚q˚π̃
φ „ // q˚ĩ˚π̃

φ

commutes.
If R is a field, γp extends to a natural isomorphism of functors DpSq Ñ DpXq.

Proof. Consider a cover of X by critical charts pUa, fa, uaq and let pUa, fa, uaq be the corresponding cover
of p˚pX, sq by critical charts. Let ia : CritUa{Spfaq Ñ CritUa{Bpfaq be the obvious inclusion. In the critical
chart pUa, fa, uaq the isomorphism γp is the isomorphism

ϕfapUa Ñ Bq:p:p´q|CritUa{Bpfaq bQoUa,fa,ua

„
ÝÑ piaq˚pϕfapUa Ñ Sq:p´q|CritUa{Spfaq bQ

p˚o
Ua,fa,ua

q

obtained from (4.32) and the unit of the adjunction i˚a % piaq˚ which is an isomorphism since ϕfapUa Ñ

Sq:p´q is supported on CritUa{Spfaq by Proposition 2.21(1).
The compatibility of the two locally defined isomorphisms γp in two critical charts follows as in the proof

of Proposition 5.17 from the local model of the intersection given by Proposition 3.25 and Theorem 5.15(9).
By construction γp is obviously functorial for compositions in p. The rest of the properties can be checked

in critical charts in which case they follow from the naturality of the unit of the adjunction i˚ % i˚ with
respect to pullbacks. □

5.6. Compatibility with duality and products. We begin by establishing a compatibility of perverse
pullbacks with Verdier duality. Using the isomorphisms Ex:,D and Ex˚,D we observe that the category
PervpXq X DpPervpXqq is stable under f : for f smooth and f˚ for f finite. Moreover, if R is a field, it
coincides with the category PervpXq of perverse sheaves.

Proposition 5.21. Let π : X Ñ B be a morphism of schemes equipped with a relative d-critical structure s
and an orientation o. Let πφ be the perverse pullback for pX Ñ B, sq with respect to o and πφ,´ the perverse
pullback for pX Ñ B,´sq with respect to o. Then there is a natural isomorphism

δ : πφD „
ÝÑ Dπφ,´

of functors PervpBq X DpPervpBqq Ñ PervpXq which satisfies the following properties:
(1) There is a commutative diagram

πφ DDπφ

πφDD Dπφ,´D.

ψ

ψ

δ

δ

(2) Consider a commutative square of schemes

X 1 X

B1 B

p

π1 π

p

with p : B1 Ñ B and X 1 Ñ B1 ˆB X smooth, so that X 1 Ñ B1 carries the pullback oriented relative
d-critical structure. Then the diagram

pπ1qφp:D p:πφD p:Dπφ,´

pπ1qφDp: Dpπ1qφ,´p: Dp:πφ,´

αp,p

Ex:,D

δ

Ex:,D

δ αp,p

95



commutes.
(3) Let

X̃
c //

π̃
��

X

π

��
B̃

c // B

be a Cartesian diagram of schemes with c : B̃ Ñ B finite, so that X̃ Ñ B̃ carries the pullback oriented
relative d-critical structure. Then the diagram

πφc˚D
βc //

Ex˚,D

��

c˚π̃
φD δ // c˚Dπ̃φ,´

Ex˚,D

��
πφDc˚

δ // Dπφ,´c˚ Dc˚π̃
φ,´βcoo

commutes.
(4) Let π : X Ñ B be a morphism of schemes equipped with a d-critical structure s and p : B Ñ S a

smooth morphism. Let p˚pX, sq be the d-critical pushforward which fits into a commutative diagram

p˚pX, sq
i //

π

��

X

π

��
S B.

poo

Then the diagram

πφp:D
γp //

Ex:,D

��

i˚π
φD δ // i˚Dπφ,´

Ex˚,D

��
πφDp: δ // Dπφ,´p: Di˚πφ,´

γpoo

commutes.
If R is a field, δ extends to a natural isomorphism of functors DpBq Ñ DpXq.

Proof. Given a closed immersion of schemes i : Z Ñ Y and a constructible complex F P Db
c pY q supported

on Z the natural morphism ϵi : i
!F Ñ i˚F is an isomorphism. In particular, in this case we have a natural

isomorphism

i˚DF ϵi
ÐÝ i!DF Ex!,D

ÝÝÝÑ Di˚F
which will be implicit from now on.

Consider critical charts pUa, fa, uaq for π : X Ñ B. We define δ|CritUa{Bpfaq as the unique natural isomor-
phism which fits into commutative diagrams

pπφDp´qq|CritUa{Bpfaq pϕfapUa Ñ Bq:Dp´qq|CritUa{Bpfaq bQoUa,fa,ua

pϕfaDpUa Ñ Bq:p´qq|CritUa{Bpfaq bQoUa,fa,ua

pDπφ,´p´qq|CritUa{Bpfaq pDϕ´fapUa Ñ Bq:p´qq|CritUa{Bpfaq bQoUa,´fa,ua
.

δ|CritUa{Bpfaq

(5.23)

Ex:,D
bid

Exϕ,D
b(4.33)

(5.23)

The fact that these locally defined natural isomorphisms δ|CritUa{Bpfaq glue into a global natural isomorphism
δ is shown as in the proof of Proposition 5.17, using the compatibility of the stabilization isomorphisms with
Verdier duality, see Theorem 5.15(10).
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The properties of δ can be checked on critical charts. (1) follows by combining Proposition 2.22(1) and
Proposition 2.15. (2) follows from Proposition 2.22(2). (3) follows from Proposition 2.16 and Proposi-
tion 2.22(3). (4) follows from Proposition 2.8. □

Remark 5.22. As in Remark 2.23 we may define a natural isomorphism

δ : πφD „
ÝÑ Dπφ

which fits into a commutative diagram

πφ

ψ

��

T // πφ
ψ // DDπφ

δ
��

πφDD δ // DπφD,

where T : πφ Ñ πφ is the natural isomorphism given locally by the monodromy operator of the functor of
vanishing cycles.

Next we establish a compatibility of perverse pullbacks with products. If R is not a field, in general the
external tensor product does not preserve perversity already in the case when the base is a point. We denote
by

pPervpB1q ˆ PervpB2qqbPerv Ă PervpB1q ˆ PervpB2q

the full subcategory consisting of pairs pF1,F2q such that F1 b F2 P Db
c pB1 ˆB2q is perverse.

Proposition 5.23. Let π1 : X1 Ñ B1 and π2 : X2 Ñ B2 be morphisms of schemes equipped with relative
d-critical structures s1 and s2 and orientations o1 and o2, respectively. Consider the morphism π1ˆπ2 : X1ˆ

X2 Ñ B1 ˆ B2 equipped with the relative d-critical structure s1 ‘ s2 and orientation o1 b o2. Then there is
a natural isomorphism

TS: πφ1 p´q b πφ2 p´q
„

ÝÑ pπ1 ˆ π2qφp´ b ´q

of functors pPervpB1q ˆ PervpB2qqbPerv Ñ PervpX1 ˆX2q. It satisfies the following properties:

(1) It is associative: given another morphism of schemes π3 : X3 Ñ B3 equipped with an oriented relative
d-critical structure ps3, o3q the diagram

πφ1 p´q b πφ2 p´q b πφ3 p´q
TSbid //

idbTS

��

pπ1 ˆ π2qφp´ b ´q b πφ3 p´q

TS

��
πφ1 p´q b pπ2 ˆ π3qφp´ b ´q

TS // pπ1 ˆ π2 ˆ π3qφp´ b ´ b ´q.

commutes, where we use the natural isomorphism o1 b po2 b o3q – po1 b o2q b o3 of orientations.
(2) It is unital: if π1 : pt Ñ pt equipped with the relative d-critical structure s “ 0 and the trivial

orientation, then TS “ id.
(3) It is graded-commutative: for the swapping isomorphism σ : X2ˆX1 Ñ X1ˆX2 and F1 P Db

c pX1q,F2 P

Db
c pX2q the diagram

σ˚pπφ1 pF1q b πφ2 pF2qq
TS //

„

��

σ˚pπ1 ˆ π2qφpF1 b F2q

α

��
πφ2 pF2q b πφ1 pF1q

TS // pπ2 ˆ π1qφpF2 b F1q,

where the right vertical isomorphism uses the natural isomorphism σ˚po1 b o2q
(4.24)

ÝÝÝÝÑ o2 b o1 of
orientations, commutes up to p´1qdegpo1q degpo2q.
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(4) For i “ 1, 2 let

X 1
i

pi //

π1
i

��

Xi

πi

��
B1
i

pi // Bi

be a commutative diagram of schemes with pi : B
1
i Ñ Bi and X 1

i Ñ B1
i ˆBi

Xi smooth. Consider
oriented relative d-critical structures on Xi Ñ Bi and their pullbacks to X 1

i Ñ B1
i. Then the diagram

pπ1
1qφp:

1p´q b pπ1
2qφp:

2p´q
TS //

αp1,p1
bαp2,p2

��

pπ1
1 ˆ π1

2qφpp:
1p´q b p:

2p´qq
„ // pπ1

1 ˆ π1
2qφpp1 ˆ p2q:p´q

αp1ˆp2,p1ˆp2

��
p:
1π
φ
1 p´q b p:

2π
φ
2 p´q

„ // pp1 ˆ p2q:pπφ1 p´q b πφ2 p´qq
TS // pp1 ˆ p2q:pπ1 ˆ π2qφp´ b ´q

commutes.
(5) For i “ 1, 2 let

X̃i
ci //

π̃i

��

Xi

πi

��
B̃i

ci // Bi

be a Cartesian diagram of schemes with ci : B̃i Ñ Bi finite. Consider oriented relative d-critical
structures on Xi Ñ Bi and their pullbacks to X̃i Ñ B̃i. Then the diagram

πφ1 c1,˚p´q b πφ2 c2,˚p´q
TS //

βc1
bβc2

��

pπ1 ˆ π2qφpc1,˚p´q b c2,˚p´qq
„ // pπ1 ˆ π2qφpc1 ˆ c2q˚p´ b ´q

βc1ˆc2

��
c1,˚π̃

φ
1 p´q b c2,˚π̃

φ
2 p´q

„ // pc1 ˆ c2q˚pπ̃φ1 p´q b π̃φ2 p´qq
TS // pc1 ˆ c2q˚pπ̃1 ˆ π̃2qφp´ b ´q

commutes.
(6) For i “ 1, 2 let Xi

πi
ÝÑ Bi

pi
ÝÑ Si be morphisms of schemes, where πi is equipped with an oriented

relative d-critical structure psi, oiq. Let pi,˚pXi, siq be the d-critical pushforward which fits into a
commutative diagram

pi,˚pXi, siq
i //

π

��

Xi

πi

��
Si Bi.

pioo

Consider the orientation pi,˚oi of pi,˚pXi, siq. Then the diagram

πφ1 p
:
1p´q b πφ2 p

:
2p´q

TS //

γp1bγp2

��

pπ1 ˆ π2qφpp:
1p´q b p:

2p´qq
„ // pπ1 ˆ π2qφpp1 ˆ p2q:p´ b ´q

γp1ˆp2

��
i1,˚π

φ
1 p´q b i2,˚π

φ
2 p´q

„ // pi1 ˆ i2q˚pπφ1 p´q b πφ2 p´qq
TS // pi1 ˆ i2q˚pπ1 ˆ π2qφp´ b ´q

commutes.
(7) The diagram

πφ1 pDp´qq b πφ2 pDp´qq
TS //

δbδ

��

pπ1 ˆ π2qφpDp´q b Dp´qq
ExD,b

// pπ1 ˆ π2qφpDp´ b ´qq

δ

��
Dpπφ,´1 p´qq b Dpπφ,´2 p´qq

ExD,b

// Dpπφ,´1 p´q b πφ,´2 p´qq Dppπ1 ˆ π2qφ,´p´ b ´qq
TSoo

commutes.
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If R is a field, TS extends to a natural isomorphism of functors DpB1q ˆ DpB2q Ñ DpX1 ˆX2q.

Proof. Let pU1,a, f1,a, u1,aq and pU2,a, f2,a, u2,aq be critical charts for π1 and π2, respectively. Write U12,a :“
U1,a ˆ U2,a, B12 :“ B1 ˆ B2, and f12,a :“ f1,a ‘ f2,a, and denote by p1,a : U1,a Ñ B1, p2,a : U2,a Ñ B2,
and p12,a : U12,a Ñ B12 the projections. Recall that pU12,a, f12,a, u1,a ˆ u2,aq is a critical chart for π.
Identifying CritU12,a{B12

pf12,aq – CritU1,a{B1
pf1,aq ˆ CritU2,a{B2

pf2,aq, we define TS|CritU12,a{B12
pf12,aq as the

unique isomorphism which fits into commutative diagrams

pπϕ1 p´q b πϕ2 p´qq|CritU12,a{B12
pf12,aq pϕf1,ap

:
1,ap´q b ϕf2,ap

:
2,ap´qq|CritU12,a{B12

pf12,aq bQo1U1,a,f1,a,u1,a
bQo2U2,a,f2,a,u2,a

pπϕp´ b ´qq|CritU12,a{B12
pf12,aq pϕf12,ap

:
12,ap´ b ´qq|CritU12,a{B12

pf12,aq bQo1bo2
U1,aˆU2,a,f1,a‘f2,a,u1,aˆu2,a

TS|CritU12,a{B12

(5.23)b(5.23)

TSb(4.34)

(5.23)

for each a. The fact that these locally defined isomorphisms glue into the global isomorphism TS is shown
as in the proof of Proposition 5.17, using Theorem 5.15(11).

The associativity and unitality property of τ follows from the corresponding properties of the Thom–
Sebastiani isomorphism TS for the sheaves of vanishing cycles. The graded-commutativity of τ follows from
the following facts:

(1) The Thom–Sebastiani isomorphism TS for the sheaves of vanishing cycles is commutative.
(2) The diagram

σ˚pp:
1,apF1q b p:

2,apF2qq
„ //

„

��

σ˚p:
12,apF1 b F2q

„

��
p:
2,apF2q b p:

1,apF1q
„ // p:

21,apF2 b F1q

commutes up to the sign p´1qdimpU1,a{B1q dimpU2,a{B2q “ p´1qdegpo1q degpo2q due to the presence of the
shifts r´dimpUi,a{Biqs in the definition of p:

i,a.
(3) The commutativity of the diagram

σ˚pQo1U1,a,f1,a,u1,a
bQo2U2,a,f2,a,u2,a

q
(4.34) //

„

��

σ˚pQo1bo2
U1,aˆU2,a,f1,a‘f2,a,u1,aˆu2,a

q

(4.31)
��

Q
σ˚

po1bo2q

U2,aˆU1,a,f2,a‘f1,a,u2,aˆu1,a

(4.24)

��
Qo2U2,a,f2,a,u2,a

bQo1U1,a,f1,a,u1,a

(4.34) // Qo2bo1
U2,aˆU1,a,f2,a‘f1,a,u2,aˆu1,a

is equivalent to the commutativity of the diagram

σ˚pL1 b L2q σ˚pKU1,a
|CritU1,a{B1

pf1,aq bKU2,a
|CritU2,a{B2

pf2,aqq σ˚pKU1,aˆU2,a
|CritU1,aˆU2,a{B1ˆB2

pf1,a‘f2,aqq

L2 b L1 KU2,a |CritU2,a{B2
pf2,aq bKU1,a |CritU1,a{B1

pf1,aq KU2,aˆU1,a |CritU2,aˆU1,a{B2ˆB1
pf2,a‘f1,aq,

o1,o2

(4.24)

„

„

o2,o1 „

which commutes on the nose.

The compatibilities of α, β and γ with respect to products follow from the compatibility of the isomorphisms
Ex!ϕ, Ex

ϕ
˚ (see Proposition 2.24) as well as the unit id Ñ i˚i

˚ for a closed immersion i with products. The
diagram in property (3) in a critical chart reduces to the commutative diagram from Proposition 2.24(4). □

5.7. Perverse pullbacks for stacks. We will now define the operation of perverse pullback along any
morphism of higher Artin stacks equipped with a relative d-critical structure.
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Theorem 5.24. Let π : X Ñ B be a morphism of higher Artin stacks locally of finite type equipped with an
oriented relative d-critical structure. There is an exact perverse pullback functor

πφ : PervpBq ÝÑ PervpXq

together with the following natural isomorphisms:
(1) Let

X 1
p //

π1

��

X

π

��
B1

p // B

be a commutative diagram of higher Artin stacks locally of finite type with p : B1 Ñ B and X 1 Ñ

B1 ˆB X smooth and the pullback oriented relative d-critical structure on X 1 Ñ B1. Then there is a
natural isomorphism

αp,p : pπ1qφp: „
ÝÑ p:πφ,

(2) Let

X̃
c //

π̃
��

X

π

��
B̃

c // B

be a Cartesian diagram of higher Artin stacks locally of finite type with c : B̃ Ñ B finite and the
pullback oriented relative d-critical structure on X̃ Ñ B̃. Then there is a natural isomorphism

βc : π
φc˚

„
ÝÑ c˚π̃

φ.

(3) Consider morphisms X π
ÝÑ B

p
ÝÑ S of higher Artin stacks locally of finite type, where p is smooth and

π is equipped with a relative d-critical structure s and an orientation o. Let p˚pX, sq be the d-critical
pushforward which fits into a commutative diagram

p˚pX, sq
i //

π

��

X

π

��
S B.

poo

and which carries the orientation p˚o. Then there is a natural isomorphism

γp : π
φp: „

ÝÑ i˚π
φ.

(4) For a morphism X
π

ÝÑ B of higher Artin stacks locally of finite type equipped with an oriented relative
d-critical structure there is a natural isomorphism

δ : πφD „
ÝÑ Dπφ,´,

where πφ,´ denotes the perverse pullback with respect to the opposite oriented relative d-critical
structure.

(5) For a pair of morphisms π1 : X1 Ñ B1 and π2 : X2 Ñ B2 equipped with oriented relative d-critical
structures with π1 ˆ π2 : X1 ˆ X2 Ñ B1 ˆ B2 equipped with the product oriented relative d-critical
structure there is a natural isomorphism

TS: πφ1 p´q b πφ2 p´q
„

ÝÑ pπ1 ˆ π2qφp´ b ´q.

These natural isomorphisms satisfy natural compatibility relations as in Propositions 5.18 to 5.21 and 5.23.
Moreover, if R is a field, πφ (along with the natural isomorphisms α, β, γ, δ,TS and their compatibility
relations) extends to a colimit-preserving t-exact functor

πφ : DpBq ÝÑ DpXq.
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Proof. Denote by DCritpArtlftq the 8-category of triples pX Ñ B, s, oq where X Ñ B is a morphism in
Artlft equipped with a relative d-critical structure s and an orientation o. A morphism pX1 Ñ B1, s1, o1q Ñ

pX2 Ñ B2, s2, o2q is a morphism pX1 Ñ B1q Ñ pX2 Ñ B2q in Funp∆1,Artlftq0smooth,1smooth such that s1 is
the pullback of s2, together with an isomorphism of orientations o1 – pX1 Ñ X2q˚po2q. Consider also the
full subcategory DCritpSchsepftq consisting of pX Ñ B, s, oq where X and B lie in Schsepft. We consider the
functor

Θ: DCritpSchsepftqop Ñ Funp∆1,Catabq,

where Catab is the category of R-linear abelian categories and R-linear exact functors, determined by the
following data:

‚ For every pπ : X Ñ B, s, oq in DCritpSchsepftq, the perverse pullback functor πφ : PervpBq Ñ PervpXq

defined in Theorem 5.16.
‚ For every commutative square in Schsepft

X 1 B1

X B

π1

p p

π

where B1 Ñ B and X 1 Ñ X ˆB B
1 are smooth, the commutative square in Cat

PervpBq PervpXq

PervpB1q PervpX 1q

πφ

p: p:

π1φ

determined by the invertible natural transformation αp,p of Proposition 5.18, where π1 is equipped
with the pullback relative d-critical structure p˚psq and orientation p˚poq.

That this defines a functor is guaranteed by Proposition 5.18(1,2). Since Θ satisfies étale descent, it extends
uniquely to an étale sheaf

Θ: DCritpArtlftqop Ñ Funp∆1,Catq

which by [Kha25, Corollary 3.2.6] is given by the formula (compare (1.4)):

ΘpX Ñ B, s, oq “ lim
pX1ÑB1,s1,o1,pq

ΘpX 1 Ñ B1, s1, o1q,

where the limit is taken over pX 1 Ñ B1, s1, o1, pq P DCritorpSchsepftq{pXÑB,s,oq with p : pX 1 Ñ B1, s1, o1q Ñ

pX Ñ B, s, oq a morphism in DCritorpArtlftq and pX 1 Ñ B1, s1, o1q P DCritorpSchsepftq. As the forgetful
functor DCritorpSchsepftq{pXÑB,s,oq Ñ pFunp∆1,Schsepftq0smooth,1smoothq{pXÑBq is cofinal, it can equivalently
be taken over pX 1 Ñ B1, pq with p : pX 1 Ñ B1q Ñ pX Ñ Bq in Funp∆1,Artlftq0smooth,1smooth and X 1, B1 P

Schsepft.
Unwinding, we have for every morphism π : X Ñ B in Artlft and every oriented relative d-critical structure

ps, oq a functor Θpπ : X Ñ B, s, oq, which is by definition the limit of the functors

π1φ : PervpB1q Ñ PervpX 1q

over morphisms p : pπ1 : X 1 Ñ B1q Ñ pπ : X Ñ Bq in Funp∆1,Artlftq0smooth,1smooth where X 1, B1 P Schsepft

and π1 is equipped with the pullback oriented relative critical structure. A simple cofinality argument shows
that we have the natural equivalences

lim
pX1ÑB1,pq

PervpB1q – PervpBq, lim
pX1ÑB1,pq

PervpX 1q – PervpXq,

under which ΘX{B,s,o is identified with a natural functor

πφ : PervpBq Ñ PervpXq.

Moreover, Θ encodes the (associative) natural isomorphisms αp,p of (1).
The natural isomorphisms β, γ, δ and TS defined for separated schemes of finite type in Propositions 5.19

to 5.21 and 5.23 extend to natural isomorphisms defined for higher Artin stacks locally of finite type using
the commutation of β, γ, δ and τ with α. For example, in the situation of (3) let S0 ↠ S, B0 ↠ B ˆS S0,
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and X0 ↠ X ˆB B0 be smooth surjections from schemes in Schsepft, and denote by S‚, B‚ and X‚ the
respective Čech nerves of S0 ↠ S, B0 ↠ B, and X0 ↠ X. Denote by π‚ : X‚ Ñ B‚ and p‚ : B‚ Ñ S‚

the induced morphisms and by ps‚, o‚q the induced oriented relative d-critical structures. Note that by
Proposition 4.19, the induced morphism p0,˚pX0, s0q ↠ p˚pX, sq is smooth surjective and its Čech nerve
is identified with the d-critical push-forward p‚,˚pX‚, s‚q. Thus, we may conclude by repeatedly applying
the following observation: if we are given natural isomorphisms γ‚ : π

φ
‚ p

:
‚ – i‚,˚π

φ
‚ compatible with smooth

pullbacks, then by totalization we obtain a natural isomorphism γ : πφp: – i˚π
φ compatible with smooth

pullbacks. We first apply this in the case when X, B and S have schematic diagonal, so that the X‚, B‚, and
S‚ are all schemes and we have the γ‚ by Proposition 5.20. Next, if X, B and S are 1-Artin then X‚, B‚,
and S‚ are all algebraic spaces (hence a fortiori have schematic diagonal), so we have the γ‚ by the previous
case. Similarly, the case of n-Artin stacks reduces to that of pn´ 1q-Artin stacks for each n ą 1.

Moreover, using the same commutation with α the proofs of the compatibility relations between the
natural isomorphisms β, γ, δ and TS for morphisms of higher Artin stacks reduce to the compatibility
relations between these natural isomorphisms for morphisms of separated schemes of finite type.

Finally, suppose that R is a field, so that DpXq – IndpDbpPervpXqqq for any X P Schsepft by Proposi-
tion 2.9(7). Applying Proposition 2.17, Θ: DCritpSchsepftqop Ñ Funp∆1,Catabq promotes to a functor

rΘ: DCritpSchsepftqop Ñ Funp∆1,PrSt,tL q

valued in the 8-category of presentable stable R-linear 8-categories equipped with a t-structure, encoding
the t-exact perverse pullbacks πφ : DpBq Ñ DpXq for pπ : X Ñ B, s, oq in DCritpSchsepftq, together with
the natural isomorphisms αp,p, associative up to coherent homotopy. As above, we now apply right Kan
extension to obtain a functor

rΘ: DCritpArtlftqop Ñ Funp∆1,PrSt,tL q

encoding the t-exact perverse pullbacks πφ : DpBq Ñ DpXq for pπ : X Ñ B, s, oq in DCritpArtlftq, together
with the associative natural isomorphisms αp,p. The compatibilities between α and the various natural
isomorphisms β, γ, δ, and TS can be encoded as invertible 2-morphisms in the 8-category Funp∆1,PrSt,tL q,
so these also extend to Artlft. □

6. Perverse pullbacks for exact p´1q-shifted symplectic fibrations

In this section we translate the construction of perverse pullbacks from the setting of morphisms of
algebraic stacks equipped with a relative d-critical structure to the setting of morphisms of derived algebraic
stacks equipped with a relative exact p´1q-shifted symplectic structure.

6.1. D-critical and shifted symplectic structures. The main source of relative d-critical structures is
given by the theory of shifted symplectic structures [Pan+13]. Namely, given a morphism of derived stacks
X Ñ B the references [Pan+13; Cal+17; CHS25; Par24] define the spaces A2,clpX{B,nq (A2,expX{B,nq) of
relative closed (exact) two-forms of degree n using the cotangent complex of derived stacks together with a
natural morphism A2,expX{B,nq Ñ A2,clpX{B,nq and a forgetful map A2,clpX{B,nq Ñ A2pX{B,nq to the
space of two-forms of degree n.

When X Ñ B is a morphism of derived stacks with a perfect cotangent complex (e.g. an lfp geometric
morphism), an (exact) n-shifted symplectic structure is an element ω P A2,clpX{B,nq (ω P A2,expX{B,nq)
such that the underlying 2-form induces an isomorphism ¨ω : L_

X{B – LX{Brns. We have the following natural
source of exact n-shifted symplectic structures.

Proposition 6.1. Let π : X Ñ B be a morphism of derived stacks together with a Gm-action on X such that
π is invariant. Let w P Z be an integer invertible in k. Let A2,expX{B,nqpwq and A2,clpX{B,nqpwq be the
spaces of exact and closed relative n-shifted two-forms on X Ñ B of weight w with respect to the Gm-action.
Then the natural morphism

A2,expX{B,nqpwq ÝÑ A2,clpX{B,nqpwq

is an isomorphism. In particular, every n-shifted symplectic structure of weight w is canonically exact.
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Proof. We freely use the notation from [Pan+13; Cal+17]. Recall that for a morphism of derived stacks
X Ñ B one has the relative de Rham complex

DRBpXq P CAlgpQCohpBqgr,ϵq,

a graded mixed commutative algebra in QCohpBq defined as in [CHS25, Section B.11] and [Par24]. Let

DRpX{Bq “ ΓpB,DRBpXqq P CAlggr,ϵk

be the underlying graded mixed cdga over k.
If X is equipped with a Gm-action, let X “ rX{Gms and denote by

DRpX{Bqpwq “ ΓpB ˆ BGm,DRBˆBGm
pXq b Op´wqq

the graded mixed complex of forms of weight w, where Op´wq is the line bundle on BGm corresponding to
the one-dimensional Gm-representation of weight ´w. We claim that under the assumptions the complex
|DRpX{Bqpwq| P Modk is zero.

By construction the functor DRBˆBGm
p´q sends colimits of stacks over B ˆ BGm to limits. Thus, the

claim is reduced to the case X is affine. The action map a : Gm ˆX Ñ X gives rise to the coaction map

a˚ : DRpX{Bq ÝÑ DRpX ˆ Gm{Bq – DRpX{Bq b DRpGmq,

where the last isomorphism is the Künneth isomorphism. The action map a is Gm ˆ Gm-equivariant, where
on the left we act by the respective copy of Gm on the corresponding factor and on the right the two copies
of Gm act in the same way on X. Therefore, the coaction map restricts to a morphism

a˚ : DRpX{Bqpwq ÝÑ DRpX{Bqpwq b DRpGmqpwq.

If we denote the standard coordinate on Gm by z, then DRpGmqpwq is spanned by zw and zw´1dz. But then
|DRpGmqpwq| “ 0 since the de Rham differential is an isomorphism. In particular,

|DRpX{Bqpwq b DRpGmqpwq| – |DRpX{Bqpwq| b |DRpGmqpwq| “ 0.

Let ϵ : DRpGmqpwq Ñ k be the counit map given by zw ÞÑ 1 and dz ÞÑ 0. The composite

DRpX{Bqpwq
a˚

ÝÝÑ DRpX{Bqpwq b DRpGmqpwq
idbϵ

ÝÝÝÑ DRpX{Bqpwq

is equivalent to the identity. Therefore, |DRpX{Bqpwq| is a retract of the zero object and hence it is the zero
object itself. But since A2,expX{B,nqpwq Ñ A2,clpX{B,nqpwq is the fiber of

A2,clpX{B,nqpwq ÝÑ A0,clpX{B,n` 2qpwq “ MapModk
pkrn` 2s, |DRpX{Bqpwq|q

at the zero form, the claim follows. □

Given a derived stack B, consider the 8-category SympexB,´1 whose objects are lfp geometric morphisms
π : X Ñ B equipped with a relative exact p´1q-shifted symplectic structure ω, and whose morphisms
pX1, ω1q 99K pX2, ω2q are exact Lagrangian correspondences X2 Ð L Ñ X1. Given an lfp geometric
morphism p : B1 Ñ B2, it is shown in [Par24, Theorem A] that the base change functor p˚ : SympexB2,´1 Ñ

SympexB1,´1 admits a right adjoint p˚. Given pX,ωq P SympexB1,´1, we call

p˚pX,ωq P SympexB2,´1

the symplectic pushforward of pX,ωq. It can be described explicitly as the zero locus of the moment
map, a canonical Lagrangian µX : X Ñ T˚pB1{B2q (see [Par24, Proposition 2.3.1]).

Example 6.2. Let g : Y Ñ B be an lfp geometric morphism between derived stacks and f a function on
Y . As explained in [Par24, Eq. (13)], the function f determines a relative exact p´1q-shifted symplectic
structure on the identity map Y Ñ Y , which we also denote by f . The derived relative critical locus of
f is its symplectic pushforward

`

RCritY {Bpfq Ñ B
˘

:“ g˚pY, fq.

When g is a smooth geometric morphism between classical stacks, RCritY {Bpfq is a derived enhancement of
the relative critical locus defined in Definition 1.10. When f is zero, the derived critical locus recovers the
p´1q-shifted cotangent stack T˚r´1spY {Bq.
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Any morphism X Ñ B of derived stacks induces on classical truncations a morphism Xcl Ñ Bcl fitting
in a commutative square

Xcl //

��

X

��
Bcl // B.

In particular, we obtain a pullback morphism A2,expX{B,nq Ñ A2,expXcl{Bcl, nq.

Theorem 6.3. Let X Ñ B be an lfp geometric morphism of derived stacks equipped with a relative exact
p´1q-shifted symplectic structure ω P A2,expX{B,´1q. Let i : Xcl Ñ X be the inclusion of the classical
truncation. Then i˚ω is a relative d-critical structure on Xcl Ñ Bcl.

Proof. Let us first prove the claim when the base B is a classical affine scheme. By [Par24, Corollary 4.2.2],
there exists an LG pair pU, fq over B and a p´1q-shifted exact Lagrangian correspondence

L

a

yy

b

��
RCritU{Bpfq X,

where RCritU{Bpfq is the derived critical locus, acl is an isomorphism and b is smooth surjective. In particular,
we have a smooth surjective morphism bcl ˝ paclq´1 : CritU{Bpfq Ñ Xcl such that

pbcl ˝ paclq´1q˚pi˚pωqq – sf P A2,expCritU{Bpfq{B,´1q.

By Proposition 4.13(2), i˚ω is a d-critical structure.
For a general derived stack B we consider the commutative diagram

X 1

��

// Xcl //

��

X

��
B1 // Bcl // B,

where X 1 Ñ B1 is a morphism of classical schemes and X 1 Ñ Xcl ˆBcl B1 is smooth, where we consider the
fiber product in the 8-category Stk. We have to prove that the pullback of ω to X 1 Ñ B1 defines a relative d-
critical structure. By Proposition 4.13(2) it is enough to prove the claim when B1 is a classical affine scheme.
By the previous argument we know that the pullback of ω to pX ˆR

B B
1qcl Ñ B1 defines a relative d-critical

structure, where X ˆR
B B

1 is the fiber product in the 8-category dStk. But X 1 Ñ pX ˆR
B B

1qcl – Xcl ˆBcl B1

is smooth by assumption, so by Corollary 4.8(1) the pullback of ω to X 1 Ñ B1 defines a relative d-critical
structure. □

We will next discuss orientations of such relative d-critical structures by describing the relative canonical
bundle KX{B “ detpLX{Bq. For a morphism of derived stacks X Ñ B equipped with a relative p´1q-shifted
symplectic structure and a point x P X we construct an isomorphism

κderx : KX{B,x – detpτě0LX{B,xqb2

by the composition

KX{B,x – detpτď´1LX{B,xq b detpτě0LX{B,xq – detppτě0LX{B,xq_r1sq b detpτě0LX{B,xq

– detpτě0LX{B,xqb2,

where the first isomorphism is induced by the fiber sequence

τď´1LX{B,x ÝÑ LX{B,x ÝÑ τě0LX{B,x

and the second isomorphism is induced by p´ ¨ ωq´1|x : τ
ď´1LX{B,x – pτě0LX{B,xq_r1s.
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Example 6.4. Let B be a scheme and pU, fq an LG pair over B. Let X “ RCritU{Bpfq be the derived
critical locus which carries a relative p´1q-shifted symplectic structure. We have a fiber sequence

LU{B |X Ñ LX{B Ñ LX{U

and an isomorphism LX{U – LU{T˚pU{Bq|X – L_
U{Br1s|X , hence we obtain an isomorphism

ΛpU,fq : KX{B |Xred – Kb2
U{B |Xred .

For x P X the diagram

(6.1) KX{B,x

ΛpU,fq|x //

κder
x

��

Kb2
U{B

κx

��
detpτě0LX{B,xqb2 „ // detpΩ1

Xcl{B , xqb2

commutes up to the sign p´1q
dimΩ1

X{B,x . This follows from the commutativity of the diagram [KPS24, (3.25)]
together with the discrepancy of the sign convention for κx explained in Remark 3.34.

Next we describe the behavior of the canonical bundle with respect to Lagrangian correspondences. Con-
sider a Lagrangian correspondence Y qY

ÐÝÝ L
qX

ÝÝÑ X of relative exact p´1q-shifted symplectic stacks over B.
As in [KPS24, (3.5)] we have a natural isomorphism

(6.2) Υder
pqX ,qY q : KX{B |L bKb2

L{X

„
ÝÑ KY {B |L.

Explicitly, this isomorphism is constructed as follows. First, there is an obvious isomorphism

KX{B |L bKL{X bK_
L{Y – KY {B |L.

On the other hand, the Lagrangian structure induces an isomorphism L_
L{X r1s – LL{Y r´1s, which in turn

induces KL{X – K_
L{Y , and hence we obtain the desired isomorphism. Note that if qX : L Ñ X is smooth,

using the isomorphism L_
L{X – LL{Y r´2s, we get that LL{Y is 2-connective. The following statement

for Y and L schemes and qX schematic in [Ben+15, Theorem 3.18(b)] and [Kin22, Theorem 4.9] (see also
[KPS24, Proposition 6.9] for a closely related statement). The proofs use the standard commutative diagrams
involving the isomorphisms ip∆q and work verbatim for higher Artin stacks.

Lemma 6.5. Let B be a scheme and Y
qY

ÐÝÝ L
qX

ÝÝÑ X be a Lagrangian correspondence of relative exact
p´1q-shifted symplectic stacks over B. Assume that qX is smooth. For a point l P L the diagram

KX{B,qXplq bKb2
L{X,l

Υder
pqX,qY q|l

//

κder
qX plqbid

��

KY {B,qY plq

κder
qY plq

��
detpτě0LX{B,qXplqqb2 bKb2

L{X,l

ip∆q
2

// detpτě0LY {B,qY plqqb2

commutes up to the sign p´1qdimpL{Xq, where the bottom isomorphism is induced by the fiber sequence

∆: τě0LX{B,qXplq ÝÑ τě0LL{B,l ÝÑ LL{X,l

as well as the isomorphism q˚
Y : τě0LY {B,qY plq

„
ÝÑ τě0LL{B,l.

We are now ready to compare the virtual canonical bundles of a relative d-critical locus and its derived
enhancement.

Proposition 6.6. Let X Ñ B be an lfp geometric morphism of derived stacks equipped with a relative exact
p´1q-shifted symplectic structure ω P A2,expX{B,´1q. Let i : Xcl Ñ X be the embedding of the classical
truncation. Then there is an isomorphism

ΛX : KX{B |Xred
„

ÝÑ Kvir
Xcl{Bcl
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such that for every x P X the diagram

(6.3) KX{B,x

ΛX |x //

κder
x

��

Kvir
Xcl{Bcl,x

κx

��
detpτě0LX{B,xqb2 i˚ // detpτě0LXcl{Bcl,xq

commutes up to the sign p´1q
rkpΩ1

X{B,xq.

Proof. (6.3) uniquely determines the isomorphism ΛX if it exists. The isomorphism κderx is natural with
respect to base change since it involves the isomorphisms ip∆q which are natural for isomorphisms. The
isomorphism κx is natural with respect to base change by Proposition 4.14(4). Therefore, it is enough to
establish the existence of the isomorphism ΛX fitting into a commutative diagram (6.3) for B a classical
affine scheme.

As in Theorem 6.3 we may find an LG pair pU, fq over B and a p´1q-shifted exact Lagrangian correspon-
dence

L

a

yy

b

��
RCritU{Bpfq X,

acl is an isomorphism and b is smooth surjective. In particular, we get a smooth surjective morphism
c : R “ CritU{Bpfq Ñ Xcl under which c˚i˚ω “ sf and such that the restriction i˚L : LL{X Ñ LR{Xcl is an
isomorphism. Consider the unique isomorphism

ΛX,U : KX{B |Rred
„

ÝÑ Kvir
Xcl{B |Rred

which fits into the diagram

KX{B |Rred bKb2
L{X |Rred

Υder
pb,aq //

ΛX,Ubi˚L
��

KRCritU{Bpfq{B |Rred

ΛpU,fq

��
Kvir
Xcl{B |Rred bKb2

R{Xcl |Rred

Υ
RÑXcl // Kvir

R{B .

Using the commutative diagram (up to sign) (6.1), the compatibility of κder with Υder given by Lemma 6.5
and the compatibility of κ with Υ given by Proposition 4.14(4), for every r P R the diagram

KX{B,cprq

ΛX,U |r //

κder
cprq

��

Kvir
Xcl{Bcl,cprq

κcprq

��
detpτě0LX{B,cprqqb2 i˚ // detpτě0LXcl{Bcl,cprqq

commutes up to the sign p´1qrkpΩX{B,xq. Therefore, ΛX,U descends along c to an isomorphism ΛX independent
of choices. □

We also note that the symplectic pushforward in [Par24] is compatible with the d-critical pushforward
along smooth morphisms.

Proposition 6.7. Consider lfp geometric morphisms of derived stacks X Ñ B1
p

ÝÑ B2, where p is smooth,
equipped with a relative exact p´1q-shifted symplectic structure ω P A2,expX{B1,´1q. Then we have a
canonical isomorphism p˚pX,ωqcl – pcl˚ pXcl, i˚ωq compatibly with the relative d-critical structures over Bcl

2 .

We now describe the behavior of the canonical bundle under the symplectic pushforward.
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Proposition 6.8. Consider lfp geometric morphisms of derived stacks X π
ÝÑ B

p
ÝÑ S, where π is equipped

with a relative exact p´1q-shifted symplectic structure ω P A2,expX{B,´1q. Let π : p˚pX,ωq Ñ S be the
symplectic pushforward, which fits into a commutative diagram

p˚pX,ωq
r //

π

��

X

π

��
S B.

poo

Then there is a canonical isomorphism

(6.4) Σder
p : KX{B |p˚pX,ωq bKb2

B{S |p˚pX,ωq – Kp˚pX,ωq{S ,

which satisfies the following:
(1) It is functorial for compositions: Σder

id “ id and given another morphism q : S Ñ T with R “

pq ˝ pq˚pX,ωq the diagram

(6.5) KX{B |R bKb2
B{S |R bKb2

S{T |R
idbip∆q

2

//

Σder
p bid

��

KX{B |R bKb2
B{T |R

Σder
q˝p

��
Kp˚pX,ωq{S |R bKb2

S{T |R
Σder

q // Kpq˝pq˚pX,ωq{R

commutes, where the top horizontal morphism is induced by the fiber sequence

∆: p˚LS{T ÝÑ LB{T ÝÑ LB{S .

(2) Consider a commutative diagram of derived stacks

(6.6) X 1 //

��

B1
p1

//

a1

��

S1

a2

��
X // B

p // S

with all morphisms lfp, the left square being Cartesian, equipped with a relative exact p´1q-shifted
symplectic structure ω P A2,expX{B,´1q and let ω1 P A2,expX 1{B1,´1q be the base change. Assume
that the map B1 Ñ B ˆS S

1 is smooth. We set R1 :“ p1
˚pX 1, ω1qcl. Then the diagram

(6.7)

KX{B |R1 bKb2
B{S |R1 bKb2

B1{BˆSS1 |R1 Kp˚pX,ωq{S |R1 bKb2
B1{BˆSS1 |R1

KX1{B1 |R1 bKb2
B{S |R1 bKb2

B1{BˆSS1 |R1 Kp˚pX,ωqˆSS1{S1 |R1 bKb2
B1{BˆSS1 |R1

KX1{B1 |R1 bKb2
B1{S1 |R1 Kp1

˚pX1,ω1q{S1 |R1

Σder
p bid

„ „

idbip∆q Υder
pt,sq

Σder
p1

commutes, where
∆: LB{S |B1 ÝÑ LB1{S1 ÝÑ LB1{BˆSS1

and

(6.8)

X 1 ˆT˚pB{Sq B

p1
˚pX 1, ω1q p˚pX,ωq ˆS S

1

s t

is the Lagrangian correspondence given by the Beck–Chevalley map.
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(3) Assume that we are given an exact Lagrangian correspondence pY, ω1q
qY

ÐÝÝ L
qX

ÝÝÑ pX,ωq over B,

where qX is a smooth morphism. We let p˚pY, ω1q
qp˚pY,ω1q

ÐÝÝÝÝÝÝ p˚L
qp˚pX,ωq

ÝÝÝÝÝÑ pX,ωq denote the induced
Lagrangian correspondence. Then the following diagram commutes:

KX{B |p˚L bKb2
B{S |p˚L bKb2

L{X |p˚L Kp˚pX,ωq{S |p˚L bKb2
p˚L{p˚pX,ωq

KY {B |p˚L bKb2
B{S |p˚L Kp˚pY,ω1q{S |p˚L.

Σder
p

Υder
pqX,qY q

Υder
pqp˚pX,ωq,qp˚pY,ω1q

q

Σder
p

(4) Assume that p is smooth and let s be the underlying d-critical structure on pcl : Xcl Ñ Bcl. Then the
following diagram commutes:

KX{B |p˚pX,ωqred bKb2
B{S |p˚pX,ωqred Kp˚pX,ωq{S |p˚pX,ωqred

Kvir
Xcl{Bcl |pcl˚pXcl,sqred bKb2

Bcl{Scl |pcl˚pXcl,sqred Kvir
p˚pXcl,sq{Scl |pcl˚pXcl,sqred .

Σder
p

ΛX
Λp˚pX,ωq

Σ
pcl

Proof. We first construct the isomorphism (6.4). Recall from [Par24, Proposition 2.3.1] that the stack
p˚pX,ωq fits into the Cartesian diagram

p˚pX,ωq X

B T˚pB{Sq.0

In particular, there is a canonical isomorphism

Lp˚pX,ωq{X – LB{T˚pB{Sq|p˚pX,ωq – L_
B{Sr1s|p˚pX,ωq.

Therefore we obtain a fiber sequence

∆: LX{S |p˚pX,ωq Ñ Lp˚pX,ωq{S Ñ L_
B{Sr1s|p˚pX,ωq

which induces an isomorphism

Kp˚pX,ωq{S
ip∆q

ÝÝÝÑ
–

KX{S |p˚pX,ωq b detpL_
B{Sr1sq|p˚pX,ωq

idbθL_
B{S

ÝÝÝÝÝÝÑ
–

KX{S |p˚pX,ωq b detpL_
B{Sq_|p˚pX,ωq

idbιLB{S
ÝÝÝÝÝÝÑ

–
KX{S |p˚pX,ωq bKB{S |p˚pX,ωq.

(6.9)

Now consider the fiber sequence
∆1 : LB{S |X Ñ LX{S Ñ LX{B .

It induces an isomorphism

(6.10) ip∆q : KX{S – KB{S |X bKX{B .

Combining (6.9) and (6.10), we obtain the desired isomorphism.
The property (1) is obvious from the construction. The property (2) is obvious when the right square in

the diagram (6.6) is Cartesian. Therefore it is enough to prove the case when p and a2 are identity maps.
Since we have p1

˚pX ˆB B
1, ω|XˆBB1 q “ a1,˚pX ˆB B

1, ω|XˆBB1 q “ pX,ωq ˆ T˚r´1spB{Sq, we may further
assume that X “ B. In this case, the correspondence (6.8) is identified with the following Lagrangian
correspondence

B1

T˚r´1spB1{Bq B

0 a1
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given by the zero section. The map L_
B1{Br1s – LB1{T˚r´1spB1{Bqr´1s induced from the Lagrangian corre-

spondence is equivalent to the natural map. In particular, the isomorphism Υder
pa1,0q

is identified with the
following isomorphism

KT˚r´1spB1{Bq{B |B1 – KB1{B bK_
B1{T˚r´1spB1{Bq – KB1{B b detpLB1{T˚r´1spB1{Bqr´1sq

–KB1{B b detpL_
B1{Br1sq – Kb2

B1{B .

On the other hand, Σder
p1 is identified with the isomorphism

Kb2
B1{B – KB1{B bKT˚r´1spB1{Bq{B1 |B1 – KT˚r´1spB1{Bq{B1 |B1 ,

where the first isomorphism is induced by the isomorphism LT˚r´1spB1{Bq{B1 |B1 – LB1{T˚pB1{Bq – L_
B1{Br1s.

Therefore we obtain the commutativity of the diagram (6.6).
The property (3) is obvious from the construction. To prove the property (4), using (2) and Proposi-

tion 4.21(2), we may assume that B and S are classical affine schemes. Further, using (3), Proposition 4.21(3)
and [Par24, Corollary 4.2.2], we may assume that there exists a LG pair pU, fq over B and X “ RCritU{Bpfq.
Using the functoriality of the isomorphism Σder

p , we may assume X “ B “ U and the relative exact p´1q-
shifted symplectic structure is induced from f . In this case, we have p˚pX,ωq “ RCritU{Spfq and the
isomorphism Σder

p is identified with the isomorphism

KRCritU{Spfq{S – KU{S |RCritU{Spfq bKRCritU{Spfq{U – Kb2
U{S |RCritU{Spfq

where the latter isomorphism is induced from the isomorphism LRCritU{Spfq{U – LU{T˚pU{Sq|RCritU{Spfq –

L_
U{Sr´1s. On the other hand, Σpcl is given by the natural isomorphism Kvir

CritU{Spfq{S – Kb2
U{S |CritU{Spfqred .

By the construction of the map ΛRCritU{Spfq, we obtain the desired claim. □

Definition 6.9. Let π : X Ñ B be an lfp geometric morphism of derived stacks equipped with a relative
exact p´1q-shifted symplectic structure ω. An orientation of pπ : X Ñ B,ωq is a pair pL, oq consisting of
a graded line bundle L on X together with an isomorphism o : Lb2 „

ÝÑ KX{B “ detpLX{Bq.

By Theorem 6.3 the induced morphism on classical truncations πcl : Xcl Ñ Bcl inherits a canonical relative
d-critical structure, and Proposition 6.6 implies that an orientation o of the relative exact p´1q-shifted
symplectic structure on X Ñ B naturally induces an orientation ocl of the relative d-critical structure on
Xcl Ñ Bcl.

In the setting of Proposition 6.8, suppose that we are given an orientation pL, oq for pX Ñ B,ωq. Then
we define an orientation p˚o on p˚pX,ωq Ñ S as the composite

p˚o : pL|p˚pX,ωq bKB{S |p˚pX,ωqqb2 obid
ÝÝÝÑ

„
KX{B |p˚pX,ωq bKb2

B{S |p˚pX,ωq

Σp
ÝÝÑ

„
Kp˚pX,ωq{S .

As a special case, when X “ B and ω is induced from a function f on X, we equip π : X
“

ÝÑ X with the
obvious orientation ocanX{X : Ob2

X – KX{X and define the canonical orientation ocanRCritX{Bpfq{B
:“ p˚o

can
X{X on

RCritpfq “ p˚pX,ωq Ñ B. As a special case when f “ 0, we obtain a canonical orientation on ocanT˚r´1spX{Bq{B

on the p´1q-shifted cotangent stack T˚r´1spX{Bq Ñ B. When X is smooth over B, it is clear from the
construction that the canonical orientation of the derived critical locus is compatible with that canonical
orientation of the classical critical locus with the natural d-critical structure. Namely, there exists natural
isomorphism

pocanRCritX{Bpfq{Bqcl – ocanCrit
Xcl{Bcl pfq{Bcl .

6.2. Perverse pullbacks. It is useful to express perverse pullbacks constructed in Theorem 5.24 in the lan-
guage of shifted symplectic geometry. For this, let R be a commutative ring and for a derived stack X define
ShvpX;Rq “ ShvpXcl;Rq and similarly for Dp´q,Pervp´q. Let X Ñ B denote an lfp morphism between
derived Artin stacks equipped with a relative exact p´1q-shifted symplectic structure ω P A2,expX{B,´1q

and an orientation o. Then Proposition 6.6 implies that the morphism induced on the classical truncations
Xcl Ñ Bcl is naturally equipped with an relative exact d-critical structure, and inherits an orientation ocl.
Therefore, by Theorem 5.24 we obtain a perverse pullback functor

πφ : PervpBq Ñ PervpXq.
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When R is a field, it extends to a functor πφ : DpBq Ñ DpXq. The perverse pullback functor for morphisms
with oriented relative exact p´1q-shifted symplectic structures satisfies the following properties, as a direct
consequence of the corresponding properties in the d-critical setting (Theorem 5.24):

(1) Assume that we are given a finite morphism c : B̃ Ñ B and form the Cartesian diagram

X̃ X

B̃ B.

c̃

π̃ π

c

Equip π̃ : X̃ Ñ B̃ with the pullback relative exact p´1q-shifted symplectic structure and orientation.
Then there exists a natural isomorphism

(6.11) βc : π
φc˚

„
ÝÑ c̃˚π̃

φ.

(2) Assume that we are given a smooth morphism p : B Ñ S. Let p˚pX,ωq be the symplectic pushforward
which fits into a commutative diagram

p˚pX,ωq X

S B.

i

π̄ π

p

Equip p˚pX,ωq with the pushforward orientation p˚o. Then there exists a natural isomorphism

(6.12) γp : π
φp: „

ÝÑ i˚π̄
φ.

(3) Let ō be the orientation for pX Ñ B,´ωq defined in a similar manner as (4.20). We let πφ,´ denote
the perverse pullback for pX Ñ B,´ωq with respect to ō. Then there is a natural isomorphism

δ : πφD „
ÝÑ Dπφ,´.

(4) Assume that we are given lfp morphisms between derived Artin stacks πi : Xi Ñ Bi for i “ 1, 2
equipped with relative exact p´1q-shifted symplectic structures ωi P A2,expXi{Bi,´1q and orienta-
tions oi. Equip π1ˆπ2 : X1ˆX2 Ñ B1ˆB2 with the relative exact p´1q-shifted symplectic structure
ω1 ‘ ω2 and orientation o1 b o2. Then there exists a natural isomorphism

TS: πφ1 p´q b πφ2 p´q
„

ÝÑ pπ1 ˆ π2qφp´ b ´q.

The isomorphism α constructed for perverse pullbacks along morphisms equipped with a relative d-critical
structure has the following meaning in terms of shifted symplectic structures.

Proposition 6.10. Let π : X Ñ B be an lfp morphism of derived Artin stacks equipped with a relative
exact p´1q-shifted symplectic structure and orientation. Let p : B1 Ñ B be a smooth geometric morphism,
π1 : X 1 Ñ B1 an lfp morphism of derived Artin stacks equipped with a p´1q-shifted symplectic structure,

X 1 q1

ÐÝ L
q̃

ÝÑ X ˆB B
1

a Lagrangian correspondence over B1 with q̃ smooth, and q :“ pr1 ˝ q̃ : L Ñ X the composite. Regard π1 with
the induced orientation (6.2). Then there is a natural isomorphism

(6.13) αp,pq,q1q : pπ1qφp: „
ÝÑ q1

˚q
:πφ

of functors PervpBq Ñ PervpX 1q.

Proof. On classical truncations, q induces a smooth morphism f : pX 1qcl – Lcl Ñ pX ˆB B1qcl Ñ Xcl.
Consider the relative d-critical structures s and s1 on πcl : Xcl Ñ Bcl and π1cl : pX 1qcl Ñ pB1qcl induced by
the relative p´1q-shifted symplectic structures on π and π̄ (see Theorem 6.3). Using the given Lagrangian
correspondence, we obtain f˚ps2q “ s1. Applying Theorem 5.24(1) thus yields the isomorphism pπ1clqφp: –

f :pπclqφ. Translating from the language of relative d-critical structures to the language of relative exact
p´1q-shifted symplectic structures, this becomes the isomorphism asserted. □

Remark 6.11. When p “ id (resp. pq, q1q “ pid, idq), we will write αpq,q1q :“ αp,pq,q1q (resp. αp :“ αp,pq,q1q).
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While we have defined d-critical pushforwards only along smooth morphisms, symplectic pushforwards are
defined along arbitrary lfp geometric morphisms. We have the following additional compatibility between
perverse pullbacks and symplectic pushforwards with respect to closed immersions.

Proposition 6.12. Suppose given lfp morphisms of derived Artin stacks X π
ÝÑ B

p
ÝÑ S, where p is a closed

immersion and π is equipped with a relative exact p´1q-shifted symplectic structure ω P A2,expX{B,´1q. Let
π : p˚pX,ωq Ñ S be the symplectic pushforward, which fits into a commutative diagram

p˚pX,ωq
r //

π

��

X

π

��
S B.

poo

Assume further that π : X Ñ B is equipped with an orientation o, and equip π̄ : p˚pX,ωq Ñ S with the
orientation p˚o. Then r is smooth, and there is a canonical isomorphism

(6.14) εp : π
φp˚

„
ÝÑ r:πφ,

functorial for compositions in p. Moreover, we have the following compatibilities between εp and the isomor-
phisms α, β, γ, δ, and TS of Theorem 5.24:

(1) Let h : S1 Ñ S be a smooth morphism and set B1 :“ B ˆS S
1 with projections h1 : B1 Ñ B and

p1 : B1 Ñ S1. Let π1 : X 1 Ñ B1 be an lfp geometric morphism equipped with a relative exact p´1q-
shifted symplectic structure ω1, and

X 1 q1

ÐÝ L
q̃

ÝÑ X ˆB B
1

a Lagrangian correspondence over B1 with q̃ smooth. Form the symplectic pushforward S1 π̄1

ÐÝ

p1
˚pX 1, ω1q

r1

ÝÑ X 1 and consider the induced Lagrangian correspondence

p1
˚pX 1, ω1q

q̄1

ÐÝ L̄
¯̃q

ÝÑ p1
˚pX ˆB B

1, h˚ωq – p˚pX,ωq ˆS S
1.

Then ¯̃q is smooth, and the following diagram commutes:

pπ̄1qφp1
˚ph1q: pπ̄1qφh:p˚ q̄1

˚q̄
:π̄φp˚

pr1q:pπ1qφph1q: pr1q:q1
˚q

:πφ q̄1
˚q̄

:r:πφ,

εp1

Ex!
˚

„

αh,pq̄,q̄1q

εp

αh1,pq,q1q Ex!
˚

„

where q :“ pr1 ˝ q̃ : L Ñ X, q̄ :“ pr1 ˝ ˜̄q : L̄ Ñ p˚pX,ωq, and α is as in Proposition 6.10.
(2) Assume that we are given a finite morphism from a derived Artin stack c2 : S1 Ñ S, c1 : B1 Ñ B,

p1 : S1 Ñ B1 and form the following commutative diagram:

X 1 ˆT˚pB{Sq B

p˚pX,ωq ˆS S
1 p1

˚pX 1, ω1q X 1

p˚pX,ωq X

S1 B1

S B

i
h

c1
2 π̄ˆS idS1

r1

π̄1

q

c2

p1

c1
p

π1

r

π̄ π

Here, the right square is Cartesian, ω1 P A2,expX 1{B1,´1q is the restriction of ω, the front and
back squares are symplectic pushforward squares, c1

2 is the base change of c2, and i and h are the
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natural morphisms. Then h is smooth, i induces an isomorphism on the classical truncation and the
following diagram commutes:

π̄φp˚c1,˚ π̄φc2,˚p
1
˚ c1

2,˚pπ̄ ˆS idS1 qφp1
˚ c1

2,˚i˚h
:pπ̄1qφp1

˚

r:πφc1,˚ r:q˚pπ1qφ c1
2,˚i˚h

:pr1q:pπ1qφ.

„

εp

βc2
αph,iq

εp1

βc1 Ex!
˚

(3) Assume that p fits in the following Cartesian diagram:

R S1

S B

p̄

q̄ q

p

where p̄ is a closed immersion and q̄ is smooth. Form the following commutative diagram:

p̄˚q˚pX,ωq q˚pX,ωq

p˚pX,ωq X

R S1

S B.

r̄

π̄1 π1
s̄

π̄

s

p̄

q̄ q
p

r

π

Here, the top and bottom squares are Cartesian and the other four squares are symplectic pushforward
squares. Then the following diagram commutes:

π̄φp˚q
: π̄φq̄:p̄˚ s̄˚pπ̄1qφp̄˚

r:πφq: r:s˚pπ1qφ s̄˚r̄
:pπ1qφ.

εp

Ex!
˚ γq̄

εp̄

γq Ex!
˚

(4) We let πφ,´ denote the perverse pullback for pX Ñ B,´ωq with respect to the orientation ō and
define π̄φ,´ in a similar manner. Then the following diagram commutes:

r:πφD r:Dπφ,´ Dr:πφ,´

π̄φp˚D π̄φDp˚ Dπ̄φ,´p˚.

δ

εp

Ex!,D

„

Ex˚,D

„

δ

Dεp

(5) Let Xi
πi

ÝÑ Bi
pi

ÝÑ Si be lfp morphisms between derived Artin stacks for i “ 1, 2, where πi is equipped
with a relative exact p´1q-shifted symplectic structure ωi P A2,expXi{Bi,´1q and an orientations oi.
We let π̄i : pi,˚pXi, ωiq Ñ Si be the symplectic pushforward and ri : pi,˚pXi, ωiq Ñ Xi be the natural
map. Equip π1 ˆ π2, π̄1, π̄2 and π̄1 ˆ π̄2 with orientations o1 b o2, p1,˚o1, p2,˚o2 and p1,˚o1 b p2,˚o2
respectively. Then the following diagram commutes:

π̄φ1 p1,˚p´q b π̄φ2 p2,˚p´q pπ̄1 ˆ π̄2qφpp1,˚p´q b p2,˚p´qq pπ̄1 ˆ π̄2qφpp1 ˆ p2q˚pp´q b p´qq

r:
1π
φ
1 p´q b r:

2π
φ
2 p´q pr1 ˆ r2q:pπφ1 p´q b πφ2 p´qq pr1 ˆ r2q:pπ1 ˆ π2qφpp´q b p´qq.

TS

εp1bεp2

„

εp1ˆp2

„ TS
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Proof. To see that r is smooth, recall that p˚pX,ωq can be described as the zero locus of the moment map
µX : X Ñ T˚pB{Sq (see [Par24, Proposition 2.3.1]). Since p is unramified, LB{S is of Tor-amplitude ď ´1.
Hence the zero section of T˚pB{Sq has cotangent complex of Tor-amplitude ě 0 and is smooth.

To construct the isomorphism (6.14), form the Cartesian square of derived stacks

p˚pX,ωq ˆS B p˚pX,ωq

B S

p1

π1 π

p

and regard π1 with its induced oriented relative exact p´1q-shifted symplectic structure. Denote by i : p˚pX,ωq Ñ

p˚pX,ωq ˆS B the unique morphism equipped with identifications p1 ˝ i – id and π ˝ r – π1 ˝ i. Then the
diagram

p˚pX,ωq

X p˚pX,ωq ˆS B

r i

defines an oriented Lagrangian correspondence between π and π1. Since π factors through p and p is a closed
immersion, p1 induces an isomorphism on classical truncations and hence so does its section i. Applying
Proposition 6.10 we deduce the canonical isomorphism i˚r

:πφ – π1φ, hence r:πφ – p1
˚π

1φ. Combining this
with the canonical isomorphism πφp˚ – p1

˚π
1φ of Theorem 5.24(2), using that p is finite, we define:

εp : π
φp˚ – p1

˚π
1φ – r:πφ.

Functoriality for compositions in p follows from the corresponding functoriality statements in Theorem 5.24(1,2).
The claims (1, 2, 3, 4, 5) follow from the fact that the map εp is constructed as a composite of the

isomorphisms α of Theorem 5.24(1) and β of Theorem 5.24(2), and these are both individually compatible
with α, β, γ, δ, and TS by Theorem 5.24. To illustrate this, we give a detailed proof of (3); the proofs of (1,
2, 4, 5) are similar.

Consider the following commutative diagram:

p̄˚q˚pX,ωq q˚pX,ωq p̄˚q˚pX,ωq ˆR S
1

p˚pX,ωq X p˚pX,ωq ˆS B.

r̄

t̄

p̄X

s̄

r

t

s s̄ˆRidS1

pX

Here, pX and p̄X are base change of p and p̄, and t and t1 are naturally defined morphisms. By construction,
t and pX are mutually inverse after passing to the classical truncation, and similarly for t̄ and p̄X . Consider
the following diagram:

π̄φp˚q
: π̄φq̄:p̄˚ s̄˚pπ̄1qφp̄˚

pX,˚pπ̄ ˆS idBqφq: pX,˚ps̄ˆR idS1 q˚pπ̄1 ˆR idS1 qφ s̄˚p̄X,˚pπ̄1 ˆR idSqφ

pX,˚t˚r
:πφq: pX,˚t˚r

:s˚pπ1qφ pX,˚t˚s̄˚r̄
:pπ1qφ pX,˚ps̄ˆR idS1 q˚t̄˚r̄

:pπ1qφ s̄˚p̄X,˚t̄˚r̄
:pπ1qφ

r:πφq: r:s˚pπ1qφ s̄˚r̄
:pπ1qφ.

βp

εp

„

Ex!
˚ γq̄

pBq βp̄

εp̄

γq

αpr,tq

„

αpr̄,t̄q αpr̄,t̄q

γq

„

Ex!
˚

„

„ „

„

γq Ex!
˚

pAq pCq pDq pGq

pEq pF q

It is enough to prove the commutativity of the outer square. The commutativity of the diagrams (A) and
(G) follows from the construction of the map εp and εp̄. The commutativity of the diagrams (D), (E) and
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(F) are obvious. The commutativity of the diagram (B) follows from the compatibility between the β´ and
γ´ proved in Theorem 5.24. Similarly, the commutativity of the diagram (C) follows from the compatibility
relation between α´ and the γ´, which is also proved in Theorem 5.24. Hence we conclude the commutativity
of the outer square as desired. □
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