PERVERSE PULLBACKS

ADEEL A. KHAN, TASUKI KINJO, HYEONJUN PARK, AND PAVEL SAFRONOV

ABsTrACT. We define a new perverse t-exact pullback operation on derived categories of constructible
sheaves which generalizes most perverse t-exact functors in sheaf theory, such as microlocalization, the
Fourier—Sato transform and vanishing cycles. This operation is defined for morphisms of algebraic stacks
equipped with a relative exact (—1)-shifted symplectic structure, and can be used to define cohomological
Donaldson—Thomas invariants in a relative setting. We prove natural functoriality properties for perverse
pullbacks, such as smooth and finite base change, compatibility with products and Verdier duality.
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INTRODUCTION

For a locally compact topological space X the derived category Shv(X) of sheaves of complexes of Q-
vector spaces has two t-structures: one t-structure is determined by the condition that all stalk functors
(i.e. 4* for inclusions of points) are t-exact and another ¢-structure is determined by the condition that all
costalk functors (i.e. i') are t-exact. By definition, arbitrary #-pullbacks are t-exact with respect to the first
t-structure and arbitrary !-pullbacks are t-exact with respect to the second t-structure. Moreover, these two
t-structures as well as #-pullbacks and !-pullbacks are exchanged under the Verdier duality functor .

In the case when X is the complex analytic space underlying a complex algebraic variety, there is a
subcategory DP(X) < Shv(X) of constructible sheaves which inherits the two t-structures. But it also has a
third, perverse, t-structure, which is Verdier self-dual. Given an extra structure on a morphism 7: X — B
of complex algebraic varieties (a relative d-critical structure or a derived enhancement X — B equipped
with a relative exact (—1)-shifted symplectic structure) the goal of this paper is to define a perverse pullback
functor 7% : D2(B) — DP(X) which is perverse t-exact and Verdier self-dual.

Cohomological DT theory. Cohomological Donaldson—-Thomas theory associates a cohomology theory
to certain algebro-geometric moduli spaces. Namely, for a complex algebraic stack X consider the following
data:

e A derived enhancement X — X equipped with a (—1)-shifted symplectic structure in the sense of
[Pan-+13].
e Orientation data, i.e. the choice of a square root line bundle of the canonical bundle Ky = det(Lx).

Given such data, the works [Bra+15; Ben+15; KL12] define a perverse sheaf ¢ x on X, locally modeled on
the sheaf of vanishing cycles for a function f: U — C on a smooth complex scheme U, so that the cohomo-
logical Donaldson-Thomas (DT) invariant of X is given by the cohomology of ¢ x. Some of the examples of
stacks which admit (—1)-shifted symplectic derived enhancements are moduli stacks of compactly supported
coherent sheaves on smooth 3-dimensional Calabi—Yau varieties (in which case a natural orientation data
was constructed in [JU21]) and moduli stacks of local systems on a compact oriented 3-manifold (in which
case a natural orientation data was constructed in [NS23]).

Cohomological DT invariants relate to the usual cohomology via a dimensional reduction isomorphism
constructed in [Kin22]. Namely, consider an algebraic stack ¥ with a quasi-smooth derived enhancement ).
Consider the stack of singularities Sing(Y") [AG15] obtained as the classical truncation of the (—1)-shifted
cotangent bundle T*[—1]9). The dimensional reduction theorem identifies the cohomological DT invariant
of Sing(Y") with the Borel-Moore homology of Y

H* (Sing(Y), ¢sing(v)) = Hammm)—_e(¥)-

Perverse pullbacks. Motivated by relative cohomological Donaldson—Thomas theory (where we have a
family of 3-dimensional Calabi—Yau varieties or an anticanonical divisor in a 4-dimensional Fano variety),
in this paper we introduce a relative version of the perverse sheaf px recalled above. Namely, instead of
considering a fixed complex algebraic stack X and equipping it with a perverse sheaf px € Perv(X) we
consider a family 7: X — B and equip it with a perverse pullback functor Perv(B) — Perv(X). The
following is a condensed version of Theorem 5.24; we refer the reader to the main body of the paper to the
precise definition of natural isomorphisms, their compatibility as well as a generalization to constructible
sheaves with coeflicients in a general commutative ring R.
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Theorem A. Let m: X — B be a morphism of higher Artin stacks over C together with a derived enhance-
ment X — X, a relative exact (—1)-shifted symplectic structure on X — B, and the choice of a square root
line bundle of Kx/p = det(LLx/p). Then there is a perverse t-evact functor

7. D2(B) — DE(X)
which satisfies the following properties:

(1) It is compatible with pullbacks along smooth morphisms in B.

(2) It is compatible with pullbacks along smooth morphisms in X.

(3) It is compatible with (—1)-shifted symplectic pushforwards (in the sense of [Par2j]) along smooth
morphisms in B.

(4) It is compatible with pushforwards along finite morphisms in B.

(5) It commutes with Verdier duality.

(6) It is compatible with products.

In the opposite extremes the perverse pullback is given as follows:

e For B = pt we have 7?Qp = @x is the perverse sheaf defined in [Bra+15; Ben+15]. In fact, our
construction of perverse pullbacks extends its definition to higher Artin stacks X.

e For X = X = B with the relative exact (—1)-shifted symplectic structure on id: X — X determined
by a function f: X — C we have

=) = X)wpsc,
ceC
where ¢;: DP(X) — DP(f71(0)) is the vanishing cycle functor. The above sum is necessary for
perverse pullbacks to be compatible with products in the naive way. In fact, this natural isomorphism
along with the properties (1)-(3) of perverse pullbacks from Theorem A determine them uniquely.

Following [Joy15], instead of considering a (—1)-shifted symplectic enhancement X < X it turns out to
be useful to consider relative d-critical structures on 7: X — B (see Definitions 3.15 and 4.11). Namely, a
relative d-critical structure s on 7 is given by a pair of a function und(s) € Ox together with a nullhomotopy
of its de Rham differential dund(s) € Ly, p in the relative cotangent complex; we moreover require that
smooth-locally X — B is given by the relative critical locus of a function of a smooth B-scheme, compatibly
with s. Given a (—1)-shifted symplectic enhancement X < X, the restriction of the relative exact (—1)-
shifted symplectic structure on X to X defines such an element s; the local structure is provided by the shifted
Darboux theorems of [BBJ19; BG13; Ben+15; Par24]. The advantage of (relative) d-critical structures over
(relative) exact (—1)-shifted symplectic structures is that the former are obviously functorial with respect
to smooth maps, which is useful in extending our constructions to higher Artin stacks.

Besides the vanishing cycle functor, the perverse pullback functor recovers most of the perverse t-exact
functors that appear in sheaf theory:

e Let X = F be a vector bundle over a scheme B. Then the composite ug: FY — B S E naturally
carries a relative exact d-critical structure, together with a canonical choice of square root Kg. /p =
det(E|£)®2. In this situation, the perverse pullback functor

ug: D(E) — D2(EY)

recovers the Fourier—Sato transform [KKS90, Section 3.7] up to shift.

e Let Y — B be a closed immersion between smooth varieties. In this situation, the composite
m: N*(Y/B) —» Y — B naturally carries a relative exact d-critical structure with a canonical choice
of square root Knx(y,/B)/B = Ky/3|%§(y/3). Then the perverse pullback functor

m?: D2(B) — D(N*(Y/B))
recovers the microlocalization functor in [KS90, Section 4.3]. In particular, the composite
uﬁ*(y/B) om?: DE(B) - DE(N(Y/B))
recovers the specialization functor. See the next paragraph for more details on the microlocal nature
of the perverse pullback functor.



Lagrangian microlocalization. For a complex manifold B and a complex submanifold Y ¢ B Kashiwara
and Schapira [KS90, Section 4.3] defined the microlocalization functor py 5 : D2(B) — D2(N*(Y/B)) which
is perverse t-exact. The definition of the microlocalization functor yy 5 was extended in [Sch22] to the case
when Y — B is a quasi-smooth closed immersion, and independently in [KK23| when Y — B is a morphism
of derived Artin stacks locally of finite presentation.
One can interpret the perverse pullback functor as a Lagrangian version of the microlocalization functor
as follows. The starting point for this point of view is given by the following results:
e By [Par24, Corollary 3.1.3] a morphism X — B with a relative exact (—1)-shifted symplectic struc-
ture is the same as an exact Lagrangian structure on a morphism X — T*B.
e For a complex symplectic manifold (S, w) equipped with a G,-action which acts on w with weight
1 there is a category Perv(S) of perverse microsheaves constructed in [Was04; Cot+22]. Moreover,
if S = T*B is the cotangent bundle of a complex manifold B, there is an equivalence Perv(T*B) ~
Perv 12 (B), the category of perverse sheaves on B twisted by the gerbe of square roots of the

canonical bundle Kp.

Conjecture B. For a complex 0-shifted symplectic derived Artin stack (S,w) equipped with a Gy,-action
which acts on w with weight 1 there is a category Perv(S) of perverse microsheaves on S. For a morphism
[+ L — S equipped with an exact Lagrangian structure there is a Lagrangian microlocalization functor

MIZ‘/%: Perv(S) — Perv(T*L).

Moreover, for S = T*B there is an equivalence Perv(T*B) = Perv .1/2(B) and under this equivalence /LI;;%
B

is equivalent to the perverse pullback along the composite L — T*B — B.

The Lagrangian microlocalization functor is closely related to the notion of a sheaf quantization of a
Lagrangian submanifold as in [NS20]: a sheaf of quantization of L — S is an object £, € Perv(S) such that
MI;/’% (L) is a (twisted) rank 1 local system on L.

In a follow-up paper we use the formalism of perverse pullbacks to construct shifted Lagrangian classes
as in [JS19, Conjecture 1.1] and [AB17, Conjecture 5.18]: for a complex oriented (—1)-shifted symplectic
derived Artin stack S and a morphism f: L — S equipped with an oriented Lagrangian structure there is a
(—1)-shifted Lagrangian class

(L)% f*p5 — wi[—dim(L)]
generalizing the virtual classes in Borel-Moore homology defined in [BJ17] and [OT23] for S = pt. This may
be viewed as a decategorified and (—1)-shifted version of Conjecture B.

Given a morphism Y — B of derived Artin stacks locally of finite presentation we obtain a 0-shifted
Lagrangian morphism 7: L = N*(Y/B) — S = T* B. We expect that the perverse pullback functor in this
case coincides with the derived microlocalization functor, i.e. we expect that there is a natural isomorphism

Lag ~
HNs(y/B)/T*B = HY/B-

Conventions. Throughout the paper we work with schemes over a field & assumed to be of characteristic
different from 2 and with i € k satisfying 2 = —1. Starting from Section 5, k will be the field C of
complex numbers. We also fix a commutative ring R of coefficients for our sheaves. We denote by Gpd,,
the oo-category of co-groupoids.

Acknowledgements. AAK acknowledges support from the grants AS-CDA-112-M01 and NSTC 112-2628-
M-001-0062030. TK was supported by JSPS KAKENHI Grant Number 25K17229. HP was supported by
Korea Institute for Advanced Study (SG089201).

1. SCHEMES AND STACKS

1.1. Stacks. Recall the symmetric monoidal co-category Prt of stable presentable co-categories with colimit-
preserving functors as morphisms as in [Lurl7, §4.8.1]. Let Modg € Pr® be the derived oo-category of chain
complexes of R-modules. Let
PI‘% = ModMOdR(PrSt)
be the oco-category of R-linear stable presentable co-categories.
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Let Sch be the category of schemes over k and Sch®P® = Sch the subcategory of separated schemes of

finite type. Recall the following notion of higher Artin stacks, as in [TV08, Definition 1.3.3.1].
Definition 1.1. A stack is a presheaf of co-groupoids on Sch satisfying Cech descent along étale surjections;
we denote by Stk the co-category of such. We define n-geometric stacks (for n > —1) inductively:

(1) A stack is (—1)-geometric if it is (representable by) a scheme.

(2) A morphism of stacks f: X — Y is n-geometric (for n > —1) if for every scheme V and every
morphism V' — Y, the fibered product X xy V is n-geometric.

(3) An n-geometric morphism f: X — Y is smooth, resp. smooth surjective, if for every commutative

diagram
U X

V—Y

_

with U,V schemes and U — X Xy V smooth surjective as an (n — 1)-geometric morphism, the
morphism U — V is a smooth, resp. smooth surjective, morphism of schemes.
(4) A stack X is n-geometric if it satisfies the following properties:
(a) Its diagonal Ax: X — X x X is (n — 1)-geometric.
(b) There exists a scheme U and a morphism' p: U — X which is a smooth surjection.

We additionally introduce the following terminology:

e A stack is higher Artin if it is n-geometric for some n; we denote by Art c Stk the co-category of
such.

e A morphism is geometric if it is n-geometric for some n.

e A higher Artin stack is Artin if the corresponding functor is valued in groupoids. More generally,
a higher Artin stack is n-Artin if the corresponding functor is valued in n-groupoids.

e A morphism is n-representable if it is representable by n-Artin stacks. It is schematic if it is
representable by schemes.

For a pair of stacks X, Y we denote by Map(X,Y’) the mapping stack whose S-points are given by
Map(X,Y)(S) = Homgk (S x X,Y).

Definition 1.2. A stack X is locally of finite type if for every cofiltered system {S;} of affine schemes
the natural morphism

is an isomorphism.

Remark 1.3. For schemes over a field k£ the above definition coincides with the usual notion of schemes
locally of finite type, see [Stacks, 01ZC].

Let Stk < Stk be the full subcategory of stacks locally of finite type. We write Art'™ < Art for the full
subcategory spanned by X € Art locally of finite type.

1.2. Extensions to stacks. Let V be an oo-category with limits. In this section we describe several mecha-
nisms to extend invariants of schemes valued in V to invariants of stacks. Equip the category of schemes Sch
with the étale topology. We will encounter objects on schemes functorial only with respect to smooth mor-
phisms. Namely, consider the subcategory Schgmootn © Sch whose objects are schemes and whose morphisms
are smooth. Let Artgpeoth © Art be a similarly defined subcategory for higher Artin stacks.

Lwhich is automatically (n — 1)-geometric when the diagonal Ax is (n — 1)-geometric.
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To formalize invariants of relative schemes, let Fun(A!, Sch) be the category whose objects are morphisms

’
™

of schemes and whose morphisms p: (X’ > B’) — (X > B) are commutative diagrams

x —Lrox

B~ B.
We extend the étale topology to Fun(Al, Sch) by declaring covering families {(X; — B;) — (X — B)} to be
families of morphisms such that both {B; — B} and {X; — X xp B;} are étale covers.

Let
Fun(Al, SChsepft)Osmooth,lsmooth - Fun(A17 SCh)Osmooth o Fun(Al, SCh)
be the following subcategories:
e Fun(A', Sch)osmooth has the same objects and morphisms (X’ — B’) — (X — B) such that X’ —
X xp B’ is smooth.
. Fun(Al,Schsepft)Osmoothylsmooth has the same objects and morphisms (X' — B’) — (X — B) such
that both B’ — B and X’ — X xp B’ are smooth.

Let Fun(A', Stk) be the oo-category of morphisms of stacks and let
Fun(A®', Art)osmooth, 1smooth © Fun(Al, Stk)geometric c Fun(A!, Stk)geometric = fun(Al, Stk)

Osmooth
be the following subcategories:

e Fun(Al, Stk)geo’““e”%C is the full subcategory whose objects are geometric morphisms of stacks,
o Fun(Al, Stk)gome has the same objects and morphisms (X’ — B’) — (X — B) such that
X' — X xp B’ is smooth.
e Fun(A!, Art)osmooth, 1smooth has objects morphisms of higher Artin stacks and morphisms (X’ —
B’') - (X — B) such that both B — B and X’ — X xp B’ are smooth.
We define the extensions of invariants of schemes to invariants of stacks as follows.

e For a functor
F:Sch’? — Vv

satisfying étale descent we define its value on stacks X € Stk by a right Kan extension:

(1.1) F2(X) = lim F(S),

where the limit is taken over the co-category Sch,x of pairs (S,s) with S € Sch and 5: § — X
a morphism. By [Kha25, Proposition 3.2.5(i), Corollary 3.2.6(i)] this determines an inverse to the
restriction functor from V-valued sheaves on Stk to V-valued sheaves on Sch.
e For a functor
F: Sch?®

smooth v

satisfying étale descent we define its value on higher Artin stacks X € Art by a right Kan extension:

(1.2) F7(X) = lim F(S),
(8,s)
where the limit is taken over the full subcategory Schzxgg:}ﬁ/ X
(S, s) with S € Sch and s: S — X a smooth morphism.
e For a functor

C (Artsmootn)/x consisting of pairs

F: Fun(A',Sch)oP —V

Osmooth
satisfying étale descent we define its value on geometric morphisms (X — B) € Fun(A!, Stk)geometric
of stacks by a right Kan extension:

1.3 F(X ->B)= lm F(X — B),
(1.3 (X ~B)= Jm P - B)

where the limit is taken over the full subcategory of (Fun(Al, Stk)geometric)/(x_,,g) of objects (X' —

Osmooth
B’,p) where X’ — B’ is a morphism of schemes and X’ — X x g B’ is smooth.
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e For a functor
F: Fun(Al’ SCh)SSmooth,lsmooth —V
satisfying étale descent we define its value on a morphism (X — B) € Fun(A!, Art) of higher Artin
stacks by a right Kan extension:
14 F* (X ->B)= lm FX —B),
(1.4) (X B)= lm )
where the limit is taken over the full subcategory of (Fun(A', Art)osmooth, 1smooth ) /(x—p) of objects
(X’ - B’,p) where X’ — B’ is a morphism of schemes and both B’ — B and X' — X xpg B’ are
smooth.

Remark 1.4. By [Kha25, Corollary 3.2.7], the definitions (1.1) and (1.2) (and, similarly, (1.3) and (1.4))
of the extensions above are compatible, i.e. for a sheaf F': Sch®® — V and a higher Artin stack X € Art the
restriction morphism
lim F(S) — lim F(S)
(S,s)eSchx (S,s)eSchsmooth/X

smooth

is an isomorphism. Thus, the notation F~(X) for the extension is unambiguous.

Remark 1.5. Given étale-local invariants defined only on the subcategory Sch'™ < Sch of schemes locally of
finite type, we may similarly extend to stacks locally of finite type. Moreover, by Zariski descent it suffices
to have the invariant defined on Sch**P® = Sch'™, or even the subcategory of affine schemes of finite type.

1.3. Derived stacks. Let us briefly introduce the theory of derived stacks. The oco-category dAff of de-
rived affine schemes is opposite to the co-category CAlgkA. of simplicial commutative k-algebras via the
Spec functor. A derived stack is a presheaf of oo-groupoids on dAff satisfying Cech descent along étale
surjections. We denote by dStk the co-category of such. There is a fully faithful inclusion functor Stk — dStk
whose right adjoint (—)°': dStk — Stk is given by passing to the underlying classical stack. The notion of a
geometric morphism of derived stacks is defined analogously to Definition 1.1.

For a derived affine scheme S = Spec A we define QCoh(S) to be the co-category of dg A-modules. This
oo-category is stable and presentable and has a natural symmetric monoidal structure. We refer to objects
of QCoh(S) as quasi-coherent complexes. Denote by Perf(S) < QCoh(S) the full subcategory of perfect
complexes, i.e. dualizable objects in QCoh(S). For a morphism of derived affine schemes f: X — Y we have
a symmetric monoidal pullback functor f*: QCoh(Y) — QCoh(X). This assignment defines a functor

QCoh: dAffP —s P}t
which satisfies étale descent. By right Kan extension we obtain the functor
QCoh: dStk°® — Pr’.

If f: X — Y is a geometric morphism of derived stacks, we have the relative cotangent complex
Ly /vy € QCoh(X) which is functorial in the following way. For a commutative diagram

X —X

Y ——=Y
of derived stacks with X — Y and X’ — Y’ xy X geometric we have a pullback morphism
(15) (Xl —>X)*Lx/y —>]LX//Y/

which is an isomorphism if the diagram is Cartesian. Moreover, for geometric morphisms X — Y — Z of
derived stacks, we have a fiber sequence

(1.6) (X = Y)*Ly;z — Lx/z — Lxy.

We refer to [CHS25, Lemma B.10.13| for more details on the functoriality of the relative cotangent complex.
For a morphism of classical stacks X — Y we define the relative cotangent complex by viewing them as

derived stacks. For instance, if X — Y is a morphism of schemes, we have Qﬁ( y = RO (Lx /v), the sheaf of

relative K&hler differentials. We have the following basic fact.
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Lemma 1.6. Let X — Y be a geometric morphism of derived stacks. Then the cofiber of the pullback
morphism

(XCI - X)*]Lx/y _—> ]LXcl/Ycl,
i.e. Lixexx,ye, is 2-connective.

Proof. Consider the diagram
(Xcl _ Y)*Ly (Xcl N X)*]LX s (Xcl s X)*LX/Y

| | |

(){C1 - YCI)*LYCI ]LXcl LXC]/YG]

| | |

(XCI - YCI)*]LYCI/Y —— LXC]/X —_—> LXCI/X X chl .

In this diagram all columns and the first two rows are cofiber sequences, so the bottom row is a cofiber
sequence. Therefore, the claim reduces to the case Y = pt.

Let i: X' — X be the natural morphism. By definition, for any derived affine scheme S equipped with
a morphism f: S — X°' and a connective quasi-coherent complex M € QCoh(S) we have

Mapqcon(s) (i © f)*Lx, M) = Mapggg, (S[M], X).

The right-hand side preserves colimits in X. Writing X = colim, X, for a diagram of affine derived schemes
{Xa}a, 5o that X! = colim, X, we get a commutative diagram

colima MapQCOh(S) (f;;}LX&I y M) — MapQCOh(S) (f*]LXcl , M)

| l

colima Mapqcon(s) ((fa © fo)*Lx,, M) ——= Mapqcon(s) (f *Lx, M),
where f,: S — X and iq: XS — X As colimits in Gpd,, are universal, we get

COlima MapQCOh(S) (f;LXgl/Xa 5 M) = MapQCOh(S) (Lxcl/x, M)

The 2-connectivity of L xa /x is equivalent to the contractibility of the right-hand side for every M e QCoh(S)
concentrated in cohomological degrees [—1,0]. Thus, by the above isomorphism the claim reduces to the
case of an affine derived scheme X = Spec A. Since the cofiber of A — H%(A) is 2-connective, we get that
L xe/x = Lpo(a)/a is 2-connective by [Lurl7, Corollary 7.4.3.2]. |

We say that a geometric morphism of derived stacks f: X — Y is locally of finite presentation, or
Ifp for short, if the induced morphism of classical truncations f°': X — Y is locally of finite presentation
in the classical sense, and the relative cotangent complex Ly is perfect. Note that a locally of finite
presentation morphism of classical stacks need not be lfp as a morphism of derived stacks.

The (relative) dimension of an lfp morphism f: X — Y, denoted dim(X/Y'), is the rank of the perfect
complex Ly y. Note that when f is smooth, we have dim(X/Y) = dim(X/Y).

1.4. Determinant lines. For a stack X we denote by Pic® (X) the co-category of pairs (L,a) of a line
bundle L on X and a locally constant function a: X — Z/27. It is a Picard co-groupoid (or Ey-group)
with the symmetric monoidal structure given by (L1,01) ® (L2, as) = (L1 ® Lo, a1 + o) with braiding
involving the Koszul sign. We fix an identification (L,«)Y = (LY, «), under which the evaluation pairing
(L,a)® (L,a)” — (Ox,0) is identified with the composite (L,a) ® (LY, a) = (LQ® LY,0) = (0x,0). If [ is
a nonvanishing section of a line bundle L, we denote by [~! the section of LY which pairs to 1 with I.

For a perfect complex FE € Perf(X) we denote by det(E) € Pic® (X) the Z/2Z-graded determinant line
bundle [Del87; KM76]. Our conventions follow [KPS24, Section 2.2]. The main isomorphisms we will use
are as follows:
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e For a fiber sequence
A: Fi —> FEy —> F3
there is an isomorphism
i(A): det(E;) ®det(E3) = det(Es).
e For a perfect complex E there is an isomorphism
tp: det(EY) = det(E)".

For a perfect complex E we have the fiber sequence Ag: E — 0 — E[1] given by the rotation of F 4 E o
It gives rise to an isomorphism

Op: det(E[1]) = det(E)"
so that the composite
det(E) @ det(E[1]) “22%2, det(E) @ det(E)Y <5 0y
coincides with i(Ag).
We will use the following explicit descriptions:

e If F is a trivial vector bundle with a basis of sections {s1, ..., s,}, the determinant line bundle det(FE)
has a nonvanishing section s; A --+ A S,.
e Given a short exact sequence

AIO—>E1—>E2—>E3—>O

of trivial vector bundles with {s1,...,s,} a basis of sections of Ey and {s1,...,8n, Snt1s--+sSntm}
a basis of sections of E5, then

(AT A A8 ®Spt1 A ASntm) =81 A" A Snim-

e Again, if F is a trivial vector bundle with a basis of sections {sy,...,s,} and with {s!,...,s"} the
dual basis of EY, then

te(st A A s?) = (=)D 2(5p Ao A s,) T

Given a smooth morphism of stacks f: X — Y, the relative cotangent complex Ly y is perfect of Tor-
amplitude > 0 and the canonical bundle is Kx )y = det(Lyy) € Pic® (X).

1.5. Differential forms. Let X — B be a geometric morphism of derived stacks. We have the relative
cotangent complex Lx /g € QCoh(X) equipped with the de Rham differential

dp: I'(X,0x) —» I'(X,Lx/p)
defined as in [Cal+17; CHS25; Par24]. Recall the following notions from [Pan-13].
Definition 1.7. Let n € Z.
e For p € Z the space of relative p-forms of degree n on X — B is
AP(X/B,n) = Mapgcon(x)(Ox, APLx/p[n]).

e The space A%**(X/B,n) of relative exact two-forms of degree n on X — B is the homotopy
fiber of dp: A%(X/B,n +1) —» AYX/B,n + 1) at the zero form.

For a commutative diagram of derived stacks
X —=X
B ——=B
we have a natural pullback morphism A*°*(X /B, n) — A%*(X’/B’,n). We have natural isomorphisms
QAP(X/B,n+1) =~ AP(X/B,n), QA**(X/B,n + 1) = A>*(X /B, n)

and a forgetful map dp: A'(X/B,n) — A>*(X/B,n). We will now give two examples of relative exact
two-forms we will encounter.
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1.5.1. Case n = 0. Given a quasi-coherent complex V € QCoh(X) over a stack X recall the total space
Tot x (V') which is a stack over X whose S-points are given by pairs (f, a) of a morphism f: S — X of stacks
and a morphism a: Og — f*V in QCoh(S).

Definition 1.8. Let X — B be a geometric morphism of stacks. The relative cotangent bundle is
T*(X/B) = Totx (Lx/B)-

The relative cotangent bundle is stable under base change: given a Cartesian square of stacks

X ——=X

|

B ——B
which is Tor-independent (e.g. either X — B or B’ — B is flat), so that it is Cartesian when regarded as

a square of derived stacks, there is an isomorphism T*(X/B) xp B’ =~ T*(X'/B’) of B’-stacks constructed
using (1.5). Moreover, for a composite X — By — By of geometric morphisms we have a Cartesian square

(1.7) T*(B1/Bs) xp, X —— > X

| |

T*(X/By) — T*(X/By)

The relative cotangent bundle carries the so-called Liouwville one-form \x;p € A'(T*(X/B)/B,0)
defined as follows (see e.g. [Pan+13; Call9]). For a morphism (f,a): S — T*(X/B) we set

(f;a)*Ax/p: 05 — f*Lx/p — Lg/p.
We have the following particular cases:
(1) If X — B is a smooth schematic morphism, L g has Tor-amplitude [0, 0], so T*(X/B) — X is a
vector bundle.
(2) If X — B is smooth and geometric, Lx,p has Tor-amplitude > 0 in which case T*(X/B) — X is a
cone. In this case the zero section X — T*(X/B) is a closed immersion.

Example 1.9. Let X — B be a smooth morphism of schemes. Vector fields on X — B give rise to
functions on T*(X/B). So, given étale coordinates {q1,...,¢,} on X — B we obtain étale coordinates
{q1,..-,qn,p1,...,pn} on T*(X/B) — B, so that p; corresponds to 3%, In these coordinates we have

Ax/p = Y, pidp;.

i=1
1.5.2. Case n = —1.

Definition 1.10. Let U — B be a flat geometric morphism of stacks equipped with a function f: U — A
The relative critical locus is the fiber product

(L8) Crity (/) U
l lro
FdBf
U T*(U/B),

where I'g: U — T*(U/B) is the zero section and I'y, ¢: U — T*(U/B) is the graph of the relative one-form
dpf.

By construction we have FjBf/\U/B ~dpfin AY(U/B,n). Thus, f provides a nullhomotopy A : FﬁBf/\U/B ~
0 in A%**(U/B,0). Similarly, TF\;/p ~ 0. The difference of the two nullhomotopies on Crityg(f) provides
an element
sy = hy — ho € QA*(Crity,p(f)/B,0) = A>*(Crity,5(f)/B, —-1).
When we need to specify the base scheme, we also denote it by s p.
10



1.6. Immersions. In this preliminary section we collect some useful definitions and facts about immersions.
Throughout we fix a scheme B over k. We will use smoothings of schemes, which are immersions of a given
scheme into a smooth scheme.

Definition 1.11. Let X be a B-scheme and x € X a point. An immersion 2: X — U into a smooth
B-scheme is minimal at z if the pullback 2*: Qllj/B (@)~ Q,lX/B ., is an isomorphism.

Remark 1.12. For any immersion 2: X — U the map 1*: Qllj/BJ(ﬂ — Q_lX/Ba: is surjective, so that

dim Q!

U/Ba(z) = dim Qﬁ( 1B The minimality assumption is that this is an equality.

The local existence of minimal immersions is shown in [Stacks, Tag O0CBL]|. Moreover, locally, every
immersion can be replaced by a minimal one.

Proposition 1.13. Let X be a B-scheme and x € X a point. Let1: X — U be an immersion into a smooth
B-scheme. Then there is an open neighborhood X° < X of x and a factorization of X° — X 5 U as
X° LV — U, where V is a smooth B-scheme and 1° is a closed immersion minimal at x.
Proof. Let r = dim Qk/B .+ By [Stacks, Tag 0CBK] we may find an open neighborhood X’ < X of z and a
diagram

X' T AT

XU
with 7 unramified. By [EGAIV, Corollaire 18.4.7] we may find an open neighborhood X° < X’ of z and a
diagram

X°L>V

,

X' ——Ap
with 2° a closed immersion and V' — A’; étale. In particular, V' — B is smooth of relative dimension 7. In
particular, +° is minimal. O
One can also show the existence of minimal immersions compatibly with smooth morphisms.

Proposition 1.14. Let f: X — Y be a smooth morphism of B-schemes with Y — B locally of finite type,
x € X a point and y = f(x). Then there are open neighborhoods X° c X of x and Y° 'Y of y, a smooth
morphism f°: X° — Y°, a smooth morphism f: U — V of smooth B-schemes and closed immersions
1: X° > U and 3: Y° — V, such that the diagram

X~—X°>U

)

Y<—yo .oy

commutes and v and j are minimal at x and y.

Proof. Let d be the relative dimension of f: X — Y at . By [Stacks, Tag 054L], we may find open
neighborhoods X° c X of z and Y° < Y of y together with étale morphism g: X° — A% x Y° and a smooth
morphism f°: X° — Y° fitting into a commutative diagram

X< x°o 9 pAdxye
lf lf/
T

Y <—Y°.
11



By [Stacks, Tag 0CBL], by shrinking Y° we may find a closed immersion 3: Y° — V minimal at y € Y° with
V' a smooth B-scheme. Therefore, we obtain a commutative diagram

X< X°— 9o pdxyo 29

) s /

Y

The composite X° % A? x Yo 22, D9, Al x Vs unramlﬁed Therefore, by [EGAIV, Corollaire 18.4.7],

shrinking X° we may factor X° — A9 x V as X° 5 U L, Al x V', where 1 is a closed immersion and & is
étale. Thus, we obtain a commutative diagram

X X0ty ropdxy

T

Y<~—Y°——=V.

Let f := my 0 h: U — V which is smooth, as it is a composite of an étale morphism and a projection.
By construction j: Y — V' is minimal at y, so that dim(Qy. 5 ) = dim(Qy, 5 ). Since f° is smooth of
relative dimension d at z, we have dim(Qko/B 2) = dlm(Qyo/B ,) Hd. Since his étale, 2 is smooth of relative
dimension d at «(x), i.e. dim(QlU/Bﬂ(x)) = dim(Qb/BJ(y))—i—d. Therefore, dim(Q}(o/B,x) = dim(Qb/Byz(x)). O

2. CONSTRUCTIBLE SHEAVES

In this section we summarize the properties of a theory of constructible sheaves on schemes which we will
use in the paper. Such theories will involve choosing the ground field k the schemes will be defined over and
a commutative ring R of coeflicients.

2.1. Six-functor formalisms. For an co-category € which admits finite limits and which has a class ¢ of
morphisms stable under compositions and pullbacks, recall the symmetric monoidal co-category Corr(C)e.an
which has the following informal description:

Its objects are objects of C.

Morphisms from X; to X, are given by correspondences X1 <« X195 — X5 with X715 — X5 in c.
The composite of X; «— X2 — X5 and Xo «— Xo3 — X3 is given by the pullback X; «— X9 xx,
X23 - X3.

The symmetric monoidal structure is given by the Cartesian symmetric monoidal structure in C:
Xl,XQ — Xl X XQ.

We have the following notion of 6-functor formalisms from [Man22, Definition A.5.7].

Definition 2.1. A weak 6-functor formalism on C is a lax symmetric monoidal functor
D} Corr(Schsepft)an;aH — PrISQt.

We denote the values of a weak 6-functor formalism as follows:
e The image of X € SchSepft is denoted by D(X) € Prr.
e The image of X M x Lyis given by fi: D(X) — D(Y). We denote its right adjoint by
7 D(Y) - D(X),
e The image of Y L x4 xis given by f*: D(Y) — D(X). We denote its right adjoint by

f+: D(X) > D(Y).
e The lax symmetric monoidal structure is given by [x]: D(X)®D(Y) —» D(X xY) and Modr — D(pt)
denoted by M € Modg — M € D(pt).

The oo-category D(X) carries a symmetric monoidal structure defined by

(2.1) FR®G=A"ITXYG), 1x=p*R,
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where A: X — X x X is the diagonal and p: X — pt. We denote by Hom(—, —): D(X)°? x D(X) — D(X)
the internal Hom. We denote by RT'.(X, —) the !-pushforward along X — pt.

Definition 2.2. An object F € D(X) is lisse if it is dualizable with respect to (2.1).

Given a Cartesian square
(2.2) X 2o x
J{f’ if
L
in Sch®P™ we obtain the following natural transformations:

(1) There is a natural isomorphism
Exi: fig* = h*fi

/\
/\/\

in the co-category of Corr(SchseP Jalan. By construction the exchange natural isomorphism Ex|' is
compatible with compositions.
(2) The natural isomorphism

witnessed by the 2-cell

Exy: fhy = (')’

is defined to be the mate of Ex|".

(3) There is a natural transformation
EX*,! . g*f' N (fl)‘h*

obtained as the mate of the composite

g*f h*ffl counit h*
For a morphism f: X — Y we have the following natural transformations:
(1) Prf: fi((—) ® f*(=)) = fi(—) ® (—) witnessing the projection formula.
(2) Pr*: f(—)® f*(—=) — f'(— ® —) is the mate of

% .
APE® () 25 i ()@ (-) <2 (1) @ (-).
Definition 2.3. Let D be a weak 6-functor formalism. A morphism f: X — Y in Sch®*P® is weakly
cohomologically smooth if the following conditions are satisfied:
(1) Pr*: f{(—)® f*(=) — f'(— ® —) is an isomorphism.
(2) The object f'1y € D(X) is invertible.
(3) For any Cartesian diagram (2.2) the morphism Ex*': g*f'1y — (f")'1y+ is an isomorphism.

| EXI

A morphism f: X — Y in Sch*P" is cohomologically smooth if for any Cartesian diagram (2.2) the
morphism f': X’ — Y’ is weakly cohomologically smooth.

Next we introduce the notion of a cohomologically proper morphism. For a monomorphism f: X — Y
we have a Cartesian diagram

X=—7X
X—>Y
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In this case the base change isomorphism is Ex;: f'fi = id. We denote its mates by
fgspy: fi — fu  epi f > f*
Equivalently, they are mates of the base change isomorphism Ex; : id = f* fi.

Definition 2.4. Let D be a weak 6-functor formalism. A monomorphism f: X — Y in Sch***" is coho-
mologically proper if fgspy is an isomorphism.

For a general morphism f: X — Y consider the diagram

N

XyXHX
X ——

If A: X - X xy X is cohomologically proper, we define fgspf: fi = f+ as the mate of the composite

Ex*

. fgs couni
id = (p1)« A APl <22 (p1) e AVA'P) <5 (p1)aph — ' fa

Definition 2.5. Let D be a weak 6-functor formalism. A morphism f: X — Y in Sch**P" is cohomologi-
cally proper if fgsp, and fgsp; are isomorphisms.

Remark 2.6. If f: X — Y is a monomorphism, its diagonal A: X — X xy X is an isomorphism in which
case the map fgsp, is an isomorphism. Therefore, the above definitions of cohomological properness are
consistent.

We are ready to state the definition of a 6-functor formalism we will use in this paper.
Definition 2.7. A 6-functor formalism is a weak 6-functor formalism Dj*: Corr(Schsepft)an;au — P]r%t

satisfying the following conditions:

(1) Every proper morphism is cohomologically proper.
(2) Every smooth morphism is cohomologically smooth.

Next we introduce the Verdier duality functor for a 6-functor formalism. For X € Sch**P™ we denote by
wx = p!lpt7 where p: X — pt. Similarly, for f: X — Y we denote wy )y = f'1y. For € D(X) we define
D(F) = Hom(F,wx)
which comes with natural transformations

Yg: T — D(D(F))
and

Ex"E: D(—) RD(—) — D(— X —).

For a morphism f: X — Y we have natural isomorphisms

Ex"": f'D = Df*
and

EX*,D3 J+«D — Dfi

which fit into a commutative diagram

(2.3) FhD -2 g, — B e,

\LEX!* \LEX!*

g (f)'D B2 g, D(F)* 222 Dgy (£1)*.
14



Proposition 2.8. Let f: X — Y be a monomorphism. Then the diagram

Fof'D B0 fDpr DL

ief ngspf

f*f*]D) unit D unit Df*f*

commutes.
Proof. Applying (2.3) we get a commutative diagram

Ex!*

D ———=Dfi f*

iEx!* TEX*,D

1D
fof'D > fuDf*
Using the definitions of fgsp; and €y as mates of Ex]" and EX!*, respectively, we obtain the claim. O

For a lisse object V € D(X) with dual V¥ € D(X) and another object ¥ € D(X) we have a natural
isomorphism
ExX"?: DI VY S DV T).
The natural transformation 1 commutes with the operation f* in the following sense: given a morphism
f: X =Y, there is a commutative square

*
[ AN )Y

wa* prf*DD
*
pDf* 227% DD DD,

We also have the following compatibility between 1 and Ex"P: there is a commutative square
7'DDD 2% D DD
f’mwﬂ lmf*(@

! Ex"P %
D B e

2.2. Complex analytic constructible sheaves on schemes and stacks. In this section £k = C and R
a commutative Noetherian ring of finite global dimension. Let TopICh be the category of locally compact
Hausdorff topological spaces.

Using results of [KS90; Vol21]|, an co-categorical six-functor formalism for locally compact Hausdorff
topological spaces was constructed in [Kha25, Theorem 8.1.8]. In particular, we get a lax symmetric monoidal
functor

Shv;: Corr(Top'™)ap.an — Priy

which sends a locally compact Hausdorff space X to Shv(X; R), the derived co-category of complexes of
sheaves of R-modules on X with #-pullbacks and !-pushforwards along arbitrary morphisms which admit
right adjoints fy and f'.

Given a scheme X € Sch®P™ which is separated and of finite type over C we denote by X2* € Top'®
its analytification. For a scheme X € Sch**P™ an object F € Shv(X®"; R) is constructible if there is a
finite stratification X = 1;X; of X into locally closed subschemes X; such that F|x, is locally constant
with perfect stalks. Let DP(X) < Shv(X®"; R) be the full subcategory of constructible sheaves and D(X) =
Ind(DP(X)) the co-category of ind-constructible sheaves. By [Ver76] (see also the overview in [MS22]) the
six-functor formalism restricts to constructible sheaves and, hence, ind-constructible sheaves, i.e. we have a
lax symmetric monoidal functor

Df: Corr(Schsepft)au;all — Prif
15



which sends X € Sch®P™" to D(X). Let us summarize some properties of constructible sheaves that can be
found in [KS90; Ach21; MS22].

Proposition 2.9. D: Corr(Schsepft)all;au — Pr%t is a 6-functor formalism which satisfies the following
properties:
(1) For every X € Sch**P™ the unit id — mum* is an isomorphism for m: A' x X — X the projection.
(2) The functor D*: Sch®P"°P _ Py given by sending f: X — Y to f*: D(Y) — D(X) satisfies étale
descent.
(8) For a closed immersion i: Z — X and its complementary open immersion j: U — X the base change
isomorphism gives j'iy = 0. The corresponding commutative diagram

(24) ,j!j! counit id
J{unit lunit
Jujligi® 0 St igi*

is Cartesian.
(4) For every X € Sch®P™ and F € D2(X) the morphism g : F — D(D(F)) is an isomorphism.
(5) For every X,Y € Sch®P™ and F e DP(X), G € DE(Y) the morphism Ex"¥: D(F)RD(G) — D(FRS)
s an isomorphism.
(6) There is a perverse t-structure on DP(X) for X € Sch®P™ with heart Perv(X) with the following
properties:
(a) If f: X — Y is smooth, f1:= f'[—dim(X/Y)]: D2(Y) — DP(X) is t-ezact.
(b) If f: X — Y is smooth with connected fibers, fT: Perv(Y) — Perv(X) is fully faithful.
(c) If f: X =Y is finite, fyx: DP(X) — DE(Y) is t-exact.
(7) If R is a field and X € Sch**P™ | the natural functor Ind(DP(Perv(X))) — D(X) is an equivalence.
(8) Lisse objects in D(X) are precisely locally constant sheaves with perfect stalks.

Let us now present several corollaries of the assumptions. First, we may extend a 6-functor formalism to
stacks as follows.

Proposition 2.10. There is a functor
Df: Corr(Artlft)au;au — Pr%t
with the following properties:

(1) Its restriction to Corr(SchSCpft)aH;aH coincides with the original 6-functor formalism.
(2) The functor

D(X) — lim D(5)

induced by =-pullbacks, where the limit is taken over the co-category Schji?ft of schemes S € Schepft

together with a morphism s: S — X, is an equivalence.
(8) Every smooth morphism f: X — Y in Art'f s cohomologically smooth with respect to this extension
of the 6-functor formalism.

Proof. We will construct an extension of the 6-functor formalism in three steps using the subcategories
Corr(Schsepft)an;an c Corr(SChlft)Scp&;an c Corr(Schlft)an;au c Corr(Artlft)an;an,

where morphisms in COrr(SChlft)Sepft;aH are given by correspondences X; « X1 — X5 of schemes locally of
finite type, where X715 — X5 is separated and of finite type.

(1) The extension of D} : Corr(Schsepft)au;an — Prsj%t to
Df: Corr(Schlft)sepft;an — Pr%t

is provided by [Man22, Proposition A.5.16].
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(2) Since étale morphisms are cohomologically smooth and D satisfies étale descent with respect to
x-pullbacks, it also satisfies étale descent with respect to !-pullbacks. Therefore, the functor

DX)— (léfil)D(S)
induced by !-pullbacks, where X € Sch'™ and the limit is taken over the category Schji?ft of schemes
S € Sch**P™ together with a morphism s: S — X, is an equivalence. Therefore, by [Man22, Lemma
A.5.11] we obtain an extension
D} : Corr(Schlft)au;an — Pr%.

(3) By assumption every morphism f: X — Y in Sch'™ which is smooth, separated and of finite type
is cohomologically smooth. Using étale descent we get that any smooth morphism in Sch'™ is
cohomologically smooth. In particular, we obtain a #-direct image (in the sense of [Kha23, Definition
2.30]) for every smooth morphism f: X — Y, where f;(—) = fi(f'(1y)®(—)). Therefore, by [Kha25,
Theorem 3.4.3(ii)] we obtain an extension

Df: Corr(Artlft)au;an — Prsjg.
|

tlft

We extend the notion of constructible and perverse sheaves to stacks as follows. For Y € Art™" we have:

(1) F € D(Y) is constructible if for every smooth morphism f: X — Y with X € Sch®P™ the object
f*F e D(X) is constructible.

(2) There is a t-structure on DP(Y) such that for every smooth morphism f: X — Y with X € Sch*°P™
the functor f1 is t-exact.

Proposition 2.11. Let X € Art"™, V e D(X) a lisse object and F € DY(X). Then V ® F is constructible.

Proof. By definition of constructibility the claim for any X € Art'™ reduces to the same claim for X € Sch**P*.

In this case we have
HOIHD(X) (V ® 3:, —) = HOI’HD(X) (3:’ VY ® (—))
Since F is constructible, this functor preserves colimits. O

The definition of the Verdier duality functor D extends verbatim to stacks. We have the following func-
toriality of the isomorphism .

Lemma 2.12. Let f: X — Y be a smooth morphism in Art'"™ and F e D2(Y). Then the composite
f!gf ﬂ) f!]D)QSF
Ex''D "
—— Df*DF

r!‘* _
25 D(wyly ® £'DF)

(Ex'P)~1

D(wy )y ®D(f*T))
w;(}y D
Ex L
( ) DQ(WX/Y®f*?)

Prh¥ ]D)Qf!ff,
is equivalent to ¢ yig.

Proposition 2.13. For Y € Art'™ and § € D(Y) constructible, the morphism g: F — D(D(F)) is an
isomorphism.

Proof. Let X € Sch**P" and f: X — Y a smooth morphism. In the composite in Lemma 2.12 all morphisms,

except possibly the first, are isomorphisms. Since wy/y is invertible and f*J is constructible, f 'F is also

constructible by Proposition 2.11. Thus, the composite is an isomorphism by Proposition 2.9(5). Therefore,

f'F — f'D2F is an isomorphism. Since the functors {f': D(Y) — D(X)}, where f ranges over smooth
17



morphisms from a separated scheme of finite type, are jointly conservative, we get that vg: F — D?J is an
isomorphism. 0

Given a morphism f: X — Y in Artlft, we obtain a unique natural isomorphism
(2.5) Ex*?: f*D = D!

fitting into the commutative squares

f* Yy ; DDf* f! Virx DDf!
(26) f*wl lDEx!’D flibl lDEx*’D
7*DD BP ppip, F'DD BB e,

For a pair of morphisms f;: X; — Y; and fo: Xo — Y5 in Art™ we have a natural transformation
Ex"¥: fiF1 K f3F2 — (fi x f2)'(F1 K Fs)

which is an isomorphism for F; € DP(Y;) and F5 € D2(Y5) as can be seen by applying the Verdier duality
functor D and using Proposition 2.9(5). See [Mas01, Proposition 1.3].

Proposition 2.14. For a smooth morphism f: X — Y in Art"™* there is a natural isomorphism
pury: f*[2dim(X/Y)] = f'
of functors D(Y') — D(X) which is functorial for compositions up to coherent homotopy and compatible with

products.

Proof. By functoriality the natural isomorphism pur; extends uniquely from schemes to stacks, so it is
sufficient to construct it for smooth morphisms of schemes.

Since a smooth morphism is cohomologically smooth, the natural morphism Pri*: wx )y ®f*(—) — (=)
is an isomorphism. Thus, it is enough to construct an isomorphism wy,;y = 1x[2dim(X/Y)], functorial in
f. The construction of this isomorphism and its 1-categorical functoriality (i.e. the isomorphisms pur;y = id
and pur,,; = pur;opury) are well-known. But since wx y[-2dim(X/Y)] is a local system of vector spaces,
the 1-categorical functoriality implies the co-categorical functoriality. O

1ft

Given a smooth morphism f: X — Y in Art™" of relative dimension d, we obtain a natural isomorphism

(2.7) Ex®: f1D = f'[-dID 25 Dp#[d] S5 iy,

Proposition 2.15. Let f: X > Y in Art'™ be a smooth morphism. Then the diagram

I v DD f1

lw lExT’D
iop 27, prip
commutes.
Proof. The claim follows from Lemma 2.12. O

Similarly, for a schematic and proper morphism f: X — Y we obtain a natural isomorphism

K 1) fgs
Exsp: fuD 222 Dfy ol Df,.

Proposition 2.16. Consider a Cartesian square (2.2), where h is proper and f is smooth. Then the diagram

Ex T,
FTheD —2 DR, —2 = Dfth,

! !
lEx>X< EX*T

g (£)TD B 5, D) 252 Dg, (1)1
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Proof. Let d be the relative dimension of f: X — Y. Let BC: f*h, — g.(f’)* be the Beck—Chevalley
transformation obtained as the mate of the isomorphism g*f* =~ (f)*h*. By [KPS24, Lemma 7.4] the
diagram

| Exy N
Fhsl=2d] — g« (f')'[-2d].
commutes. By [FYZ23, Example 3.2.1] the diagram

Ex¥
a(f')* ——f*h

fgsp, fgsp,
BC
gs (f')* = f*hy
commutes. Combining the above two diagrams with (2.3) we get the result. (]

We may use Proposition 2.9(7) to (uniquely) extend exact functors on Perv(—), and natural transforma-
tions between them, to D(—) as follows. For this it will be convenient to record the following consequence
of the universal property of bounded derived co-categories. Consider the following co-categories:

(1) The oo-category Cat®
category.)

(2) The oo-category Pr%’t of stable presentable R-linear co-categories equipped with a t-structure, and
t-exact R-linear colimit-preserving functors.

(3) The subcategory Pr%’t’Cg c Pr%’t consisting of those objects € for which the ¢-structure restricts to
€%, and the colimit-preserving functor Ind(€¥) — & is a t-exact equivalence; and those morphisms
given by functors that preserve compact objects.

(4) The full subcategory Prizt’t’cg’comp c Pr%t’t’Cg spanned by those & satisfying the following condition.
By [Bun+19, Corollary 7.4.12] and [Lur09, Proposition 5.3.6.2], there is a unique t-exact R-linear

colimit-preserving functor Ind(DP(€Y)) — € extending the inclusion €Y < €. Then € belongs to
PrSt,t,cg,comp
R

‘We then have:

of R-linear abelian categories and R-linear exact functors. (This is a (2,1)-

if this functor is an equivalence.

Proposition 2.17. Consider the canonical functor Pr%’t’Cg — Cat™ sending & to €<%, the heart of the
full subcategory of compact objects (with respect to its induced t-structure). This induces an equivalence of
0-categories

Pr%mt,cgmomp ~ Catab.

—

Proof. By [Lur09, Proposition 5.3.6.2] and [Bun+19, Corollary 7.4.12], the restriction functor
Fun™“"~**(Ind(D"(A)), Ind(D"(B))) = Fun’~*(D"(A4), D’(B)) — Fun™(A, B)

is an equivalence for any A, B € Catab, where the source denotes t-exact functors that preserve colimits and
compact objects. Passing to underlying oo-groupoids, we find that the functor Pr%’t’cg’Comp — Cat® is fully
faithful. Essential surjectivity is obvious. |

Corollary 2.18. Let X € Sch®*P™ and A € Cat®® an R-linear abelian category. Suppose R is a field. Then
the restriction

Fun™'~*(D(X), Ind(D®(A)))~ — Fun® (Perv(X), A)™~
is an equivalence of c-groupoids, where Fun® (Perv(X), A)~ denotes the groupoid of exact R-linear functors
and Fun™(D(X), Ind(DP(A)))™ the wo-groupoid of colimit-preserving R-linear functors sending Perv(X) to
A

Proof. By Proposition 2.9(7) we have the natural equivalence Ind(D?(X)) — D(X). The functor in question
is thus the functor induced on mapping co-groupoids by the equivalence of Proposition 2.17. O
19



Remark 2.19. The proof shows that Corollary 2.18 holds at the level of functor co-categories, and Propo-
sition 2.17 admits a corresponding (0, 2)-categorical upgrade.

Remark 2.20. Corollary 2.18 does not extend to Artin stacks. Even though the natural functors D®(Perv(X)) —
DP(X) and Ind(DP(X)) — D(X) are equivalences for X € Sch®P™  neither functor is an equivalence for
X = BGy,.

2.3. Vanishing cycles. For a complex analytic space X and a holomorphic function ¢: X — C, let
XRre<o = {x € X | Re(t(x)) < 0}.
The vanishing cycles functor p,: Shv(X; R) — Shv(¢t~1(0); R) is defined by
o1 = (t71(0) > XRre<o)*(Xre<o — X)'.
Proposition 2.21. For X € Sch®*P" and t: X — A! the functor
¢ = E}—()C(tfl(c) = X)spt—c
ce

preserves constructibility, is perverse t-exact, and satisfies the following property:

(1) For a smooth morphism f: X — B in Sch®P™ 4 function t: X — A' and a perverse sheaf F €
Perv(B), the object ¢;fTF is supported on the B-relative critical locus of t.

For a morphism f: X' — X witht: X — Al and t' := f*t there are natural transformations
Exy: guf — f'or,  ExQ: ufs — fudy
which satisfy the following properties:
(2) Ex!d, and Ex$ are functorial for compositions.
(8) Let

X1 LXH

o

2
Xop —— X

be a Cartesian diagram in Sch®P® . Let tyy: Xoo — Al be a morphism and denote by t11,t12,t21 its
restrictions to Xq1, X12, Xo1. Then the diagram

!

| Exy | Exi |
¢t21 fégl* - fé¢t22927* — f2927*¢t12

I !
lEX* lEx*
Ex% Ex

| * | X |
¢t21gl’*fi - 91’*¢t11 fl - gl,*fi¢t12

18 commutative.
(4) If f is smooth, EX; is invertible.

(5) If f is proper, Exfi 18 invertible.

Proof. We first show that o, preserves constructibility and the perverse t-structure. Indeed, the claim is local,
so by embedding X into a smooth scheme and using proper base change we are reduced to the corresponding
claim for X smooth. The fact that ¢, preserves constructibility is shown in [MS22, Corollary 4.12]. Perverse
t-exactness is shown in [KS90, Corollary 10.3.13].

Next we show that ¢; preserves constructibility and the perverse t-structure. Fix F € DY(X) and let §
be a Whitney stratification of X such that for all strata S € § the restriction F|g is locally constant. By
[Mas00, Remark 1.10] for every ¢ € C we have

(2.8) supp(p;—F) < | J Crits(tls) n 17" (o).
Se8
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Since t|g is locally constant on Critg(t|s)™? and Critg(t|s) has finitely many irreducible components, t|g
takes finitely many values on Critg(t|s). Since 8 is finite, this implies that only finitely many summands in
the definition of ¢#3J are nonzero. Thus, ¢.J is constructible and, if J is perverse, so is ¢:J.

The exchange natural transformations EXip and Exﬁ are constructed from the usual exchange natural
transformations between the six-functor operations which satisfy analogs of (2)-(3). The smooth and proper
base change theorems verify (4)-(5).

Let us now show (1). Let 8§ be a Whitney stratification of B such that for all strata S € 8 the restriction
F|s is locally constant. Then f~1(8) is a Whitney stratification [Gib 76, Chapter I, Proposition 1.4] and
fTF is constructible with respect to f~1(8). Using (2.8) we get

supp((bthff") C U Critf—l(s)(t|f—1(s)) C U Critf_l(s)/s(t|f_1(s)).
Ses Ses

Using the Cartesian diagram

we get that Critf—l(s)/s(ﬂffl(s)) [ Critx/B(t). O
Taking mates of Exib and Ex? we obtain
Ex{: fipy — dufi,  Exh: fro — duf*

Moreover, by the proper and smooth base change theorems Ex? is an isomorphism if f is proper and Ex:’; is
an isomorphism if f is smooth.

Proposition 2.22. For a scheme X € Sch*P equipped with a function t: X — Al there is a natural
isomorphism Ex?P oD = Do_y on constructible objects, satisfying the following properties:

(1) The diagram

¢ —2 > DDg,

| |

#:DD —2"", Do_,D

commautes.
(2) For a morphism f: X' — X in Sch®P™ the diagram

ov f'D 205 gD B Dy pr
EX!¢ lExi

| Ex®P | Ex'P %
oD —— fDp_ ——=Df*p_¢

commutes, where t' == f*t.
(3) For a morphism f: X' — X in Sch®P" the diagram

Exy p

x®:P
$ufsD —2> 4D fy ——> Do,
\LEXi \LEX?
Ex?? Exy p
[x0eD —— fiDo_y ——=Dfip_v
commutes, where t' == f*t.

Proof. We begin by recalling a natural isomorphism
Ex??: oD = Do,

constructed in [Mas16] (the construction is reviewed in [Kin25, §2.3]).
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Consider the diagram of inclusions

Xo .
0
N .
XRe=0 — XRex0
J{h, l”

i
XReSO — X7

where the square is Cartesian. The natural isomorphism Ex?? is defined by the composite
oD = g h*i' D
o goh*i D

Ex*' o
— goh, 7D

Ex*P oy o
—— goh Di.,

1,D
B, Dgghtil,
= ]D)Sthv
where the natural transformations on lines 2 and 3 are isomorphisms by [Mas16]. Ex?" induces a natural
isomorphism Ex??: ¢, => D¢_,.
Property (1) follows from the fact that the natural transformations e; and Ex*' are Verdier self-dual

while the natural isomorphisms Ex*" and Ex"? are exchanged under Verdier duality. Properties (2) and
(3) follows from the standard commutativity diagrams between the six functors. |

Remark 2.23. There is a natural isomorphism T : ¢; — ¢_; such that the composite
bt = by =
is the monodromy operator T': ¢ — ¢, for the sheaf of vanishing cycles. Consider the composite isomorphism
B D 275 Do, 15 Dy,
Then Proposition 2.22(1) implies that the diagram

T P

o8 o DD,
: -
$DD B Do_D

commutes.

Proposition 2.24. For a pair of schemes X1, X5 € Scheptt equipped with functions t;: X; — A there is a
natural Thom—Sebastiani isomorphism TS: ¢y, (=) X ¢, (=) —> ¢d¢,me, (— X1 —) which satisfies the following
properties:

(1) TS is unital, associative and commutative.
(2) For smooth morphisms f;: X; — Y; in Sch®P® and functions t;: Y; — A with t, := f¥*t; the diagram

S, [1F1 B by, [3F2 — b, (f1 % f2)| (F1 B Fo)
J{Exii)Ex!q> \LEXL5

(f1 x f2)T (e, F1 < e, Fa) BN (fr x f2) e, e, (F1 X1 Fo)

commutes.
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(3) For proper morphisms f;: X; — Y; in Sch®P™ and functions t;: Y; — Al with t, = f¥t; the diagram

Dt [1,T1 X @1, f2,+T2 SELL Gt (f1 X f2)(F1 X Fa)

4 ¢ ¢
lEX*Ex* lEx*

(f1r % f2)u(bp F1 B by Fa) —— (i % fo)ubrmmp, (F1 B Fa)

commutes.
(4) The diagram

XD’
¢, (DF1) & b, (DF) — > ¢y s, (DFy I DFy) —2

¢t1t2 (D(‘Tl 352))
Ex¢’DEx¢'D\L Ex‘b'ni
ExPX TS
Doy, (F1) ®ID—t,(F2) = D(d—t, (F1) K ¢, (F2)) =—— D(d—(1,1,) (F1 ¥ T2))
commautes.
Proof. We begin by recalling the natural isomorphism
TS?: Pty (_) Pto (_) = Pt1Hto (_ _)|t1*1(0)><t2*1(0)
constructed in [Mas01] and [Sch03, Corollary 1.3.4]. Let
i1: (X1)Re<o — X1, 210 71(0) — (X1)Re<o
and similarly for s, z5. Let
i: (X1 X X9)Re<o — X1 x Xo, z: (t @ta) 1 (0) — (X1 x X2)Re<o-
Finally, let
2 (X1)Re<o % (X2)Re<o — (X1 X X2)Re<0s
which is an inclusion of a closed subset. The natural isomorphism TS? is defined by the composite
e (2) B, (=) = 21y (-) [ 23 i (-)
= (21 % 2)* (i1 (<) Biy(-))

(21 x 29)* (i1 x i2)'(— K —)

= (Zl X 2’2)*111'!(7 7)
RN (21 X Zg)*l*’L'(— —)
= Prmt (— _)|t1_1(0)><t2_1(0)7

where the natural transformations on lines 3 and 5 are isomorphisms by [Mas01].
Fix F, € D?(X;) and 5 € DP(X3). In [Mas01] it is shown that (£ (0) x t5(0)) N supp @, me, (F1 X1 F2)
is an open subset of supp ¢+, mr, (F1 X1 Fz). Therefore, we have a direct sum decomposition
Pt1@to (SFl ?2) x~ (—D(tl_l(c) X tz_l(_c) — (tl tg)_l(O))* (‘phtz (?1 3:2)|t1_1(c)xt2_1(70)> .
ceC

Applying the Thom—Sebastiani isomorphism TS? we thus get an isomorphism

D () x 131 (=) = (1B t2) 71 (0)s (211 —c(F1) B pra+c(F2)) = @rame (F1 K F2)

ceC

natural in Fq, Fo. This gives rise to a natural isomorphism
((‘Bclec(tfl(cl) = X1)s0t—c; (EFI)) (@cZec(tgl(CQ) — X2)Pty—co (?2))

~JTS
Poec((tr Bt2) " (e) = X1 X X2)sp(t,mta)—c(F1 B F2).
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Unitality, associativity and commutativity of the isomorphism TS follow from the corresponding properties
of TS¥ which are obvious from the construction. Properties (2) and (3) follow from the natural compatibilities
between the exchange natural transformations. Property (4) follows from the compatibility of exchange
natural transformations with external tensor products. O

3. D-CRITICAL STRUCTURES

3.1. Oriented orthogonal bundles. Let U be a scheme. An orthogonal bundle is a vector bundle
E — U equipped with a nondegenerate quadratic form ¢. For an orthogonal vector bundle (E, q) over U the
quadratic form induces an isomorphism ¢*: E = EY. Taking its determinant we obtain an isomorphism

det(E) 21, qet(BY) 225 det(E)".
In particular, we obtain a squared volume form, i.e. a trivialization
vol: Oy = det(E)®?
so that
Op 21, qet()®? LEAUENDY, 4B @ det(E)
is the coevaluation of the duality between det(E) and det(E)".

Example 3.1. Suppose E has an orthonormal basis {s1, ..., s,} of sections. Then the squared volume form
volg is given by
1 (=) D250 A A sy,)®2,

Lemma 3.2. Let (E1,q1) and (Ea,q2) be two orthogonal vector bundles over a scheme U. Then the diagram

det(E; @ E2)®? —— (det(F;) ® det(F>))®? —— det(E;)®? ® det(Eo)®?

2 2

Oy
18 commutative.

Proof. The statement is local on U, so we may assume that F; has an orthonormal basis of sections
{e1,...,e,} and F5 has an orthonormal basis of sections {f1,..., f;n}. Then the image of V0131+q2 under the
top isomorphism is

1— (—1)("+m)("+m_1)/2(el Ao Aen AL A fn)®?
s (_1)(n+m)(n+m71)/2(_1)nm(el Ao A en)®2 ® (fl A A fm)®2-

But (—1)(tm)(tm=1)/2(_q1ynm — (_q1)n(n=1)/2(_1ym(m=1)/2 54 this expression coincides with volz1 ®vol§2.

We will now define orientations of orthogonal bundles.

Definition 3.3. Let (F,q) be an orthogonal bundle over U. An orientation of E is an isomorphism
vol: Oy — det(F) whose square is volﬁ. We denote by org — U the Z/2Z-graded orientation us-torsor
of E: its parity coincides with the parity of rk(F) and the underlying ps-torsor parametrizes orientations.

For a pair of orthogonal bundles (F1,q;) and (Es, g2) we have an isomorphism

(3.1) org, ®u, OTE, — OrE,@L,

which sends

(voly, volp) — vol; ® vola,

2
q1+q2

For an orthogonal bundle (E,q) we denote by E the orthogonal bundle (E,—¢q). Then we have an
isomorphism

which squares to vol by Lemma 3.2.

(3.2) orgp — org
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which sends vol — i™8(F)yol, using the fact that Volzq = (—1)rk(E)v013.
Besides the direct sum of orthogonal bundles we will also consider reductions of orthogonal bundles by
isotropic subbundles.

Definition 3.4. Let (F,q) be an orthogonal bundle over a scheme U and K € E an isotropic subbundle.
The reduction of E by K is the orthogonal bundle K+ /K.

Lemma 3.5. Let (E,q) be an orthogonal bundle over a scheme U, K € E an isotropic subbundle and
F = KY/K the reduction of E by K. Consider the composite isomorphism
redg : det(FE) S8 det(K1) ® det(K")

MEK, Jet(KL) @ det(K)

J22) Jet(K) @ det(K)" @ det(F)

=~ det(F)

induced by the exact sequences
A:0—K'—F-—KY—0

and
Ay:0—> K —>K+—F—0.
Then
redK(vol2E,q) = (—1)rkaoliﬂ7q.

Proof. The claim is local, so we may assume that £ = FOK@®K " with {s1,...,s,} an orthonormal basis of
sections of F, {e1,..., ey} a basis of sections of K and {e!,... e™} the dual basis of sections of KV. Then
redg (ST A ASpAeL A Aem Aet Ao ne™) = (—1)m(m_1)/231 A A Sp.

Thus,

2
redg (volg ,) = redg(si A AsSpAer A AemAnet Ao ne™)?

(=1)

- (_1)(n+2m)(n+2m—1)/2(81 Ao A sy)?
(=1
(=1

In particular, using the notation of Lemma 3.5 we obtain a canonical isomorphism
(33) Oorgp = Orgl /K
which sends a volume form vol on E to the volume form i"™*¥red s (vol) on K*/K.

Definition 3.6. Let (E,q) be an orthogonal bundle of even rank over a scheme U.
e An isotropic subbundle K < E is Lagrangian if rk(F) = 2rk(K).
e Suppose E carries an orientation. A Lagrangian subbundle K < F is positive if the image of
the orientation of E under the isomorphism (3.3) is the standard orientation of the zero bundle
Kt/K =0.
Given an orthogonal bundle (F, q) over a scheme U we consider the following maps:
o mp: E — U is the projection;
e Op: U — E is the zero section;
e qz: E — A' the function quadratic along the fibers of 7x corresponding to the quadratic form g.
Then we can form the diagram



3.2. D-critical structures on schemes. For a scheme X over B we introduce a presheaf on the étale site
of X by the formula

(U— X)—T(U,8y/p) = m(A>**(U/B, —1))
Proposition 3.7. Let X — B be a morphism of schemes.
(1) 8x/p is a sheaf on X in the étale topology.
(2) There is a long exact sequence

— und d
(3.4) 0— b ' (Lx/p) — 8x/8 —— Ox 5 h(Lx;p) = Vx

of sheaves on X.
(8) Let X — U be a closed immersion into a smooth B-scheme U with Ix i the ideal sheaf. Then there
is an exact sequence

Lx, d
0— 8x/p —> Oy /Txy = %J/B/IX,UQ%J/&

so that the composite Sx/p XY, OU/I)Q(,U — Oy /Ix,u = Ox is equal to und: Sx,p — Ox.

Proof. By the definition of A%(X/B,—1) we obtain a long exact sequence (3.4) of presheaves. Since
h~1(Lx /) and hO(Lx /B) are quasi-coherent presheaves of O x-modules, they are sheaves. Therefore, using
the long exact sequence (3.4) we get that Sy 5 is a sheaf since h™'(Lx,p), Ox and h%(Lx,p) are sheaves.
This proves parts (1) and (2).

The definition of 8x/p is insensitive to replacing Lx,p by its truncation 7>_1Lx,. By [Stacks, Tags

0FV4 and 08UW| we may model Ox 22 7~ 1Ly, 5 by

IX,U/I)2(,U — QIIJ/B/vaUQIIJ/B

T “|

Ixyv—>0vu
This gives the description of 8 x5 as in part (3). (]

Example 3.8. If X — B is smooth, using the exact sequence (3.4) we identify sections of §x,p with
functions f: X — A! such that dgf = 0.

It is useful to use the following terminology.

Definition 3.9. Let B be a scheme.

(1) An LG pair over B is a smooth B-scheme U — B together with a function f: U — Al
(2) A morphism ®: (U, f) — (V,g) of LG pairs over B is a morphism of B-schemes ®: U — V such
that ®*g = f.

Recall that in Section 1.5.2 for an LG pair (U, f) over B we have considered the relative critical locus
Crityp(f) which is equipped with a section

sy € I(Crity s (f); Scrity, s (1)/B)-
It has the following explicit description.

Proposition 3.10. Consider an LG pair (U, f) over B. Under the embedding Crityg(f) — U we have
LCritU/B(f),U(Sf) = f (mod I(eritU/B(f)’U)'

Proof. Let Ir, , be the ideal defining the closed immersion I'q, s and R = Crityg(f). The pullback

d d
Fﬁaf: (Or+/B) - QlT>1<(U/B)/B) — (0p = QIIJ/B)
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factors as the composite

Orx/B) Q”lf*(U/B)/B

| |

dp
OT*(U/B)/IIZdBf > Q’ll“*(U/B)/B/IFdBfQ"l[‘*(U/B)

* *
\erBf leBf

Oy 4z Q5.

where the top vertical morphisms are given by modding out by powers of Zr, .. As in the proof of Proposi-
tion 3.7, the bottom vertical morphisms assemble into a quasi-isomorphism of two-term complexes in degrees
[0,1].

Consider the Liouville one-form Ay, p € QlT*(U/B)/B. The nullhomotopy hy of F;Bf)\U/B represented by
f € Oy in the bottom complex lifts to a nullhomotopy represented by 7* f € OT*(U/B)/II%dBf in the middle
complex, where 7: T*(U/B) — U is the projection.

Next, the pullback

d d
T: (Ou =5 Qp) = (Or = 7= 1Lg/p)

using the description of the truncated cotangent complex as in the proof of Proposition 3.7(3) is given by

dp
OT*(U/B)/IIZdBf > Q’ll“*(U/B)/B/IFdBfQ"l[‘*(U/B)

d
OU/IIZQ,U — Q%J/B/IR,UQ%J/B'

Under the morphism

T8 Qruw/py//Iray; Qe w/s) — Qw//IruQ) s
we have I'§ \y/p = 0 which represents the nullhomotopy ho. Therefore, the difference sy = hy — ho € Sp/p
has image T§7* f = f under tp v : Sr/s — Ov/Th - O

Corollary 3.11. Consider an LG pair (U, f) over B. Then und(sy) = f\CritU/B(f) € OCrity, s (f) -

Proof. The claim follows from Proposition 3.10 as well as the compatibility of tcyit,, 5 (r),v and und estab-
lished in Proposition 3.7(3). O

We have the following functoriality of relative critical loci. For a morphism ®: (U, f) — (V, g) of LG pairs
we have a correspondence

(3.5) T*(V/B) xyv U
/ X\
T*(V/B) T*(U/B)
of relative cotangent bundles. Now consider the diagram
(3.6) U
®
/ %\
|4 T*(V/B) xy U
a7 U
Cagg
T*(V/B) T(U/B),
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where the square is Cartesian. The triangle commutes because ®*dgg = dpf. Taking the zero loci of
the three sections V' — T*(V/B) (with zero locus Crity,g(g)), U — T*(V/B) xy U (with zero locus
Crity/g(g) xv U) and U — T*(U/B) (with zero locus Crity,(f)) we obtain a correspondence

(37) CI’ltv/B(g) Xy U
Crity/5(g) Critys(f)
of relative critical loci.

Proposition 3.12. Let ®: (U, f) — (V,g) be a morphism of LG pairs over B. Then
TSy = TSy
in the correspondence (3.7).

Proof. In the correspondence (3.5) we have 75 Ay g = > \y//p as can be easily checked in local coordinates.
Now consider the correspondence (3.6). In the following we consider homotopies in the spaces of exact relative

two-forms of degree 0. The nullhomotopy hy of F;B g)\V/B is represented by g € Oy . Its pullback along
®: U — V therefore provides a nullhomotopy hy: (I'ayg % id)*7§ Ay g ~ 0 represented by ®*g = f € Oyp.
Equating the one-forms 7{; Ay /p = 7y Ay/p and (Lagzg xid)* 7§ Ay /g = F:Bfﬁé)\U/B we see that the resulting

nullhomotopy of F;Bf’JTEAU/B coincides with hy. Passing to the zero loci we get nj;sy = mis,. a

Remark 3.13. In the following sections we will encounter morphisms of LG pairs ®: (U, f) — (V, g) over B
such that ®: U — V restricts to ®: Crity/p(f) — Crity,g(g) (as Crity,5(g9) — V is a closed immersion, such
a restriction is unique, if it exists). In this case ® defines a splitting of 7y : Crity/5(g) xv U — Crity/g(f)
and thus Proposition 3.12 implies that ®*s, = s;.

We will use the Hessian quadratic form associated to an LG pair.
Proposition 3.14. Let (U, f) be an LG pair over B. There is a (degenerate) quadratic form Hess(f), the
Hessian of f, on the restriction of the tangent bundle TU/B|CritU/B(f), It satisfies the following properties:
(1) Let x € Crity p(f). Then Ker(Hess(f)z) = Tcrity,p(s)/B.as i-€ the Hessian Hess(f), restricts to a
nondegenerate quadratic form on the normal bundle NCritU/B(f)/U,x.
(2) Let ®: (U, f) — (V,g) be a morphism of LG pairs. Then in the correspondence (3.7) we have
v Hess(g) = m;Hess(f)

as quadratic forms on TU/B|CritV/B(g)><vU'

Proof. For a smooth morphism U — B we may define its n-th jet bundle J; /B which is an Oy-bimodule on
U, as in [EGAIV, §16.7]. It has the following properties:
(1) Jg /5= Ou.
(2) For m = m there is a morphism o5 = Ji5-
(3) There is a splitting i,,: Oy — J{}/B of JE/B — Oy as left Oy-modules and a splitting d: Oy — J{}/B
as right Oy-modules.
(4) There is a short exact sequence

0— Syanllj/B — Jip — J;;B} — 0.

Let jZ/B be the quotient of JS/B by i,: Oy — J{}/B. Then we obtain a short exact sequence
—2 —1
0 —s smeQ}J/B — Jup — Jup = Q}]/B — 0.

For f € Oy consider the element d% f € j?]/B whose image in j,lj/B ~ QB/B is dp f. Restricting to Crity/p(f)
we get that d2}3f|CritU/B(f) defines a section Hess(f) of SmeQlU/B|CritU/B(f) which is the relevant quadratic
form. The functoriality of the Hessian (i.e. property (2)) follows from the functoriality of jet bundles and
the map d%.
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Let us now show property (1). Choose étale coordinates {z1,...,2,} on U — B in a neighborhood of
x. Let T be the ideal defining the closed immersion Crity/p(f) — U. In a neighborhood of x we have

7= (;Zfl e a% ) A vector field v =}, v,»% on U tangent to Crity/(f) if, and only if,

Z (9z18zj

for every j. Restricting to x € Crity/p(f) we get that the subspace Tty (f)/B.x © Tu/p,e is given by

tangent vectors v = ), vi£ such that

Z 6zlézj

But this is precisely the definition of the subspace Ker(Hess(f)z) © Tu/B,a- O
Global versions of relative critical loci are given as follows.

Definition 3.15. Let X — B be a morphism of schemes. A relative d-critical structure on X — B is
a section s € I'(X, 8 x/p) which satisfies the following property:
o There exists a collection of LG pairs {Uq, fo}eea together with open immersions u, : Crity, / 5(fa) —
X such that {u,: Crity, p(fa) — X} is an open cover of X and u}s = sy,. We call such a triple
(Uay fa,uq) a critical chart.

Remark 3.16. Take B = SpecC and suppose X — SpecC carries a relative d-critical structure s with
und(s) = f: X — A!. Then f is locally constant on X*4. If we further assume that f|yra = 0, then the
relative d-critical structure on X — SpecC is the same as a d-critical structure on X in the sense of [Joy15].

Example 3.17. Let m: X — B be a smooth morphism of schemes and f: B — A' be a function. Then
Crity,g(7*f) = X and hence 7* f € 8x/p defines a relative d-critical structure on X — B.

We can define products of relative d-critical structures as follows. Given two morphisms of schemes
X1 — By, X2 — By equipped with sections s; € I'(X1,8x,/5,) and s € I'(X2,8x,/5,) let

s1Hsy =781 +mys2 € D(X1 X Xo,8x, xXs/ByxBa2)
where 7;: X7 x X9 — X is the projection.

Proposition 3.18.
(1) Let (Uy, f1) be an LG pair over By and (Us, f2) be an LG pair over By. Then there is an isomorphism

Crity, /g, (f1) x Crity, B, (f2) = Crity, xu,/B, xB, (f1 H f2)

under which sy, Hsp, = Spmf.,-
(2) Let X1 — By and X9 — By be morphisms of schemes equipped with relative d-critical structures
s; € (X4, 8x,/B,). Then s1 H sz is a relative d-critical structure on X1 x Xo.

Proof.

(1) We have a natural isomorphism Ly, /5, B Ly, B, = Ly, xu,/B,xB,- Using this isomorphism we
obtain an isomorphism T*(Uy/Bi) x T*(Uy/Bs) = T*(Uy; x Us/Bi x By) under which T'g s X
Lagfo = Tag(rmys)- This shows that the two closed subschemes Crity, 5, (f1) x Crity, /g, (f2) and
Crity, xv,/B, x B, (f1 B f2) of Uy x Uy are equal. The fact that under this isomorphism sy, sy, —
sf,mf. follows from Proposition 3.10.

(2) Given a collection of critical charts (U}, f1,ul) of X1 and (U2, f2,u2) of Xo, by part (1) we get that
(Uy x U2, fa B f3,up x u?) is a critical chart for (X1 x Xa, s1Hs2). Since {ul,: Crity:/p, (fi) — Xi}
is an open cover, {u} x up: Crity1,p, (f4) x Crity2;p,(f2) — X1 x Xp} is an open cover.

O

For a morphism of schemes X — B equipped with a d-critical structure s the opposite —s is also a
d-critical structure, so that if {U,, fa, us} is a collection of critical charts of (X, s), then {Uy,, —fq,uq} is a
collection of critical charts of (X, —s).
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3.3. Critical morphisms. In this section we introduce a particularly nice class of morphisms of LG pairs
and prove their local structure. Throughout the section we fix a base scheme B.

Definition 3.19. A critical morphism of LG pairs (U, f) — (V,g) over B is an unramified morphism
®: (U, f) = (V,g) of LG pairs over B such that ® restricts to a morphism ®: Crityg(f) — Crity,/g(g).

Clearly, any étale morphism (U°, f°) — (U, f) is a critical morphism.

Remark 3.20. In [Joyl5] Joyce introduces the notion of an embedding of critical charts, which is equivalent
to critical morphisms with ® assumed to be an immersion instead of just an unramified morphism.

Example 3.21. Let (U, f) be an LG pair over B and (F, q) an orthogonal bundle over U. Let ng: E — U
and qg: E — A' be as in Section 3.1. The inclusion Og: U — E of the zero section identifies Crity/p(f) =
Critg/p(f o mp + qp) compatibly with the natural exact two-forms of degree —1. Thus, (E, fo7g +qg) is
an LG pair over B and

E: (Uaf)—’(E7.fo7TE+qE)

is a critical morphism.

The rest of the section is devoted to local structure results for relative LG pairs and critical morphisms.
First, an LG pair can always be replaced by one which admits an open immersion into A%; the following is
a family version of [Joy15, Proposition 2.19].

Proposition 3.22. Let (U, f) be an LG pair over B. For every x € Crity,(f) there is an open neighborhood
U° < U of z, a smooth B-scheme V which admits an open immersion V < Ak together with a function
g: V. — Al and a closed immersion ®: U° — V such that ®*g = f|yo and ® restricts to an isomorphism

Critye,p(flve) = Crity/p(g).

Proof. Choose an open neighborhood U° < U of x which is affine over B and which admits an étale morphism
c®: U° — A%. Then we have may find a closed immersion ®: U° — V = A’fg. Possibly shrinking V' to a
neighborhood of ®(z) we may extend ¢°: U° — A% to p: V — A% such that po ® = ¢® and f° = f|yo to
gV — Al such that ¢ o ® = f°.

Since ®: U° — V is a regular immersion, by shrinking U° and V' we may find a function r: V' — A™ such
that U° is the zero locus of r and in the commutative diagram

Ue —2=Vv°

lco \L(p’r)
A% (1,0) A%er

the vertical arrows are étale.
Consider

g = —Z z—i— 257"81" iy + o ZT‘Q.

1 ifi=4,
e 0 ifi#j.
The first equation implies that ® restricts to U — Crity an (g). The second equation implies that we may

shrink V' so that ®: U® — Crity /an (g) is an isomorphism, which we assume. Therefore, taking the full
critical locus relative to B we get that ® restricts to an isomorphism Crity.,g(f°) — Crity/z(g)- a

It satisfies
dg

9 %9
67‘1- ’

Ar. A
Ue or;or;

We next show that any critical morphism is locally of the form as in Example 3.21; the following is a
family version of [Joy15, Proposition 2.23].

Proposition 3.23. Let ®: (U, f) — (V,g) be a critical morphism of LG pairs over B and x € Crityg(f).
Then there is an open immersion v: (U°, f°) — (U, f), an étale morphism 3: (V°,¢°) — (V,g), a point
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x° € Critye,(f°) mapping to x, a critical morphism ®°: (U°, f°) — (V°,¢°), a trivial orthogonal bundle
(E,q) = U and an étale morphism «: V° — E such that o*(f og + qg) = ¢° and the diagram

U, FE

1

Ue —— V°

|

U—YV
18 commutative.

Proof. As a first step, we construct a local splitting of ®: U — V. For this, consider an open neighborhood
U° c U of z affine over B together with an étale morphism c: U° — A’%. Consider the unramified morphism

Ue UV, By [EGAIV, Corollaire 18.4.7] we may find a commutative diagram

ve 2

L,

U—2.v,
where V' — V is an étale morphism and @’ a closed immersion. Possibly shrinking V' (and, correspondingly,
U°) we may assume that V' — V — B is affine. Then c lifts to p': V/ — A% such that p’ 0 &’ = c¢. Let
f°: U° — A! be the restriction of f to U® and ¢’: V' — A! the restriction of ¢ to V".
Since ®': U° — V' is a regular immersion, by shrinking V' we can find a function r: V/ — A™ such that
U® is the zero locus of r and in the fiber square

UOCL/> 17

lc O l(p'ﬂ“)
(

A% 1,0) A%er,

the vertical arrows are étale.
By assumption we have a commutative diagram

Critgro/p(f°) — Crity/5(g)

i |

Ue L V!

DD
S

Thus, g—f;wo lies in the ideal generated by % Since p' 0 ®° = c and ¢’ o &' = f°, we have A G

So, we may write in the {p},r;} coordinates
og'
(97’j

—Ya, 2
(%] /
ve 3 op;lye

for some functions aj;: U° — A'. Choose any lifts a;;: V' — A' of aj; and consider

pi = pi +Zaijrj: V/ — Al.
J

Possibly shrinking V' we may assume that V' (or), ALT™ is étale. Moreover, in the {p;,7;} coordinates we
have
a /
90 o
orjlye
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Let Vo =U® xpn V' with the projection p: V° — U. Then we obtain a commutative diagram

ve 2 ve

L,

U—2.v

with vertical maps étale and with ®°: U° — V° an immersion as it is the composite U° — U® xpn U°® —

U® xun V' of an open immersion and a closed immersion. Since (p,7): V' — A’LT™ is étale, so is its base
change (p,r): V° — U x A™. Let ¢g° be the restriction of g to V°.
Since g° o ®° = f° and gf,j |ue = 0, we see that ¢g° — f° o p vanishes to the second order along U° «— V°.
Thus, shrinking V° we may find ¢;; € Oy. such that
9° = fCop+ ZQijTiTj,
4,J

where ¢;; is a symmetric invertible matrix. Using the Gram—Schmidt process, we may assume that g;; = 0
for i # j and ¢;; are nowhere vanishing functions on V°. Possibly replacing V° by an étale cover so that ¢;;
admit square roots, we obtain an étale morphism a = (p,/qr): V° — E = U x A™, so that if we equip E
with the trivial quadratic form qam we get a*(f + qam) = ¢’ O

Example 3.24. Consider an LG pair (V, g) over B and a B-point 0: B — Crity5(g) of the relative critical
locus. Let x € B. Assume that g is relatively Morse at o, i.e. ¢ is an inclusion of a smooth connected
component. Then o: (B, g|,) — (V,g) is a critical morphism. In this case Proposition 3.23 reduces to the
relative Morse lemma: we may find an open neighborhood B° < B of z, an étale morphism V° — V, a lift
0°: B® — Crityo/p(g|ve) of o and étale coordinates y: V° — A% such that

m

glve = Z vi -
i=1

The following proposition shows that any two critical charts are locally related by a zigzag of critical
morphisms; this is a family version of [Joy15, Theorem 2.20].

Proposition 3.25. Let X — B be a morphism of schemes equipped with o relative d-critical structure
s. Let (U, f,u) and (V,g,v) be two critical charts and x € Crityg(f),y € Crity,g(g) points such that
u(x) = v(y). Then there are open immersions (U°, f°,u°) — (U, f,u) and (V°,¢°,v°) — (V,g,v), a critical
chart (W, h,w), critical morphisms
(U°, £2,u°) 25 (W, hyw) <= (V°, 6°,0°)

and points x° € Critye,p(f°),y° € Crity.,p(g9°) which map to x and y.

Proof. Using Proposition 3.22 we may find an open neighborhood V° < V of ¥, a critical chart (V, g, )
which admits an open immersion into A% and a critical morphism Z: (V°,¢°,v°) — (V, §,0). Moreover, by

construction Z restricts to an isomorphism Crity.,p(g°) = Crit(//B (g)-
Consider the diagram

Crity/p(f) xx Crity.,5(g°

/\

V—>A"

Since Crity/g(f) x x Critye/p(g°) — U is an immersion, we may find a Cartesian diagram

(38) Jf e CIitU/B(f) Xx Critvo/B (go)
U° U
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with U° — U open with x € R and a commutative diagram

R —— Crity,(f) xx Critye/p(g°)

| |

Ue ° A}

Shrinking U° further, we may assume that ©: U° — A’} factors through Ve A't. The Cartesian diagram
(3.8), the fact that Crityo,5(g°) — X is a monomorphism and the Cartesian diagram from Proposition 4.1
imply that R = Critye,g(f°), where f© = flyo. Let u® = u|0ritU0/B(fo). Thus, we get a commutative
diagram

R = Crityo,g(f°) — Crity.,5(9°)

| l

U° © 1%
with Critye,p(f°) — Critye/5(g°) an open immersion.

Using the functoriality of the description of 8 x5 from Proposition 3.7(3) with respect to © we obtain a
commutative diagram

0 4>8X/B|R — 0‘7/1-}2%"7 —— Q%//B/IRJ}Q%//B

l |

0 HSX/B|R E—— OUO/II%7UO e Q%]O/B/IR,UOQ%]O/B

Using that sfo = sgo on R we thus obtain that f° —go®© € I;/Uo- Shrinking U°, we may find a (trivial)
orthogonal bundle (E’,q') — V together with a section s’ of ©*E’, vanishing on R, such that
fo=go0=4q(s).

Now let W’ = E’ equipped with the function jo g + qg: W — AL

Shrinking U° we may choose an étale morphism y: U° — A%}, i.e. étale coordinates on U° — B near
x. Consider the hyperbolic quadratic form g,, on A?™ given by Z?; y;z; and let E = E' x A?™ with the
sum quadratic form ¢ = ¢’ B ¢,,. Consider the section s = (s',91,...,Ym,0,...,0) of ©* E. By construction
Q}E/B — Qlljo/B is surjective, so ®: (U°, f°) —» (W, go g + qg) given by the section s is unramified. Since
s’ vanishes on R, ® is a critical morphism.

Define ¥: (V,§) — (W,jomg +qg) to be the zero section which is a critical morphism by Example 3.21.
We set

U (V°,6°) 5 (V,5) 5 (W,goms +qg),

which is a composite of critical morphisms. O
Finally, any critical chart can be replaced by a minimal chart at a point.

Proposition 3.26. Let (V,g) be an LG pair over B and y € Crity,g(g) a point. Then there is an
open subscheme V° < V', a smooth B-scheme U, a point x € Crity,g(f), a function f: U — Al and
a critical morphism ®: (U, f) — (V°,glve), such that ®(x) = y, Crity/p(f) — U is minimal at x and
®: Crity/p(f) — Critye,p(glve) is an isomorphism.

Proof. Consider the short exact sequence
0 — Terity5(9)/By = Tv/By —> Ny — 0

and consider an arbitrary splitting Tv /5, = Tcuity,5(g)/B,y @ Ny. In a neighborhood V° < V of y we may
extend it to an isomorphism

Tve/p = Tcrity5(g)/B.y @ Ove ®Ny ® Ove.
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With respect to this decomposition let dg|ye = « + 3 for
e Qéritv/B(g)/B,y®OV07 BEN;}/ ® Oyo.

Consider U = 371(0) with f = g|y and the morphism V3: Tye/p — Ny ® Oye.
We have Hess(f), = (Vdf)y: Tye/p, — Q%,O/B , Which is nondegenerate on N, by Proposition 3.14(1).
Thus, possibly shrinking V° to a smaller neighborhood of y we may assume that V3 is surjective, i.e. U — B

is smooth. Moreover, Crity/g(f) = Critye/p(g|ve) as both are defined by the equations « = = 0in V°. 0O

3.4. Gluing objects on critical charts. We will use the results comparing different critical charts from
Section 3.3 to glue objects over schemes equipped with relative d-critical structures. We begin with the
following general paradigm for gluing. Consider a site € and a functor 7: F — €. We consider a collection
of morphisms of F called localization morphisms, which satisfies the following properties:
(1) The collection of localization morphisms is closed under composition and it contains identities.
(2) For every localization morphism x — 2z and any morphism y — z the fiber product x x, y exists, it
is preserved by 7 and x x, y — y is a localization morphism.
We say JF is locally connected if the following conditions are satisfied:
(1) For every X € C there is a collection of objects {x,} of F together with a covering {7 (z,) — X}.
(2) For every z,y € F together with morphisms 7(z) — z « 7 (y) in C, there are collections of localization
morphisms {z, — z} and {y, — y} such that for each a there exists a diagram z, — z, < y, in F,
and {m(zy) x, 7(yq) — 7(x) x, w(y)} is a cover.

Example 3.27. Suppose 7: F — € is a Cartesian fibration, so that it is classified by a presheaf F: C°P —
Cat. Consider the class of 7-Cartesian morphisms as the class of localization morphisms on F. Then ¥ is
locally connected precisely if the sheafification of F is connected.

Proposition 3.28. Let C be a site, m;: F; — C for i = 1,2 two functors, where F1 — C is locally connected
and Fo — C is a Cartesian fibration satisfying descent. Consider a functor F: F1 — Fo over C satisfying
the following conditions:

(1) For every f: x — y in Fy the morphism F(f): F(x) — F(y) in Fy is mo-Cartesian.
(2) Given two morphisms f1, fo: © — y such that w1 (f1) = m1(f2) we have F(f1) = F(f2).
Then there is a Cartesian section s of mo: Fo — € determined by the following conditions:
e For an object x € F1 we have an isomorphism i, : s(mi(z)) — F(x).
e For a morphism f: x — y in F1 there is a commutative diagram

s(m (@) T s(m ()
Fla) — 1 p(y)

Proof. The proof is similar to the proofs of [Joy15, Theorem 2.28] and [Bra-+15, Theorem 6.9]. For an object
X € C consider a collection {z, | a € A} of objects of F; together with a cover

(3.9) {m(zq) > X |a e A}

Since F; is locally connected, for every a,b € A there is a set D, and for each d € D, there are morphisms

d d : d : : a ®a Y
{z/¢ — x4} and {z}" — x3} and objects {y*} of F; together with morphisms z/* — y® «— x;* such that for

every a,be A
(3.10) {m1 (/) x x w1 (2}3) = 71 (2q) X x 71(23) | d € Dy}
is a cover.
Since F, satisfies descent, using the cover (3.9) we have to specify an isomorphism
Qabt F(%a)lr) (20) x x 1 (20) — (@) |7y () % 1 (20)
for every a,b € A which satisfies the cocycle conditions

(3.11) Qpe © Qgp = Qge, Qqq = id.
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We proceed to the definition of agp. By descent, using (3.10) to construct agp it is enough to construct,
for every d € Dy,
d . ~
Aap - F( )|71'1 (!¢ )Xxwl(m’d) - F(xb)|7r1(w;‘i)><x7r1(;v;)d)

such that for every d,e € D, we have

(3.12)

ab|7r1($’d)><x7r1(m )X xmy(ale) X x i (2)f) = a(lb|7T1 z’d)xxﬂ'l( )xxwl(z’e)xx'm(m

/d

We have isomorphisms ®¢: z/¢ d

Sy \m(%d) and U4: xjd =y \m(xlbd) and we define

ol = F(Uh) =1 o (%),

To show (3.12), using the condition of local connectedness we get a collection of localization morphisms

{y/4 — y?} and {y'® — y°} together with zigzags y'? ZLe, Ze <\I’— y'€ such that

{1 (") xx m () = m(y?) xx m(y°)}

is a cover.
rd

Since 2/ — z, and y/¢ — y? are localization morphisms, we can form the fiber product

rde __ 1d /e /e
Toe = yn yd Ty Xag Ty Xye Yo

Then we have a (non-commutative) diagram

d

rde @ rd
—>
:EaC yC
A
e Ze wd

/e /de
<—
Ye Ly

in F;. Using the functoriality of F' as well as the second assumption in the statement, we get, on the cover

{1 (yok) xx m(yhee) — m (@) xx mi(apt) xx m(2)) xx (=)},

that
= F(uH)~1o F(®?)
:F(\Ild)oF( ) Lo F(®,) o F(®%)
= F(¥) o F(¥.) ! o F(¥,) 0 F(9°)
= F(U°) Lo F(®°) = af,.

This finishes the construction of g, and shows that it is independent of the choices of the intermediate
zigzags. Let us next check the cocycle conditions (3.11). The condition a,, = id follows from F(id) = id
since we can choose the zigzag for x, and itself to be given by the identity maps. Let a,b,c € A. Using local
connectedness we can choose localizations {x;f — x;} for i = a, b, ¢ such that

{Wl(x;f) X x 71'1(33;7") xx m(z) — 7w (20) x x 71 (2p) X x 71 (2)}

and an object y together with morphisms ®,: xif — y for i = a,b,c. Then we have

_ -1
iy = Qg, ©Qs,

a‘lb|m(w Dy xmi (@) x xm1 (%

—1
o =qaL oQ
bc|771(»La )><X7T1(lb Yx x (2 D, Dy

-1
aac|m(m Nxxmi(@f)yxxm (@) = Yo, © A,
This implies that e 0 gy = age on 7 (z) x x wl(x;f) x x m1(22F). As we can cover 1 (x4) x x 71 (1) X
m1(2z.) by such morphisms, this proves the claim. D
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Remark 3.29. Consider the setting of Proposition 3.28 when 71: F1 — € is a Cartesian fibration (see
Example 3.27). Then the sheafification of F; has trivial mg. So, a morphism to Fy defines a global object
precisely if all the obstructions coming from the nontrivial 7y vanish; this is guaranteed by the second
condition in Proposition 3.28.

Corollary 3.30. Let X — B be a morphism of schemes equipped with a relative d-critical structure s and &
a sheaf of categories over X in the Zariski topology. Fiz a locally constant function d: X — Z/27Z. Consider
the following data:

(1) For every critical chart (U, f,u), such that dim(U/B) = d (mod 2), we have an object
Ty € F(CrltU/B(f)v‘rf)

(2) For every critical morphism ®: (U, f,u) — (V,g,v) of even relative dimension we have an isomor-

phism
Jo: 2y — (x?))|CritU/B(f)'
which satisfy the following conditions:

(1) For a composite (U, f,u) 2, (V,g,v) LR (W, h,w) of critical morphisms of even relative dimension

we have

Jwoo = (Ju)|crity 5 (f) © Jo-
(2) For the identity critical morphism (U, f,u) i, (U, f,u) we have
Jiq = id.

(8) Given two critical morphisms ®1,®o: (U, f,u) — (V,g,v) of even relative dimension such that &1 =
®y: Crity/p(f) — Crity,/p(g), we have an equality

Jo, = Jo,.

Then there is an object x € T'(X,F) restricting to x, on each critical chart and with Je as the isomorphisms
of these local objects for critical morphisms.

Proof. Consider the following category CritChartsqy(X/B):

e Its objects are critical charts (U, f,u) for (X — B, s) with dim(U/B) = d (mod 2).

e Its morphisms are critical morphisms of critical charts of even relative dimension.
We have a natural functor 71 : CritCharts;(X/B) — Xyza, to the Zariski site of X given by sending (U, f,u) —
Crity g (f). Asthe class of localization morphisms we take open immersions of critical charts. Given a critical
chart (U, f,u) we may construct a new critical chart (U x A, fiHz?, u) of dimension one higher. Thus, the fact
that 7y : CritCharts(X/B) — Xza, is locally connected follows from Proposition 3.25. Let mo: {F — Xy,
be the Grothendieck construction applied to the sheaf of categories . Then the data given in the statement
determines a functor F': CritChartsy(X/B) — {F over Xz,, satisfying the conditions of Proposition 3.28,
whence the claim. ]

Restricting Corollary 3.30 to sheaves of sets we obtain the following statement.

Corollary 3.31. Let X — B be a morphism of schemes equipped with a relative d-critical structure s and
F a sheaf of sets over X in the Zariski topology. Fiz a locally constant function d: X — Z/2Z. Consider the
following data:
(1) For every critical chart (U, f,u), such that dim(U/B) = d (mod 2), we have an element z, €
[(Crity p(f), ).
which satisfy the following condition:
(1) For every critical morphism ®: (U, f,u) — (V,g,v) of even relative dimension we have an equality
Ly = (xv)lcritU/B(f)'
Then there is a section x € (X, F) restricting to x, on each critical chart.
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3.5. Virtual canonical bundle. We are now going to define the virtual canonical bundle of a relative
d-critical structure on a morphism of schemes X — B, which is a line bundle on the reduced scheme X" 4.
For this, we begin by defining the canonical quadratic form associated to a critical morphism. Observe
that in the local model of a critical morphism ®: (U, f) — (V, g) as in Proposition 3.23 there is a canonical
isomorphism

(313) NU/V|U° = NU/E|U° = E|Uo.

In particular, the normal bundle of U — V admits a quadratic form étale locally. We will now show that it
extends to a global quadratic form.

Proposition 3.32. Let ®: (U, f) — (V,g) be a critical morphism of LG pairs over B. Then there is a
nondegenerate quadratic form qe on the normal bundle NU/V|CritU/B(f) which is uniquely determined by the
following property:

(1) Consider a local form of the critical morphism ® as in Proposition 3.23. Then under the natural
isomorphism Ny y|ve = Elyo (3.13) the quadratic form qo identifies with the quadratic form q on
E.

Moreover, it satisfies the following properties:
(2) For another critical morphism V: (V,g) — (W, h) consider the unique splitting of the short exact
sequence
0 — Nuyvlcrity,s(r) — Noyw ety () — Nvywlcrity, s () — 0
obtained by taking the orthogonal complement of NU/V\CritU/B(f) c NU/W|CritU/B(f) with respect to
quow- Then the resulting isomorphism
Nuywlcrity s (1) = Nouyvlcrity,s(r) @ Nvw|critg s ()
sends the quadratic form quos to g + qu-
(8) Let ®": (U, f) — (V,g) be another critical morphism between the same critical charts. Then
vol2. | =vol?2 |
qa | Crity g (f)red qgr |Crity/p (f)red-

(4) Consider a commutative diagram

(U, f1) S (V1,91)

(Ua, f2) B (V2, 92)

with Ty and wy smooth morphisms and ®1 and ®o critical morphisms such that Uy — Vi xy, Us is

étale. Then under the isomorphism 7;Ny, v, = Ny, v, we have g, — qa, -
(5) For a pair of critical morphisms ®;: (U;, fi) = (Vi, g;) of LG pairs over B; under the isomorphism

Nu, /i xVa | Criter, vy, w5y (18S>) = Nuava lcxity, s, (1) B Nva/va lexityy s, (1)

we_have o, xa, = qo, + qo, -
(6) If ®: (U,—f) — (V,—g) is a morphism of LG pairs over B equal to ® on the level of underlying
schemes, then go = —qg.

Proof. Since we can cover the critical locus Crity(f) by the local models as in Proposition 3.23, uniqueness
is clear. To show existence, we have to show that the quadratic form is independent of the choice of the local
form of the critical morphism. For this, suppose (U7, Vy, E1,q1) and (Us, Vs, Es, q2) are two choices of the
data as in Proposition 3.23. Let

U:UIOXUUQO, V:Vf Xv‘/QO.
37



Let R = Critﬁ/B (f) and let p: R — B be the projection. Then we have a commutative diagram of short
exact sequences

0 — Tyl — TgyBlr — Eilp —— 0
al ] ll
0 — Ty/slr — Tyl —— Nyyv|lp —— 0
| | |
0 —— TU/B‘R —_— TEQ/B|R e E2|R — 0
Choose local splittings T, /5|r = Ty plr @ E1|r and Tg, p|r = Ty/p|r ® E2|r. Denote the composite

isomorphisms by

~ id s ~
t: Ei|r — Es|g, (0 t) : Tu/slr ® E1lr — Ty/slr ® E2|r-

Under the vertical isomorphisms the quadratic form Hess(g) on Ty /g |g restricts to Hess(f)+¢1 and Hess(f)+
q2, respectively. Therefore, for v € Ty, p|r and w € E1|g we have

Hess(f)(v) + q1(w) = Hess(f)(v + s(w)) + ga2(t(w)).

By considering the associated symmetric bilinear form we get that s(w) € Ker(Hess(f)). Thus, ¢;(w) =
g2(t(w)), i.e. t: (E1|r,q1) — (Ea|R, q2) preserves quadratic forms. So, gg is well-defined.
Let us now check the remaining properties:

(2) It is enough to establish this equality locally. For this, apply Proposition 3.23 to get (U°, Vy°, E1,¢q1)
fitting into a commutative diagram

U*>E1

[

Ue —— Vp

|

U—25v
Similarly, apply Proposition 3.23 to get (Vy, W*°, Ey, ¢2) fitting into a commutative diagram

V—— By

[

Ve —— WO
|,

Let

Then we get a diagram

Thus, under the local isomorphism of Ny w and E; @ Es|y we see that guos is sent to g1 + go.
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(3) We have to show that the function VO].gq) /Volgé on Crityp(f)™? is identically 1. This can be
checked pointwise on CritU/B(f)red. For a k-point b € B let R, = Crity,g(f) xp Speck =
Crityrx yspec k/Spec k() be the corresponding fiber product which carries a d-critical structure relative
to Speck. Then it is sufficient to show that VO]?M = volgé when restricted to R*d for every b. But
this is shown in [Joy15, Theorem 2.27].

(4) It is enough to establish this claim locally. Apply Proposition 3.23 to get (U3, Vy, E, q) fitting into
a commutative diagram

UQ e E

.

o 2 o
U —=V;

|

Uy —=V;
By property (1) under the isomorphism Ny ye = E|yg we have g, — q.
Then @5 x ®1: Us xg, Uy — Vi xy, V1 has a local model given by the pullback of Uy — E. Thus,

again by property (1) we get that under the isomorphism Nyeox . v, /vexy,vi = Elugxy,v, we have
q‘i’l = q

(5) The claim follows from property (2) as we may write ®; x ®5 as the composite (id x ®5) o (P x id)
of critical embeddings.

(6) The claim is local and follows from the fact that given a local model of ®: (U, f) — (V,g) as in
Proposition 3.23 specified by a trivial orthogonal bundle (F,q) — U the local model of ®: (U, —f) —
(V,—g) is specified by the same data with the trivial orthogonal bundle (E,—q) — U.

O

Given a critical morphism ®: (U, f) — (V,g) we denote by Py — Crityp(f) the Z/2Z-graded orienta-
tion pp-torsor for the orthogonal bundle (N v |cyit,, 5(f) go). Then Proposition 3.32 implies the following
properties of Pg:

(1) Given another critical morphism ¥: (V, g) — (W, h) we obtain an isomorphism
Ee,0: Pros — Pulcrity,n(r) O Po

by combining (3.1) and Proposition 3.32(2).
(2) It d': (U, f) — (V, g) is another critical morphism equal to ® on the critical loci, there is a canonical
isomorphlsrn
Py =~ Py
given by the identity on volume forms, using Proposition 3.32(3).
(3) Given a diagram

(Ur, f1) ——= (V1,91)
(Uz, f2) —— (V2,92)

with horizontal morphisms critical morphisms, vertical morphisms smooth and U; — Vi xy, Uj étale,
there is a canonical isomorphism

(3.14) Pg, = (Crity, /5(f1) — Crity,/5(f2))* P,
given by the identity on volume forms, using Proposition 3.32(4).
(4) Given a pair of critical morphisms ®;: (U;, f;) — (Vi, g;) of LG pairs over B;, so that ®; x ®q: (U x
Us, f1H f2) — (V1 x V3,91 Hg2) is a critical morphism of LG pairs over By x Bs, there is a canonical
isomorphism

(3.15) Py, X Py, = Po, xa,
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defined via the isomorphism (3.1), using Proposition 3.32(5).
(5) If ®: (U,—f) — (V,—g) is the same morphism between the opposite LG pairs, there is a canonical
isomorphism

(3.16) Py =~ Py
defined via the isomorphism (3.2), using Proposition 3.32(6).

The quadratic form gg for a critical morphism allows us to define the virtual canonical bundle as follows.

Theorem 3.33. Let X — B be a morphism of schemes equipped with a relative d-critical structure s. Then
there is a line bundle K}’g;B on X*4 | the virtual canonical bundle, uniquely determined by the following
conditions:

red

(1) For every critical chart (U, f,u) its restriction to Crity g (f)*® is canonically isomorphic to K((??B|Critw5(f)red.

(2) For every critical morphism ®: (U, f,u) — (V, g,v) the corresponding isomorphism

. 1 ®2 ~ ®2
Jo: KU/B|CFitU/B(f)rEd - KV/B|CFitU/B(f)red

fits into a commutative diagram

Jo

id®v01§®

®2 v
KU/B |CritU/B(f)er ® (det NU/V)®2 |CritU/B(f)md’

®?2 ®2
KU/B‘CritU/B(f)red KV/B|CritU/B(f)"ed

where the diagonal morphism on the right is determined by the short exact sequence
A: 00— Ny — Q%//B‘U — QlU/B — 0.
For every point x € X there is an isomorphism
R * }?;B,w — det(Qﬁ(/B,x)®2
uniquely determined by the following condition:

(8) For every critical chart (U, f,u) with a point y € Crity, g(f) such that u(y) = x the isomorphism

®2 ~ i Kz 1 2
Kilp, = KX)p . = det(Qyp5,,)®

coincides with the composite of the natural isomorphism of determinant lines induced by the exact
sequence

0— N}/(/U,x - Qllj/B,y - Qﬁ(/B,:r —0
as well as the squared volume form on Nx . induced by the quadratic form Hess(f),.
In addition, we have the following isomorphisms:

(4) For a pair (X1 — Bi,s1), (Xo2 — Ba, s2) of morphisms of schemes equipped with relative d-critical
structures constder the relative d-critical structure sy Hso on X1 x X9 — By X By. Then there is an
isomorphism

vir vir ~ vir
(3.17) Xy BEX g, = KX\ x,/B,x B,

uniquely determined by the condition that for every point (x1,22) € X1 x Xy there is a commutative
diagram

(3.17)

vir vir vir
KX1/B17I1 ®KX2/327$2 KX1><X2/B1 X Ba,(z1,22)

l'ﬂzl@ﬁxrz l’i(ﬁ,wz)

det(Q}(l/Bmcl )2 ® det(Qﬁ(Q/Bwﬁ2 )©? s det(le % Xa/B1 x Ba(
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(5) For a morphism of schemes X — B equipped with a relative d-critical structure s let K}’(i;B . be the
virtual canonical bundle. For d: X — Z/27 there is an isomorphism

(3.18) Ra: KXp = KX)p
squaring to the identity.

Proof. Consider the Zariski stack on X whose value on an open immersion R — X is given by the groupoid
Picprea of line bundles on R™9. We may then apply Corollary 3.30 to glue the objects Kg)/23|0ritU/B(f)red
defined for a critical chart (U, f, ) using the isomorphisms Jg for a critical morphism. The relevant conditions
of Corollary 3.30 are verified as follows:

(1) The first condition follows from Proposition 3.32(2).
(2) The second condition follows since Ny /iy = 0 with the zero quadratic form.
(3) The third condition follows from Proposition 3.32(3).

The uniqueness of the isomorphism k,, is clear. The existence will follow once we show that the condition
is compatible with critical morphisms (U, f,u) — (V, g,v). Since this is a pointwise statement, it reduces to
the statement about d-critical loci over a field which is shown in [Joy15, Theorem 2.28(iv)].

In a critical chart (Uy, f1,u1) for X7 and (Us, f2,us) for Xo we define the isomorphism (3.17) to be the
obvious isomorphism

®2 ®2 ~ ®2
KUl/Bl |CritU1/Bl (f1)red KUQ/BQ |Critu2/32 (f2)red = KU1 xUsa/B1 X By |CfitU1 xUs/By x By (f1Ef2)red>

under the identification of Proposition 3.18. Since the quadratic form ¢¢ is compatible with products by
Proposition 3.32(5), Jg is also compatible with products, so the above isomorphism is compatible with
critical morphisms.

In a critical chart (U, f,u) for X we define the isomorphism R, to be given by the multiplication by
(—1)dimU/B)+d op K[??B‘CritU/B(f)red. By Proposition 3.32(6) we have gz = —¢s. Since

2 dim(V/B)—dim(U/B), 12
volZ . = (—1) (V/B) w/ )vol%7
we have
Js = (_1)dim(V/B)7dim(U/B)Jq>’
so thus defined isomorphism is compatible with critical morphisms. ([

Remark 3.34. In the setting of Theorem 3.33 assume that B is a point. In this case, the map k, has also
appeared in [KPS24, (3.13)]. We note that our choice of &, differs from the one in loc. cit. by (—1)™x/5.2.
See [KPS24, Remark 3.36] for the origin of the sign.

3.6. Deformation of morphisms of LG pairs. In this section we fix a scheme B € Sch*P®. Given a
pair ®g, ®; of étale morphisms (U, f) — (V, g) of LG pairs over B which induce equal morphisms on relative
critical loci and which satisfy an extra condition we show that, étale locally, they can be extended to an
Al-family ®;: (U, f) — (V,g). The following is a family version of |[Bra+ 15, Proposition 3.4].

Proposition 3.35. Let &g, ®1: (U, f) — (V,g) be étale morphisms of LG pairs over B and u € Crity/(f)
be a point. Assume that

(3.19) q)0|CritU/B(f) = @1|CritU/B(f): CritU/B(f) - Cl"itV/B(g)
and
(3.20) (d®1]," 0 dPol, —id)* = 0: Ty .4 — Tu/B.u-
Then we can find étale morphisms of LG pairs over B x Al,
(W, h)
(U x A, f@0) (V x At gEH0)
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and a map w: A* — W such that Yy ow = (u,id): Al - U x A, Uy ow = (v,id): Al -V x Al, and
(3.21) Crity/pxat (h) Wo Wi
2N N N\
Do=3, i) U @, %
Crity/p(f) x Al Crityp(g) x AY, U Vi

commute, where Wy, W2 Wy = U, and Wy : Wy — V are the fibers of W, Wy, and Uy atte Al

For a scheme X € Sch*P™ | a vector bundle E — X and a section s € T'(X, E) we denote by Zx (s) the zero
section of s as a subscheme of X. The key to prove Proposition 3.35 is the following perturbation lemma.

Lemma 3.36 (Perturbation). Let (U, f) — (V,g) be a closed embedding of codimension r of LG pairs
over B. Assume that there exist a vector bundle E over V of rank r, a section s € T'(V, E), a cosection
oce(V,EY), and a 2-tensor a € T'(V, EQ® E) such that U = Zy (s) as subschemes of V and

9= (0®0)(a) +a(s) e T(V,0v/Ig ).

Then we can find a closed embedding (U,0) — (V,§) of LG pairs over B, an étale morphism (V,§) — (V. g)
of LG pairs over B, and commutative diagrams

(3.22) Zi(0)— U—-sV Zi(a)—— U—-sV U—sV

T

v v -
Zy(o)——=U——=1V, Zy(a)——U——=V, Uo :=Zy(0,a)——U——=V

for some dotted arrows, such that
(3.23) Ty /lve = Tusslu,
as subspaces of TG/B‘UO ~ TV/B|U0.
Proof. Choose a (0,2)-tensor ¢ € T'(V, EY ® EV) such that
g=(0®o0c)(a)+o(s)+c(s,s) e I(V,0v).
We first define V := Z(7) € E® E as the zero locus of the section
T =ualpgr + T+ ¢|lpge(,7) e N(EQR E,E® E|ggE),
where 7 is the tautological section, and ¢|ggr(7, 7) is the image of ¢|ggr ® T ® 7 under the contraction map
c1325: (EYQEV)Q(EQE)Q(EQE): (a1, a2, a3, o, a5, 05) — a1 (ag) - an(aws) - o @ ag.

We then define U := Z(5) < V as the zero locus of the section

3= slp —olp(rly) e DV, Elp),
where ol (7]¢;) is the image of 0|y ® 7| under the contraction map

c13: EY®(EQ®FE) —> E: (a1,as,a3) — aj(as) - as.
Then the function g := gl : V — A! vanishes on U = Z; v (3) = ZpgEe(T,s —o(1)),
li = (e ®0)(a) + a(s) + c(s,9) |5 = (0 ®@0)(a) + oo (7)) + c(o(7), (7)) |7
= (U®U)( a+7+c(7,7)|y = (®0)(7)]5 =0

The existence of the first dotted arrow Zg (o) v(s,0) over V in (3.22) follows from:

The existence of the second dotted arrow Zﬁ(

Z:(a) = Z(3,a
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Since Zggr(a,7) — Zpgr(a,T) is an étale closed embedding, the complement is closed, and thus we have
such dotted arrow for the open subschemes

Ve ::‘N/—(Z&(a)—Zv(a))gf/, Ue=UnV°cU.
We define the third dotted arrow Uy — U in (3.22) as the canonical closed embedding
Uy = ZU(O',CI,) = Zv(S,O'7 CI,) = ZE®E(T,S,O',CL) - ZE®E(7N',§> = Zf/(g) = [7,

under the identification of V' with the zero section 0: V' — E ® E. By direct computations of de Rham
differentials, we can show that

e Vs EQE — V is étale near Z(a) 2 Uop;

e U is smooth over B near Zy(1,0) = Uy since U = Zy (s) is smooth over B;
. Tﬁ/B‘Uo = Ty/Blv, under the identification T‘~//B|U0 =Tyv/slu,-

Consequently, we have Lemma 3.36 after replacing V and U with suitable open subschemes containing
Us. O

We now prove Proposition 3.35 using Lemma 3.36 and Lemma 3.37 below.

Proof of Proposition 5.35. Choose an étale coordinate y: V — A% near v € V after shrinking V' if necessary.
Consider the zero locus W' := Z(z) € U x5 V x Al of the section

(3.24) z=yopry — ((1 —t)zgopr; +tzyopr;) e (U xp V x Al OZXBVXAl),

where zg :=yo®¢: U > A%, 21 :=yo®y: U > A%, and t :== pry: U xg V x Al — Al. Then W’ has most
of the desired properties: the projection maps

w'
N

U x Al V x Al
are étale since az = id and az =1—1 i;) is invertible by (3.20); the induced triangles
(3.25)
7critW’/B><Al(f|W’) W XAl {0} W XAl {1}

CrltU/B(f) X Al W Crltv/B(g) X Al’

commute after shrinking W', since the graphs of the three lower horizontal arrows in (3.25) are sections of
the three étale maps induced by pry3; we have a map w’ := (u,v,id): Al - W’ < U x g V. However, W’ is
not sufficient to have Proposition 3.35 since

fopry #gopry, in W cUxpV x Al
The computations in Lemma 3.37 below ensure that we can apply Lemma 3.36 above to the closed
embedding W’ < U xg V x Al and its function f o pr; — g o pr,. Then we can find:

e an étale morphism e: R — U xg V x Al,

e a smooth closed subscheme W < R such that h := f opr; oe|lw = gopryoelw, and

e amapw': Al - W' c U xgV x Al lifts to a map w : A' — W < R via the third dotted arrow in
(3.22) since the 2-tensor a in Lemma 3.37 vanishes on {(u,v)} x Al.

Moreover, the induced maps
(3.26) Uy: W R->UxpVxA' 2 Ux Al Uy: W R-UxpV x A 22, 7 5 Al

are étale near the image of w, since the tangent space remains the same by (3.23); the commutativity of the

first triangle in (3.21) follows from the commutativity of the first triangle in (3.25) and the first dotted arrow

n (3.22); the commutativity of the remaining two triangles in (3.21) follows from the commutativity of the
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remaining two triangles in (3.25) and the second dotted arrow in (3.22) since the 2-tensor a in Lemma 3.37
vanishes on W§ u W7. O

We need the following lemma to complete the proof of Proposition 3.35.

Lemma 3.37. In the situation of Proposition 5.35, there exist

an open subscheme V° € V containing v,

an open subscheme S < (U xp V x A) containing {(u,v)} x A,

an étale coordinate y: V° — A%,

a section a € T'(S, pri(Ty/s @ Ty p)ls) that vanishes in ({(u,v)} x A') U (S x4 {0,1}),
e an isomorphism of vector bundles b: O%n = priTy/Bls,

such that we have
(FB(=9)B0) = (df ®df)(a) +df 0b(2) € T(S, 05/T7(.))5),
where z is defined as in (3.24) and df € I'(S, priQ U/B|S) is the pullback of df € T'(U, Q%,/B)

Proof. Choose an étale coordinate y = (y™,y%): V — AL x g AL such that the Hessian at v € V is:

2 g ’g
(3 27) 6 g‘ _ 8ymay |'u Oy™ oy ‘v _ 0 ‘ 0
' oy?" g 0fid |
Y ayqaym ‘v Dyaoya |v

Indeed, this is always possible after shrinking V' and a coordinate change of y by GL,44.
Let zg := y o ®g and x1 := y o P be the induced coordinates. Then there is a ¢ x g-matrix N such that

. oz 0| *
(3.28) <1d 633(1)> lu = [ T ] , where N'=-N, N?2=0
Indeed, (3.19) gives sz| = 0; the formula 2 e \u = g%ﬂv = gim%h gives
on )’ | 0] 0 | (0 lu = 00
5300 v 0]id &ro “ 0]id ’
and hence ‘f:o =0 and aml |lt = azl |u, (3.20) ml 12 =0.
’ 0
We also note that there ex1sts a matrlx Le HomU(O%mﬂ, OP"*9) of functions on U such that
0
(3.29) xo—xlzL-TI{), where L|u—[8 ;\}]

Indeed, the existence of a matrix satisfying the first formula follows from (3.19). Moreover, (3.27) gives
Crity/p(g) € Zv(y?) and hence we can find a g x (m + ¢)-matrix M of functions on V' such that

yq:M-g—z, where M|v:[0 ‘ 1 ]
Then we have of of 5 of
¢ ol = (M oF (M oF (M) — oF(M)E2 ) 2L
oot = 250032 —at0n 7L~ (wp0n - etonge) L,
where (<I>(”)‘(M) - @T(M)g%) lu=[ 0| N ] by (3.28). Hence we have (3.29) as claimed.
We claim that there exists a matrix A of functions on S € U x5 V x Al such that
aor\' of .
(3.30) (fEH(-9)B0) = (6950> A a%o in Z(z), where Al(((uv)}xa1)u(sx,i0,1}) =0
Since we have (3.29) and (f H (—g) BH0)|z(z,¢(1—¢)) = 0 after shrinking S, it suffices to find A such that
3.31 0—5ftAaf'z ®3 here A =0
(3.31) (fB(—g)@O0) = 6750 : 'aixo m (2, (xo — w1)®”), where |{(Uﬂ))}><A1 =%
where (z¢ — 21)%% € T'(U, (0%,7)®3). Indeed, we have
59 t o*g . ®3
(3.32) fE(-9)H0= 2 “(zo—y) + (zo—y)" el (o —y) in Z((zo —y)*")
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ag 629 : ®3)'

(3.33) =3 (1 —y) + (21— y)"- el (z1—y) in Z((z1 —y)
Then the restriction of (1 — ) x(3.32)+tx(3.33) to Z(z) is:
(3.34) (fE (~9) B0) = (1~ 1)(x o—xl)t-gzg-(mo—ml) in 2z, (0 — 11)%).
Consider the matrix

A= ;t(l—t)-Lt-gig-L.

Then the left equality in (3.31) follows from (3.34) and the left equality in (3.29). The right equality in
(3.31) follows from the right equality in (3.29) and (3.27).
By the left equality in (3.30), there exists a matrix B’ of functions on S € U x V x A! such that

A N
(3.35) fEH—-gHO0 = <@xo> <A 20 (0:60) "B -z in Z(z%%).

By pulling back (3.35) to Z(z) and taking the differential, we get
t
of  dg ox1 of \' 0A of or\" . f\ .
R L R R N A z
oxg Oy <( )+ (9950) <6:vo " dxo  Oxo + 0% o3 i Z(),

where 22 € Homg(0%™, 04 ® 0%4™™) and ( Lf[)) - %L is its contraction in the first factor. Hence

dg of _ o)\ 0PN 24 (21N

e gl e pe (0 (-2)) (- () 2 (B )
2

”Cl) = 0, B is invertible.

Applying the partial dlfferentlal of (3.35) by the y-coordinate and pulling back to Z(z), we get

a9 o of .
6y_B 2o in Z(2).

Since Al(y,v)yxar = 0, amo \u

Then B’ - % - B- ;—f vanishes on Z(z) and hence we get
0 xo
of\" , @ of \'
JEH—gEH0 = 2 SA- er 2 “B-z in Z(%?),
axo a,To (9.%‘0
as desired. ]

4. FUNCTORIALITY OF D-CRITICAL STRUCTURES

4.1. Pullbacks of d-critical structures. In the definition of relative d-critical structures (see Defini-
tion 3.15) we have considered critical charts which are Zariski open. We may replace this condition by
requiring étale or smooth critical charts; the goal of this section is to show that the resulting notion of a
relative d-critical structure does not change (see Theorem 4.3). We begin with the following observation
regarding smooth functoriality of relative critical loci.

Proposition 4.1. Let (V,g) be an LG pair over B. Let m: U — V be a smooth morphism and denote
f=m*g. Then we have a Cartesian diagram

Crity/p(f) — 17
V.

Crltv/B( ) —



Proof. Consider the diagram

U \
1% / T*(V/B) xv U
Tapg
T*(V/B) T*(U/B)

where the square is Cartesian and the composite I'q, ¢: U — T*(U/B) is given by the graph of dgf. Since
U — V is smooth, T*(V/B) xyv U — T*(U/B) is injective. Therefore, the zero locus of U — T*(V/B) xy U
(i.e. Crity/p(g) xv U) coincides with the zero locus of I'q,;: U — T*(U/B) (i.e. Crity,p(f)). O

We will now prove the following technical statement, which will be used to recognize minimal critical
charts; it is a family version of [Joy15, Proposition 2.7].

Proposition 4.2. Let X — B be a morphism of schemes equipped with a relative d-critical structure s, a
point x € X, a smooth B-scheme U, a closed immersion v: X < U and a function f: U — Al which satisfy
the following properties:

(1) txu(s) = f€Ou/T%  (see Proposition 3.7(3) for the notation).

(2) v: X - U is minimal at x.
Then there is an open neighborhood U° < U of «(x) such that Critye,p(flue) xu X — X is an open
Immersion.

Proof. Since s is a relative d-critical structure on X — B, we may find a critical chart (V,g,v) at . Let
X° < X be the image of v: Crity,5(g) — X and denote by j: X° — V the corresponding closed immersion.
By Proposition 3.26 we may further assume that 7: X° — V is minimal at z. Let s° = s|xo.

The morphism X° 2, U xp V is an immersion into a smooth B-scheme, so by Proposition 1.13(1),
possibly shrinking X°, we may find a factorization of this morphism as X° % V 222 7 x 5 V, where V
is a smooth B-scheme and j is a closed immersion minimal at 2. The morphisms

. Ol 1 . Ol 1 . Ol 1
T g = e O Qb  Yxopar 1 Qs — Yo/
are all isomorphisms as the corresponding immersions are minimal at x. Therefore,
. Ol . Ol
T QU/B,z(m) — T QV/B,J(I) —

L L
V/B,j(xz)’ V/B,j(x)

are isomorphisms. Therefore, possibly shrinking 1% (and, correspondingly, X°), we may assume that 7 : V-
U and 7y : V — V are étale. We will now compare Crity/g(f) and Crity p(g) using the correspondence
Vv Iy
(1) Consider the diagram
XO

.

Critv/B

(9) xv V —= Crity5(g)
| |
\%

Vv V

where the square is Cartesian. By Proposition 4.1 we have Crity/5(g) xv V> Crityp (g), where

g = myg. Since X° — Crity,p(g) is an open immersion and Crit(,/B(g) — Crity,p(g) is étale, the

morphism X° — CritV/B (g) is étale and, therefore, its image is open. Similarly, 7 and Crit(//B (g) —

V are closed immersions, so X° — Crity / 5(G) is a closed immersion. Therefore, its image is also
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closed. Thus, shrinking V we may assume that X° — Crity p (g) is an isomorphism. Thus, (V,g)
provides a critical chart for (X — B, s) near x. . ) )

(2) Let Z be the ideal defining the closed immersion X° = Crity 5 (G) — V. Let f = «f; f and @ = j(x).
By assumption we have ¢y (s°) = f e 0y/T%. Since (V,g,v) is a critical chart we also get
Lo p(s°) = g € Oy/T?. Thus, f — g eZ? Shrinking V (and X° so that X° = Crity,5(g) remains
true) we may choose étale coordinates {z1, ..., z,} on V, which is a smooth B-scheme. Then we may
find a symmetric matrix a;; € Of, such that

Z 6g (79
o R 621 623
Taking the derivative, we obtain

Z Oai; 07 ﬁg Z % 99

azk azk Oz 0z azj i 02021 6zj ’

We can write it as :
dBf = (ld + a)dB§7

dag; g 02§
Z 0z 0z ;2% 02,021

aai () = 0. Since the closed immersion j is minimal at z, by

where we introduce the matrix

Since T € CI‘itf//B(g)a

Proposition 3.14 we have ajiagz () = 0. Thus, () = 0 and hence, shrinking V and X°, we may

arrange (id + «) to be invertible. Thus, we get CrltV/B(f) = Crity(9).
(3) Consider the diagram

Crity5(f) —=V

|

CrltU/B(f) e U

which is Cartesian by Proposition 4.1. The composite Critf//B(f) ~ X° - X 5 U is an immersion,
so it is a monomorphism. Therefore, Crity, /B( f) — Crity/p(f) — U is a monomorphism and
hence Crity; 5(f) — Crity/p(f) is a monomorphism. Since 7y : V — U is étale, we have that
Crity 5 (f) — Crity/s(f) is étale. Therefore, by [Stacks, Tag 025G] we get that Crity z(f) —
Crityp(f) is an open immersion. As 7y : V' — U is étale, U° = 7y (V) < U is open. Thus, we get
that Crity 5(f) — Critye/p(flue) is a surjective open immersion, hence an isomorphism.
([l
The following is a family version of [Joy15, Proposition 2.8].
Theorem 4.3. Let Y — B be a morphism of schemes equipped with a section t € I'(Y,8yp), 7: X —=Y a
smooth morphism and let s = 7t e I'(X,8x/p).

(1) Ift is a relative d-critical structure, then s is a relative d-critical structure. Explicitly, for every point
x € X we may find a critical chart (U, f,u) for X — B around z, a critical chart (V,g,v) forY — B
around (x) together with a smooth morphism 7: (U, f) — (V,g) which fits into a commutative
diagram

X < Crity s (f) —

C T

Y <— CI‘ltv/B( ) ——



(2) If s is a relative d-critical structure and  is surjective, then t is a relative d-critical structure.

Proof. In the first point Y — B has a relative d-critical structure, so it is locally of finite type. In the second
point X — B is locally of finite type, so by [Stacks, Tag 01T8| we also get that ¥ — B is locally of finite

type.
Let x € X be a point and y = 7(z) € Y. By Proposition 1.14 we may find a diagram

X<~— XU

N

Y<~—Vvo Loy

with X° ¢ X and Y° < Y open neighborhoods of x and y, 7: U — V smooth and 2: X° - U and 3: Y° - V
closed immersions into smooth B-schemes minimal at x and y. Possibly shrinking X°,Y° U,V we may find
a function g: V' — A such that tyo v(t) = g € Oy /Z3. . Let f = T*g, so that 1xo y(s) = f € Ou/Txe -

We now claim that s is a relative d-critical structure in a neighborhood of z if, and only if, we can
shrink U to a neighborhood of x so that Crity p(f) xu X° — X° becomes an open immersion. Indeed,
if this morphism is an open immersion, (U, f) provides a critical chart at . The converse is provided by
Proposition 4.2. The same claim applies to t.

Since 7: U — V is smooth, by Proposition 4.1 we have Crity/5(f) = Crity,p(g9)xyvU. Thus, Crity,s(f)xv
X° — X° is an open immersion if, and only if, Crity,5(g) xy X° — X° is an open immersion.

(1) Assume that s is a relative d-critical structure. Then shrinking V' we get that Crity /5(g) xyY° — Y°
is an open immersion. By base change Crity  5(g) xy X° — X° is also an open immersion. By the
above argument we get that (X — B,s) is a relative d-critical structure in a neighborhood of z.
Varying = we get that (X — B, s) is a relative d-critical structure.

(2) Assume that s is a relative d-critical structure and 7 is surjective. By the above argument we may
shrink V' so that Crity p(g) xy X° — X° is an open immersion. By faithfully flat descent for open
immersions [Stacks, Tag 02L3] this implies that Crity5(g) xv Y° — Y° is an open immersion.
Again, the above argument implies that ¢ is a relative d-critical structure near y. As 7 is surjective,
we may vary z € X to cover Y, so we get that ¢ is a relative d-critical structure.

]

In Theorem 4.3 we have described a smooth functoriality of critical charts. We will also need a description
of a smooth functoriality for critical morphisms of critical charts. The following statement is an analog of
Proposition 3.25 for smooth morphisms of schemes equipped with relative d-critical structures. While we do
not know how to show that the zigzag factorization in Proposition 3.25 can be made smooth functorial (this
is claimed in the proof of [Ben+15, Proposition 4.5]), the following alternative local model (with U° — U
being étale rather than an open immersion) is sufficient.

Proposition 4.4. Let (X2 — B, s2) be a morphism of schemes equipped with a d-critical structure, m: X1 —
Xy a smooth morphism and let sy = n*sy € I'(X1,8x, /). Consider critical charts (Uy, f1,u1) and (V1, f1,v1)
of X1 and (Ua, fo,us) and (Va, fa,v2) of X together with smooth morphisms wy: (U, f1) — (Us, f2) and
mv: (Vi, fi) — (Va, fo) compatible with . Let x1 € Crity,/p(f1) and y1 € Crity,/5(g1) be points with
ui(x1) = v1(y1) and let xo = my (1) and yo = wy(y1). Then there is a commutative diagram

L& vy o O ,0
(U1, fr,u1) =— (U7, f1,ug) ——= (Wi, hy,wy) <— (V°, 97,0%) —— (V1, 91, 01)

lﬂ'U J/’TOU \LWW lﬂ; lﬂv
[ N4
(U2a f27u2) <~ (U207f207ug) HQ (WQahQan) é (‘/207g§avg) - (‘/27923112)

with (U7, f7,ug) étale critical charts and the rest Zariski critical charts, (U7, f9,ug) — (Uy, fi,u;) an étale

morphism surjective at x;, (V2,g5) — (Vi, gi) an open immersion surjective at y;, ®;,¥; critical morphisms,

vertical morphisms smooth and Uy — Wi xyw, U3 and V° — W1 xw, Vi étale.

Proof. Let V3 be an open neighborhood of y» which admits an étale morphism Vy — A% over B and

VP =" (V). Shrinking V{° further, we may assume that there is an étale morphism V;° — A(‘i/zo over Vy.
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Replacing 174 (equipped with an open immersion to A%) by V3 (equipped with an étale morphism to A%)
in the proof of Proposition 3.25, we obtain an étale critical chart (Us, f5,u3) of X5 with an étale morphism
(U3, fS,us) — (Ua, fa,u2) and a commutative diagram

Crityg p(f3) — Critye/p(95)

i |

O
(e} (e}
Us Vs

of B-schemes. Repeating the same argument with U; and Vy° (as Vy-schemes), we obtain an étale critical
chart (Uy, f7,u3) of X1 which fits into a commutative diagram

Uy Ue Ve Vi
lﬂU iwu lw% lﬂv
Us Us 22 yp Va.

Passing to the critical loci of the middle square, we get a commutative diagram

. " © . 5
Critye/p(f7) e Critye,5(g7)

. o O ) 5
Crityg/p(f3) —> Critye,p(95),

where both horizontal morphisms are étale and vertical morphisms smooth. Thus,
*)l 1
OTQrity o (95)/Crityg 5 93) ~ Llrity i (£7)/Critg s (£2)
is an isomorphism. In particular,
1 1
(4.1) @TQVF/V; — QUf/Ug

is an isomorphism in a neighborhood of x;. Thus, shrinking U7 we may assume this morphism is an
isomorphism.

Continuing with the rest of the proof of Proposition 3.25, shrinking U; and Us we obtain a trivial
orthogonal bundle (E2, ¢2) over V3 with a section s € ©% E such that

f2 — 92002 =q(s)

and such that ®o: (U3, f5) — (Wa = Ea, g5omE, +qg,) given by sa is a critical morphism. Let Uy: (Vy, g5) —
(Wa, g5 o, + qE,) be the zero section which is again a critical morphism.

Let (Elvql) = (W%)*(E%QQ) and s; = (WIO])*SQ‘ Define ®;: (Ulovff) - (Wl = Elvgf oTE, + qu)
using s; and ¥qi: (V°,¢7) — (Wi,gf o mg, + qg,) to be the zero section. Let 7wy : Wi — Wa be the
obvious projection. By Example 3.21 ¥ is a critical morphism. Moreover, by construction ®; restricts to
O1: Critye,p(f7) — Crityp,p(g5). Thus, to show that ®; is a critical morphism, we have to show that it is
unramified. For this, consider the commutative diagrams

D, TE,
vy —w; —— V7

iﬂfj J{ﬂ'w \LT(%
b ™

2 B3
U§ — Wy —= VQO,

By construction the right square is Cartesian, so
1 1
7";19%" e — Qwywy
is an isomorphism. Using (4.1) we get that

* ()l 1
q)l QWl/W2 QUf/U2O
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is an isomorphism. Therefore, ®; factors into a composite of an étale morphism Uy — Wi xy, Us and an
unramified morphism Wi xw, U5 — Wi, hence it is unramified. O

Using Theorem 4.3 we establish smooth functoriality of the virtual canonical bundle.

Proposition 4.5. Let (Y — B,t) be a morphism of schemes equipped with a relative d-critical structure and
m: X =Y a smooth morphism. Consider the pullback relative d-critical structure on X — B. Then there is
a natural isomorphism

T, : ;;i;B|de ® K)®(3Y|de x~ }/(I;B
It satisfies the following properties:
(1) Tiq = id.
(2) For a composite X =Y % Z of smooth morphisms with a relative d-critical structure on Z — B

and pullback relative d-critical structures on X — B and Y — B the diagram

ir Toon vir
(4.2) Kyl xred ® K97 5| xrea Kip

id®i(A)2T TWT

' ®2 ®2 To®id oy ®2
K}l/rB |Xred ® Ky/Z|Xred ® KX/Y |Xred e K;,/l/rB |X"e‘1 () KX/Y |Xx-ed

commutes, where the left vertical morphism is induced by the short exact sequence
A:0— W*Q%//Z — Qﬁ(/Z — Qﬁ(/y — 0.
(8) For a point x € X the diagram

Trlo

vir 2 vir
(4.3) KY/B,Tr(w) ® K)®(/Y,x - KX/B,:E
\me(z)®id lkaz
i(A)?

det(Q /g ()2 ® K)@ng’I —— det(Q 5 ,)®”

commutes, where the bottom isomorphism is induced by the short exact sequence
. 1 1 1
A:0— QY/B,‘n-(ar) - QX/B,gc - QX/Y,;c — 0.

Proof. Let x € X be a point, y its image in Y and b its image in B. Let X}, and Y}, be the fibers of X — B
and Y — B at be B. We will first construct the isomorphism Y, in a neighborhood of x, possibly depending
on additional choices.

By Theorem 4.3(1) we may find a smooth morphism 7: U — V of smooth B-schemes, a function g: V' —
Al with f = #*g and a commutative diagram

SN

Y <—— Crity,p(g) —=V

with the square on the right Cartesian by Proposition 4.1, such that (U, f,u) defines a critical chart for X
near x (so that there is a point 2’ € Crity/p(f) with u(2') = x) and (V,g,v) defines a critical chart for
Y near y (so that there is a point 3’ € Crity5(g) such that v(y’) = y). By definition we have canonical
isomorphisms

% povir o ®2 . * 7ovir ®2 .
v Ry = V/B‘CrltV/B(g)md’ U hx/p = U/B|CrltU/B(f)red'
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Under these isomorphisms we define Yr|cyit,, J5(f)red tO be the composite isomorphism

®2 ®2
KV/B |CritU/B(f)rCCl ® KCritU/B(f)/Critv/B(g) |CritU/B(f)er

lN

®2 ®2
KV/B |CritU/B (f)red ® KU/V ‘CritU/B (f)red

J{Z’(A)2

®2
KU/B|CritU/B(f)md

where the first morphism is obtained from the isomorphism KCritU/B(f)/Crith(g) >~ KU/V\CritU/B(f) coming
from the Cartesian square

Crityp(f) —=U
CI‘itv/B (g) —V
and the second morphism comes from the short exact sequence

A:0— 7Ty 5 — Qg — Uy — 0.

The claim that the diagram (4.3) commutes reduces to the same claim about d-critical loci X} and Y,
which is shown in [Joy15, Proposition 2.30].

Now consider two choices {(Uy, f1,u1), (V1,g1,v1), 71} and {(Us, fa,us2), (Va, g2,v2), 2} fitting into a dia-
gram (4.4) and let T and T2 be the two local models of the isomorphism Y, defined using these local data.
Then for every point & € Crityy, /p(f1) X x Crity, p(f2) with image z in X and y in Y both TL|, and YZ|,
fit into the same commutative diagram (4.3). Therefore, they are equal. This proves that

T1| . . = T2| . .
wlCrity, /B (f1)X x Crity, 5 (f2) = + nlCrity, 5 (f1)Xx x Crity,,(f2)

and hence we obtain a global isomorphism YT, independent of choices.

It is enough to establish both properties of the isomorphism Y, pointwise, as they involve comparing
isomorphisms of line bundles on reduced schemes. Property (1) is immediate from (4.3).

Now consider the setting of property (2). Applying the commutative diagram (4.3), diagram (4.2) re-
stricted to x € X (with y = 7(z) € Y and z = o(y) € Z) becomes

i(Ax_z.B)?

(4.5) det(Qy ) ® K575, det(Qy/5,,)®*
id®i(Aanaz)2T i(AXHYHB)ZT

i(Ay_zo5)*®id
det(QlZ/BJ)®2 ® K}@/sz ® K)%?KI s det(Q%//B,y)®2 ® K)G??Y,m’
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where the individual isomorphisms are induced by the following double short exact sequence:

Axoy-p Axoyoz
0 0 0
| | |
Ay z.5:0 — le/Byz —— Qyp, ——— Q%//Z)y — 0
| | |
Ax_z,p5:0 — le/BJ —— O g, ——— Qﬁ(/z@, — 0
| | |
0 0 Q})(/Y,w - Q.%{/Y,I —0
| 1 |
0 0 0

The commutativity of the diagram (4.5) follows from the corresponding property of determinant lines, see
[KPS24, (2.4)]. |

4.2. Base change of d-critical structures. Recall that for a commutative diagram of schemes
X — X
]
B"—— B
there is a natural pullback map
(4.6) A?*(X /B, k) — A**(X'/B', k).
We have the following base change property of the relative critical locus.

Proposition 4.6. Let (U, f) be an LG pair over B. Let B’ — B be a morphism and consider the fiber
product

U’ U
O
B’ B
Let f': U — Al be the pullback of f to U’, so that (U’, f') is an LG pair over B'. Then there is a natural

isomorphism
CrltU/B(f) X B B/ = CritU,/B,(f’)
under which sy maps to sy.

Proof. Let R = Crityg(f) and R’ = Crity/ g(f’). By definition we have fiber products

RN
B——=T*U/B), B —=T*U'/B).

Applying the base change functor (—) x g B’ to the first square we get a fiber product
R x B B/ Ul

| |

B ——— = T*(U/B) xp B'.
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Using T*(U/B) xp B’ =~ T*(U’/B’), by the universal property of fiber products we obtain an isomorphism
R xp B ~R.

Let us now show that under this isomorphism sy is sent to sy. The description of the sheaf Sg/p
using the embedding R — U given in Proposition 3.7 is compatible with base change. Thus, the pullback
8r/Blr — Sg//p fits into a commutative diagram

d
— O /TR U5

LR,
0 —=Sp/plr — = Ov/Th |,

| |

L' U’ ’
i 2 B 1 1
0 HSR’/B’ _— OU’/IR’,U/ —— QU’/B//IR”U/QU’/B/

R/

Thus, it is enough to show that tr (sf) is sent to tr/ y(sy). But this immediately follows from Proposi-
tion 3.10. 0

The above proposition allows us to define base change of d-critical structures.

Theorem 4.7. Let X — B be a morphism of schemes equipped with a section s € I'(X,8x,g). Let B' — B
be a morphism and consider the fiber product

X ——=X

|

B'——=B
Denote by s' € I'(X',8x//p/) the pullback of s € T'(X,8x/p).

(1) If s is a relative d-critical structure, then s’ is a relative d-critical structure.
(2) If s’ is a relative d-critical structure and B' — B is an étale cover, then s is a relative d-critical
structure.

Proof. In the first point X — B has a relative d-critical structure, so it is locally of finite type. In the second
point X’ — B’ is locally of finite type and B’ — B is an étale cover, so by faithfully flat descent [Stacks,
Tag 02KX] we get that X — B is locally of finite type.

Let 2/ € X’ be a point and # € X its image in X. By [Stacks, Tag OCBL] we may find morphisms
X « X° - U, where X° — X is an open immersion surjective at x, U is a smooth B-scheme and X° — U
is a closed immersion minimal at z. Let X' < X — U’ be the base change of this correspondence along
B’ — B. We obtain a diagram

U——U

B'"——=B

where all squares are Cartesian. Therefore, X — X’ is an open immersion surjective at z’, U’ is a smooth
B’-scheme and X° — U’ is minimal at 2’. Possibly shrinking X°,U we may find a function f: U — Al
such that vxo y = f € Oy /T3 o - Let f' be the composite X’ — X ENYNS
As in the proof of Theorem 4.3, s is a relative d-critical structure near x if, and only if, we can shrink
U to a neighborhood of z so that Crity/s(f) xu X° — X° becomes an open immersion. The same claim
applies to s’
53



(1) Assume that s is a relative d-critical structure. Then by the above argument shrinking U we get that
Crity p(f) xu X° — X° is an open immersion. By Proposition 4.6 its base change along B’ — B
is Crity g/ (f') xur X — X° which is therefore also an open immersion. By the above argument
we get that s’ is a relative d-critical structure in a neighborhood of z’. Varying x’ we get that s’ is
a relative d-critical structure.

(2) Assume that s is a relative d-critical structure and B’ — B is an étale cover. By the above argument
shrinking U’ we get that Crity//g(f) xpr X — X is an open immersion. Since B’ — B is
universally open [Stacks, Tag 01UA], U’ — U is open. Therefore, we may shrink U so that U’ is still
the base change of U along B’ — B. By the faithfully flat descent for open immersions [Stacks, Tag
02L3| we get that Crity/p(f) xu X° — X is an open immersion and hence, by the above argument,
that s is a relative d-critical structure in a neighborhood of z. Since X’ — X is surjective, this
implies that we may vary 2’ € X’ to cover X, so we get that s is a relative d-critical structure.

O
Combining Theorem 4.3 and Theorem 4.7 we obtain the following.
Corollary 4.8. Consider a diagram of schemes
X —=X
|
B'——=B
where X' — X xp B’ is smooth, s € I'(X,8x/p) and let s' € I'(X',8x:/p:) be the pullback.

(1) If s is a relative d-critical structure, then s is a relative d-critical structure.
(2) If s’ is a relative d-critical structure, B — B is an étale cover and X' — X x g B’ is surjective, then
s is a relative d-critical structure.

Using Theorem 4.7 we can establish the following compatibility of the virtual canonical bundle with
respect to base change.

Proposition 4.9. Let X — B be a morphism of schemes equipped with a relative d-critical structure s €
I'(X,8x/B). Let B’ — B be a morphism of schemes and consider the fiber product

X —X
B ——=B
Denote by s' € I'(X',8x:/p:) the pullback of s € I'(X,8x,p). Then there is an isomorphism
TZ K}??B|(Xl)red L’ }/(lf/B/

compatible with compositions of Cartesian squares. Moreover, for a point ¥’ € X' and its image © € X the
diagram

vir Tle vir
(4.7) KYB.o KX/,
det(QY p ,)®2 —> det(, . )
commutes.

Proof. A cover of X by critical charts (U, f,u) defines a cover of X’ by critical charts (U’ = U xg B', f' =
flur,u' = u x id). Thus, it is enough to construct the isomorphism Y for each critical chart (U, f,u) and
show that the diagram (4.7) commutes. The latter condition ensures that the locally defined isomorphisms
glue into a global isomorphism T .
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Let (U, f,u) be a critical chart for X and (U’, f/,u’) the corresponding critical chart for X’. By definition
we have canonical isomorphisms

E 72

®2 I\ % povir ~ ®2
wAX/B = U/B|Critwa<f)redv () KX pr = KU’/B’|CritU//B/(f/)red‘

We define T\CritU,/B,(f,)red to be the isomorphism

®2 ~ J®2
KU/B |CritU//B/ (f7)red = KU//B/ |CritU//B/ (f)red
coming from the bottom Cartesian square in

X ——X

L

U ——=U

|

B’ —— B.
The above diagram of Cartesian squares defines an isomorphism of short exact sequences

v 1 1
X /U QU/B,z QX/B,I 0

— W

0——N

— 0l —0

0 >N X'/B '

Vv
X//U’,x’

The Hessian quadratic form on QlU /B restricts to the Hessian quadratic form on Qllj, /B Thus, using the
description of x, from Theorem 3.33(3) we obtain a commutative diagram

T
®2 :
KU/B,x KU’/B’,Q:’

det(Q/p ,)®? —> det(Q, . . )%

For a critical morphism ®: (U, f,u) — (V, g,v) its base change along B’ — B defines a crtical morphism
o (U, f',u') — (V',g',v"). Moreover, under the natural isomorphism Ny /| = Ny v the quadratic
form gg restricts to the quadratic form gg/. Thus, using the description of the gluing isomorphisms Jg for
the virtual canonical bundle from Theorem 3.33(2) we get that TV|CmU,/B,( fryred = TU. In particular, there

is a global isomorphism K}’;; Bl (x7)rea = K)V(i,r/ » Which restricts to TV in each critical chart. O

Combining Proposition 4.5 and Proposition 4.9 we obtain the following.

Corollary 4.10. Consider a diagram of schemes
x—I.x
B Y- B,

where X' — X' xp X is smooth, and a relative d-critical structure s € I'(X,8x/g). Let s' € T'(X',8x//p/) be
the pullback. Then there is an isomorphism

vir 2 ~ vir
TX’—>X: Kx/B|(Xl)red ®K®’/X><BB’|(X/)FEK1 —> KX’/B"

It satisfies the following properties:
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(1) For the diagram

S~

X
——2B
we have T x_,x = id.

(2) For a commutative diagram

X//HX/HX

L

B"— B — > B,

with X" — X' xp: B" and X’ — X xp B’ smooth, a relative d-critical structure s € I'(X,8x /) and
s', s" its pullbacks to X' — B’ and X" — B”, the diagram

Ky | ® K®? | ® K®? | id®i(A)2KVir | ® K®?2 |
X/BI(X")red X'/X x g B/ 1(X")red X)X % g BV 1(X7)red = B x/pl(xmyred X"/X x g B (X")red
l'rx/%x®id \LT)(N_)X
Kvir K®2 Txrox Kvir
X//B"(X")"ed ® X///X/XB,B//|(X”)T€<1 X" /B"

commutes, where the top horizontal isomorphism is induced by the short exact sequence
. 1 1 1
A'OHQX'/XXBBJXNHQX”/XXBB"—)QX”/X/XB/B"—)O'

(8) For a point x € X' the diagram

i T 5/ | ’ .
®2 X'>X |z
K}?;Bvﬁ(w’) ®KX’/XXBB',w' - KX(I'Y/B'@/
lﬂp(m/)®id \LKI/
det (02! &2 @ K2 HO det(@QL )8
et ( X/B,ﬁ(r')) ® X'/XxpB’a' et( X’/B/,z’)

commutes, where the bottom horizontal isomorphism is induced by the short exact sequence
. 1 1 1
A. 0 —_—> QX/B,t —_— QX'/B',I/ — QX'/XXBB/,.’I:’ I O

4.3. D-critical structures on stacks. We now extend the notion of relative d-critical structures to higher
Artin stacks. Let X — B be a geometric morphism of stacks. In Section 1.5 we have defined the space
A%eX(X /B, —1) of relative exact two-forms of degree —1. In particular, we again have a sheaf on the big
étale site of X denoted by Sx,p so that

I'(X,8x,5) = mo(A>*(X/B,-1)).
For a morphism of schemes X — B let DCrit(X/B) < I'(X,8x,p) be the set of relative d-critical
structures. By Corollary 4.8 we see that the collection of relative d-critical structures defines a functor
DCrit: Fun(A®, Sch)gP — Set

Osmooth
satisfying étale descent. Using (1.3) we obtain the notion of a relative d-critical structure on a geometric
morphism of stacks as follows.

Definition 4.11. Let X — B be a geometric morphism. A relative d-critical structure on X — B is a
section s € I'(X, 8x,5) which satisfies the following property: for every diagram

X ——=X

|

B’ —— B,
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where X’ — B’ is a morphism of schemes, X’ — X xp B’ is smooth and s’ € I'(X’,8x//p/) is the pullback
of s, we have that s’ is a relative d-critical structure.

Remark 4.12. If X — B is a morphism of schemes, Corollary 4.8 ensures that Definition 4.11 is compatible
with Definition 3.15.

Using (1.3) we get an extension of Corollary 4.8 to geometric morphisms.

Proposition 4.13. Consider a commutative diagram of stacks

X ——X

|

B’ —— B,

where X — B is geometric and X' — X xg B’ is smooth (in particular, X' — B’ is geometric). Consider
se(X,8x/p) and let s" e T'(X',8x//p/) be the pullback.

(1) If s is a relative d-critical structure, then s’ is a relative d-critical structure.
(2) If s’ is a relative d-critical structure, B' — B is an étale cover and X' — X x g B’ is surjective, then
s is a relative d-critical structure.

We will now define the virtual canonical bundle associated to a relative d-critical structure on stacks.

Proposition 4.14. Let X — B be a geometric morphism of stacks equipped with a relative d-critical structure
s. There is a line bundle K}’S;B on X4 the virtual canonical bundle, uniquely determined by the
following conditions:
(1) If X — B is a morphism of schemes, then K}’g;B coincides with the virtual canonical bundle defined
in Theorem 3.53.
(2) For every commutative diagram of stacks

x —Pox
B -r.pB

with w, 7" geometric and X' — X x g B" a smooth morphism (so that X' — B’ has a pullback relative
d-critical structure by Corollary 4.8), we have a canonical isomorphism

vir 2 ~ vir
TX’—>X: Kx/B|(X/)red ®K®’/XXBB'|(X/)red —> KX'/B"

(8) For a commutative diagram of stacks

X/ILX/LX

A

B”*q>B/*>B

with ", ', m geometric morphisms, X" — X' x g B" and X' — X x g B’ smooth, a relative d-critical
structure s € I'(X,8 x/p) and s', s" its pullbacks to X' — B' and X" — B", the diagram

KVir K®2 K®2 id®i(A)Z‘K'Vir K®2
X/B|(X”)"ed ® X//XXBB/|(X”)red ® X"/X/XB/B”|(X”)"ed > X/B|(X”)red ® XN/XXBBN|(X”)"ed
lrx,ﬁ)@id J/Txux
vir X2 T x vir
KX,/B/ ‘ (X//)red ® KX”/X,X B’BN |(X//)red KX///B//

commutes, where the top horizontal isomorphism is induced by the fiber sequence

AZ LX//XXBB’|X” — ]LX”/XXBB” —_— LX”/X’XB/B”'
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For every point x € X there is an isomorphism
Kot KX, — det(77Lyp o)
which coincides with k,, defined in Theorem 3.33 for X — B a morphism of schemes and which satisfies the
following property:
(4) Let

B-r-B

be a diagram of stacks as in (2). For a point x’' € X' the diagram

. Torxlar .
vir ®2 X' =Xl vir

K _ ® K — = s K
X/B,p(z") X'/X x5 B a! X'/B'z'

iﬁp(m/)®id \Lfiz/

l(Azlﬁz)Q
det(TgoLX/B,ﬁ(m'))®2 ® K)Q??/XXBB’,QZ’ —— det(TZOLX//B/7E/)®2

commutes, where the bottom horizontal isomorphism is induced by the fiber sequence
Apry: TZOLX/B,ﬁ(x’) - T>OLX’/B’,9:’ — Lxy/xxpp o
In addition, the virtual canonical bundle satisfies the following properties:

(5) For a pair X1 — Bi1, Xo — By of geomelric morphisms of stacks equipped with relative d-critical
structures there is an isomorphism

vir vir ~ vir
(48) KX1/31 KX2/32 = KX1 x X5/By X Ba)

which is unital, commutative and associative and such that the isomorphism Y x/_x from (2) is
compatible with products. Moreover, (4.8) is uniquely determined by the condition that for every
point (x1,x2) € X1 X Xy there is a commutative diagram

(4.8)

vir vir vir
KX1/31,301 ®KX2/BQ,I2 KX1><X2/31><52,(11@2)
Ko ®Kay iﬁ(ﬂﬂlvzz)

det(TZO]LXMBl,GJl )®2 ® dEt(TBOLXz/BQ,Iz )®2 — det(TZO]L)ﬁ x X2/B1x Bz;(ﬁ@z))@z'

(6) For a locally constant function d: X — Z/27 there is an isomorphism
(49) Rd: K}IS;B,S = ;(i;B,—s
squaring to the identity. For a pair X1 — By, Xo — Bs of geometric morphisms of stacks equipped
with relative d-critical structures s1, so the diagram

KVir KVir (4.8) KVir

X1/Bu1,s1 X2/Ba,s2 X1xX2/B1xBa,s1Hs2
iRdl XRa, iRﬁdz
K vir K vir (4.8) K vir
X1/B1,—s1 X2/Ba,—s2 X1xX3/B1xBa,—(s1Hs2)

commutes. For a commutative diagram of stacks as in (2) the diagram

Kvir | ® K®2 Tx/ox Kvir
X/B,s!(X")red "/XxpB' = Bxrprs
J{Rd(@id \LRd+dim(X’/X><BB’)

Kvir | ®K®2 Txiox Kvir
X/B,—sl(X')red X'/XxpB' R xip—s
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commutes.

Proof. Consider the functor
Picge: Fun(Al’ Stk>geometric,op . Gpd

Osmooth

defined as follows:

e For a geometric morphism of stacks X — B we assign the groupoid Pic(X™?) of line bundles on
Xred_
e For a commutative diagram

B _2.pB
with X — B geometric and X’ — X x p B’ smooth, we assign the functor Pic(X™4) — Pic((X’)r4)
which sends a line bundle L on X" to 5*L ® K®,2/X><BB,|(X/)red.
e For a commutative diagram

X”4q>X/L>X

T

pr_*.p_?._ B

with X — B geometric, X’ — X xg B’ and X" — X’ xg B” smooth, to a natural isomorphism
between the composite

— ®2 — sk ®2 ®2
L~ p*L®KX’/X><BB/|(X/)r“d — 7 p*LOK //XxBBf|(X”)er ®KX”/X’><B/B”|(X")er

and L — ¢*p*L ® K%%/XXBB,J(XN)M given by id ® i(A)?, where

AI LX//XXBB’|X” —> ]LX”/XXBB” —> H"X”/X’XB/B”'
Consider also the functor

DCrit: Fun(A?, Stk)8eometricor __, et — Gpd

Osmooth

given by sending a geometric morphism X — B to the set of relative d-critical structures.

The restrictions of the functors Picg2 and DCrit to morphisms of schemes satisfies étale descent (étale
descent for line bundles in the case of Pickz and étale descent for relative d-critical structures proven in Theo-
rem 4.7(2) for DCrit); therefore, using (1.3) both Picg and DCrit extend to functors on Fun(A'!, Stk)&omeric,

By Corollary 4.10 we have a natural transformation

DCrit

1 op ‘vir
FUH(A 7SCh)Osmooth K Gpd

PiCK2

defined as follows:

e For a morphism of schemes X — B equipped with a relative d-critical structure we assign the virtual
canonical bundle K}’g; g on X red,
e For a commutative diagram



of schemes with X’ — X x g B’ smooth, a relative d-critical structure on X — B and its pullback
relative d-critical structure on X’ — B’ we assign the isomorphism

. i ®2 ~ i
TX/*,X . K}’(I;B|(X’)red ® KX,/XXBB/|(X/)red —> K}}l}ﬂ/B/

Using (1.3) with V = Fun(A', Gpd) we see that the natural transformation K¥*: DCrit — Picg= extends
from morphisms of schemes to geometric morphisms of stacks.

For a commutative diagram of stacks as in (3) together with a point 2" € X” with 2’ = g(2”) and z = p(2)
the diagram

o 2
>0 ®2 ®2 1d®i(4) >0 ®2
det(77Lx/B.0) ® KX7) x o prar @ KX /x5, det(77 Lx/B.2) ® K30 x 7

lz‘(Amﬁ_,x)z

det (TZOLX///B// " )

|- e

WDy _0r)?

det(TzoLX//B/’zl) ® K)®{

2
II/X/ X B/ B//7a://
commutes, as can be seen by applying [KPS24, (2.4)] to the double fiber sequence

Al‘"—>l” A

20 20 ..
Aﬂ’,"—»a’:: T ]LX/B,I — T ]LX’/B',I’ _ ]LX//XXBB’,z/

H | J

AI//—>ZE: T>OLX/B,:E _— TzoLxl//Bn’wu _— ]LX”/XXBB”,QI”

| l |

0 e LX///X/XB/B”,QL‘” 7 ]LX”/X'XB/B”,:C”'

Using this fact and property (3) of the isomorphism T, the construction of the isomorphism k, reduces
to the construction of k, for schemes which is compatible with Y for smooth morphisms of schemes by
Theorem 3.33(3).

The isomorphism (4.8) is established for morphisms of schemes in Theorem 3.33(4). By construction
of the virtual canonical bundle of stacks to show that the isomorphism extends to stacks and Yx/_, x is
compatible with products, it is enough to establish this claim for a pair

Xi*>X1 XéHXQ
BiHBl B/24>Bg

of commutative diagrams of schemes as in property (2). It is also enough to establish compatibility for every
point (z},x%) € X{ x X}. Using property (4) the compatibility reduces to the fact that the isomorphisms
i(Ag_)? are compatible with direct sums.

The isomorphism R, is constructed for morphisms of schemes in Theorem 3.33(5). The compatibility of
Ry with products is obvious. The compatibility with the isomorphism Y x/_,x when X’ — X xpg B’ is an
isomorphism is also obvious. By construction of T x/_, x for a general smooth morphism X’ — X xg B’ it is
thus enough to consider the case B’ = B and X’ — X smooth. Moreover, this compatibility can be checked
on critical charts, so by Theorem 4.3(1) we may assume that there is a smooth morphism (U, f,u) — (V, g,v)
of critical charts for X’ — X locally near a point in X’. In this case T x/_, x is determined by the natural

isomorphism (U — V)*K‘@?B ®K§/2V ~ K%QB. The isomorphism Ry acts by (—1)dm(V/B)+d o K‘@/QB. The

isomorphism Rgyqim(x7/x) acts by (—1)dim(U/B)+d+dim(X"/X) oy K%QB. Since dim(U/V) = dim(X'/X), the
claim follows. 0

4.4. Pushforwards of d-critical structures. In addition to the pullback functoriality of differential forms
given by (4.6), we will also consider a “pushforward” functoriality [Par24] given as follows. Consider geometric
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morphisms X = B % § of stacks. Using the fiber sequence

m*Lp/s — Lx/s — Lx/B
we obtain a morphism

px—-p—s: Sx/p — 7 Lp/g.

In particular, if X is equipped with a section s € I'(X,8 x,5), there is a canonical induced morphism, the
moment map

ps: X — T*(B/S),
which comes with a homotopy
(4.10) hsp: wiAg/s ~ dsund(s)
in A'(X/S,0).

Definition 4.15. Let X — B % § be geometric morphisms of stacks together with a section s € I'(X,8x/B)-
The d-ceritical pushforward p.(X,s) is the fiber product

ps(X,8) — =X

0

B—2 > T*(B/S).

The d-critical pushforward R = p4(X,s) comes equipped with a canonical section pys € T'(R,8g/g)
obtained as follows. Consider the following commutative diagram:

AY(T*(B/S)/S,0) —~ A1(B/S,0)

luf i(R_)B)*

ok
AL(X/S,0) B2 41(R/S,0)
e
xE
A9, 0) =27 40(R, 0)

Consider the function f = und(s) € A°(X,0). Using the bottom commutative square we get a homotopy
ds(f|r) ~ (R — X)*(dsf) in A*(R/S,0). Using the homotopy hsp: dsf ~ p¥Ap/s given by (4.10) as well
as the top commutative square we get a homotopy (R — X)*(dsf) ~ (R — B)*0*Ap/g. But 0*Ap,s = 0, so
in total we get a nullhomotopy of ds(f|r). Thus, we obtain a section pys € I'(R,8p/s) with the underlying
function und(pys) = f|r: R — Al

D-critical pushforwards are functorial in the following sense: given geometric morphisms of stacks X —
B2 § 4 T together with a section s € I'(X, 8x/p) we have an isomorphism

0+ (Px (X, 8),p45) = (g0 p)«(X, s)
constructed using the Cartesian square (1.7). Moreover, under this isomorphism we have ¢ (pxs) = (¢op)xs.

Example 4.16. Let p: U — B be a smooth morphism of schemes and f: U — A'. We have Suw = Ov
and hence f defines a section f € 8y /7. Then py (U, f) = Crity,p(f) and py f = sy.

The following statement generalizes Example 4.16.

Proposition 4.17. Let U — B % S be smooth morphisms of schemes and f: U — Al. The closed
immersion py(Crity,g(f), sy,B,) — Crity,p(f) identifies
p*(critU/B(f),SﬁB) = CI‘itU/S(f).

Moreover, under this isomorphism pysy p on p«(Crity g(f),ss) goes to s s on Critys(f).
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Proof. The isomorphism py (Crity/p(f), sf,p) = Critys(f) follows from the existence of the following dia-
gram, where all squares are Cartesian:

Crity/s(f) —— Crity/p(f) ———=U

U—"" ~ T*(B/S) xp, U —T*(U/S)

.

U T*(U/B)

Let Rp = Crity/p(f) and R = p4(Crity/g(f),ss). Consider the commutative diagram

SRB/S|R — SRB/B|R
l(R—»RB)* l(R—»RB)*
‘SR/S - SR/B

of sheaves on R. Since p: B — S is smooth, the horizontal morphisms ¢, are injective. Therefore, it is
enough to show that
ip(Px55.B) = ip(sy,5)-
But by definition of the pushforward pysf p we have
ip(pxss,B) = (R — R1)*syB.

Consider the commutative diagram

LRy, U
Sry/BlR —> Ou/Th, vlr

J{(RﬁRB)* l

Sp/p ——> Ov /T3 1y

defined in Proposition 3.7(3) with the horizontal morphisms injective. By Proposition 3.10 we get
trpv(s5.8) = [f1€ Ou/Th, v0  trulip(sys)) = [f1€ O/Thy

which implies that (R — Rp)*s; g = ip(sy,s) and hence, using the above equalities, p«syp = s 5. O

Jo

As a corollary, we obtain that d-critical pushforwards preserve relative d-critical structures on schemes.

Corollary 4.18. Consider morphisms of schemes X — B 2> S, where p is smooth, equipped with a relative
d-critical structure s € I'(X,8x/p). Then pys is a relative d-critical structure on py(X,s) — S.

Proof. Since s is a relative d-critical structure, we have a collection {U,, f,} of LG pairs over B together

with morphisms ug: Crity, /p(fa) — X such that {uq: Crity, p(fa) — X} is a Zariski cover. Then
{p*(critUa/B(fa)? Sfa;B) - p*(X? S)}

is also a Zariski cover. But by Proposition 4.17 we have py(Crity, /5(fa), 87,,8) = Crity, /s(fa) compatibly

with relative d-critical structures, so we get a Zariski cover {Crity, /s(fa) — p«(X, s)} by critical charts. [

The d-critical pushforward has the following compatibility with pullbacks.

Proposition 4.19. Consider a commutative diagram of stacks

XIHB,LSI

R

X——B——S
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with all morphisms geometric, equipped with a section s € I'(X,8x/p,) and let s € I'(X',8x//p:) be the
pullback. Assume that B’ — B xg S’ is smooth.

(1) The above diagram can be extended to a commutative diagram

’

(4.11) Pe(X',5) )j lj . T
p*(X7S) X B4 P S

so that pls" is equal to the pullback of pys under the leftmost vertical morphism and the leftmost
square is Cartesian.

(2) If B — B and X' —> X xg B’ are smooth (respectively, smooth surjective), then so is pi (X', s') —
(X, 8). Moreover, in this case there is a fiber sequence

Lp/Bxss |p,(x7,sr) = Lyt (x5 /05 (X,5)x 58" — Lixryxx 5 B lpl, (x7,57)-
Proof. We have a commutative diagram

HX—>B—S

Sx/Blx’ (X — B)*Lp/s|x/

|

S$x1/p _ BxioBos (X' — B)*Lpys

SX'/B’ M (X/ — Bl)*]LB//S/

Therefore, we obtain a commutative diagram

X —" - T%(B/S)

]

X' 2> T*(B/S) x5 B’

T

T*(B'/5"),
where the morphism p),: X’ — T*(B/S) xp B’ is given by the composite
@ X' — X x5 B T%(B/S) x5 B' =~ T*(B x5 B'/S") x5x.s B

Since B’ — B x g 5’ is smooth, in the Cartesian square

T*(B x5 8'/S") xgxgs B’ T*(B'/S")

l l

B’ T*(B'/B x5 §')
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the bottom morphism is a closed immersion and hence the top morphism is a closed immersion, hence a
monomorphism. Thus, the top square

p/*(X/,S,) - 9 X/

T

) —

| |

B 0 T*(B/S)

is Cartesian. Since the bottom square is Cartesian as well, this implies that the outer square is Cartesian.
But then in the diagram

p;(X/7 S/) - o X/

]
T

B—Y - T*(B/S)

the bottom square is Cartesian by definition and the outer square is Cartesian by what we have just shown.
Therefore, the top square is Cartesian, which establishes the first claim.
The morphism pj (X', s") — p«(X, s) factors as the composite

(4.12) Pi(X',s") = pu(X,s) xp B — py(X, s).

The first morphism in (4.12) is a base change of X’ — X xp B’ and the second morphism is a base change
of B’ — B. This implies the second claim. (]

We obtain the following extension of Corollary 4.18 to geometric morphisms.

Corollary 4.20. Consider geometric morphisms of stacks X — B L, S, where p is smooth, equipped with a
relative d-critical structure s € I'(X,8x/p). Then pys is a relative d-critical structure on py(X,s) — S.

Proof. By Proposition 4.19(1) the claim reduces to the case S a scheme. Then we can find a commutative
diagram

X —sp-r.g

o

X—-B-".g9

with X’ — B’ a morphism of schemes and B’ — B and X’ — X x g B’ smooth surjective. By Proposi-
tion 4.13(1) s’ is a relative d-critical structure on X’ — B’. By Corollary 4.18 pl s’ is a relative d-critical
structure on p, (X', s’) — S. By Proposition 4.19(2) the morphism p, (X', s") — p«(X,s) is smooth and
surjective. Therefore, by descent (Proposition 4.13) we get that p,s is a relative d-critical structure on
px(X,8) —> S. O

Let us now describe virtual canonical bundles of d-critical pushforwards.

Proposition 4.21. Consider geometric morphisms of stacks X — B L, S, where p is smooth, equipped with
a relative d-critical structure s € I'(X,8x /). There is an isomorphism
ir

. vir 2 ~ v
Xp: KX/B|p*(X7s)fed ® K%/s‘p*(X,s)red - Kp*(X,s)/S

which satisfies the following properties:
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(1) 1t is functorial for compositions: ¥iq = id and given another smooth morphism q: S — T with
R = (qop)s(X,s)d the diagram

vir id®i(A)2 vir
(4.13) KX/B‘R®KB/S|R®KS/T|R KX/B|R®Kg/2T|R

i2p®id J{zqop
bX

vir ®2 vir
K x5l ® Kgirlr K ep) s (X,s)/T

commutes, where the top horizontal morphism is induced by the fiber sequence
A: p*Lg/p — Lg/r — Lps.
(2) Consider a commutative diagram of stacks

’

(4.14) X —>B-Lsyg

L

X—B——S

with all morphisms geometric, equipped with a section s € I'(X,8x,p) and let s' € T'(X',8x//p)
be the pullback. Assume that p: B — S, B® — B xg 5 and X' — X xg B’ are smooth. Let
R = pl (X', s")*d. Then the diagram

®id
®2 ®2 Zp
KVI;B|R/®KB/S|R/®KX’/X><BB’|R/®KB’/B><SS’|R/ > K*(Xs)/S|R/®K ’/XXBB’|R/®KB’/B><SS’|R/
iTX/ﬁX®id J{id®i(Az)2
i ®2 ®2
KX plr @ Kyjglr ® Ky oo lm Ky ayslr @ KP e o)y (x o7
lid@i(Al)2 \LTP’ (X7,8") > py (X,8)
Z /
r ®2 P ir
K}?//B/‘R’ ®KB’/S”|R/ K;;/*(X/’Sl)/s/7

commutes, where
Ay: Lpss|pr — Lpys — Lppxss
and
As: Lpypxgs|p, (x1,sr) = Lyt (x7,5) /s (X,5)x 58" — Lixryxx 5 Bl (x7,57) -
(8) For a function d: X — Z/27 the diagram

)
®2 P
K}/(I;B S‘P* (X,s)red ® KB/S|P* (X, s)red K;::(X s)/S,pxs

le(@id le+diln(B/s)

vir ®2 P
KX/B —s|p* (X,s)red ® KB/S|P*(X15)r€d Kp*(X $)/S,—pxs

commautes.
(4) ¥, is compatible with products.

Proof. As in the proof of Proposition 4.14 it is enough to construct these isomorphisms for morphisms of
schemes.

Let (U, f,u) be a critical chart for X, where (U, f) is viewed as an LG pair over B. Let @: Crity g(f) =

p«(Crity/p(f), sf) — p«X, where the first isomorphism is provided by Proposition 4.1. Then (U, f,), where

(U, f) is viewed as an LG pair over S, is a critical chart for p(X,s). A critical morphism ®: (U, f,u) —

(V,g,v) of critical charts on X gives rise to a critical morphism ®: (U, f,u) — (V,g,7) of critical charts on

px(X,s). By Corollary 4.18 this collection of critical charts covers p4(X,s). By Corollary 3.31 it is thus
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sufficient to construct the isomorphism >, restricted to each such critical chart and check an equality of
these isomorphisms for every critical morphism of critical charts on X.

Let (U, f,u) be a critical chart for X and (U, f,u) the corresponding critical chart for p,(X,s). By
definition we have canonical isomorphisms

® TVIE A X2 —% 7Vir ~ ®2
U Bx/p= U/B|leitu/)3(f)r”“l7 U By (X,8)/S = KU/S|CYitU/s(f)md'

We define Ep|critU/S(f)red to be the isomorphism

; 2. r®2 ®2 ~ ®2
Z(AU) : KU/B|CritU/s(f)red ® KB/S|CritU/s(f)red - KU/S|CritU/s(f)red
associated to the exact sequence
Ap: 0 — QL oly — Qg — Qg — 0
U: B/SI|U U/s U/B :

Now consider a critical morphism ®: (U, f,u) — (V, g,v) of critical charts on X. Recall that the normal
bundle NU/V|CritU/B(f) carries a nondegenerate quadratic form ge. Let R = CritU/S(f)red. Consider the
diagram

id@vol? id®i(Aq)?
(415)  K§ln® K3 pln ——> K5iglr @ K75l r ® (det Ny, )®2| g ———= K§7g|n ® K& |n
\Li(AU)Q lz‘(AUV@id lz‘(AvF
id®v013 y i(A2)2
K,<§>75|R i K§73|R ® (det Ny 1 )®?|r K%IR,

where the individual isomorphisms are induced by the following double short exact sequence:

Ay Ay
0 0 0
| | !
0 U Q}B/S\U — Q}3/5|U —0
N

Az 0 —— Nyjy —— Q%//S\U - Q}]/S — 0

| ! |

All 0—— Né/V E— Q‘l//B|U E— Qllf/B — 0
0 0 0

The top horizontal morphism in (4.15) gives an isomorphism of the two models of Kg/QS\ rR® K}’(‘; plr in
the critical charts U and V. The bottom horizontal morphism gives an isomorphism of the two models of
K;’j:( X,5)/8 in the critical charts U and V. The outer vertical morphisms are the local models of ¥,. The
square on the left commutes by naturality. The commutativity of the square on the right follows from the
corresponding property of determinant lines, see [KPS24, Corollary 2.3].
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Functoriality of 3 with respect to compositions, property (1), follows from a commutativity of the diagram
of determinant lines as in [KPS24, Lemma 2.4] associated to the double short exact sequence

0 0 0
| | |

0 —— Qg rlv == Qplv 0 0
| | |

0 —— Qpplv —— Ly —— Qyp — 0

| | H

0 — Qpglv —— Qg —— Qg — 0

Lo

Let us now show property (2). We can factor (4.14) as

X/

XXBB/

where all squares are Cartesian. Using the functoriality with respect to compositions of ¥ (property (1))

and Y (Proposition 4.14(3)), property (2) for a general diagram (4.14) follows from the following particular
cases:

(1) Both squares in (4.14) are Cartesian. Let (U, f,u) be a critical chart on X and (U’, f',u/) its base
change along B’ — B which defines a critical chart of X’. Let R’ = Crity /s (f/)*?. Then we have
to prove a commutativity of the diagram

®2 ®2 i(Av)’ @0
KU/B‘R/ ® KB/S|R’ - KU/S|R'

e b

2
KT?}’/B,\R, @Kg?/s,|R, Rl e

which follows from the naturality of the isomorphisms i(A).

(2) In (4.14) the left square is Cartesian and B = S = 5’. As before, let (U, f,u) be a critical chart on
X and (U, f',u') its base change along B’ — B which defines a critical chart of X'. Let (U, f,u)
be the corresponding critical chart of p.(X,s), where (U, f) is viewed as an LG pair over B and
(U', f',@') be the corresponding critical chart of pl (X', s’), where (U’, f’) is viewed as an LG pair
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over B. Let R = Crity p(f’ )**d. Then we have to prove a commutativity of the diagram

2 K& | @ K&, |m

U/B

N K& plw @ K§ | re

U/B
lmw
i(Agyr)?

K plw © K plw ———— Kgplw,

where
1 1 1
Ab: 0 I QU/B|U/ —_—> QU’/B —> QU’/U — 0
But A}, and Ay are the two short exact sequences associated to the direct sum decomposition
Qg = Qpplur @ Qg plur, so the corresponding isomorphisms i(A7;) and i(Ayr) agree.
(3) B’ = B and S’ = S. By Theorem 4.3(1) we may find a smooth morphism 7: U’ — U of smooth
B-schemes, a function f: U — A! with f’ = #*f and a commutative diagram

X/ u%, CritU//B(f’) —_— U/

ok

so that (U, f,u) is a critical chart for X and (U’, f’,u’) is a critical chart for X’ and, moreover, we
may cover X and X' by critical charts of this form. Let R" = Crity//g(f’ )*ed. Then we have to prove
a commutativity of the diagram

2 2 2 i(Av)*®id 2 2
K%/S‘R, ®K§/B|R/ ®K§//U‘Rl —_— K((?/S‘R, ®K§’/U|R,

\Li(ﬁzf
i(Ayr)?

®2 ®2 ®2
KB/S|R/®KU’/B|R/ KU//S‘RU

lid@i(mf

where A; and A, are the short exact sequences

Ay Ay
0 0 0
| | |

0 —— Qp slor == Qp5lvr 0 0
! ! |

AQZ 0—— Q%]/S|Ul —_— Q%]’/S —_— Qllj’/U — 0

l | |

A0 —— QlU/B|U, N QlU,/B N Q}J,/U — 0
0 0 0

The commutativity of the diagram follows from a commutativity of the diagram of determinant lines
as in [KPS24, Lemma 2.4].

Properties (3) and (4) are straightforward. O
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4.5. Orientations for relative d-critical structures. Using the virtual canonical bundle we define ori-
entations for relative d-critical structures.

Definition 4.22. Let X — B be a geometric morphism of stacks equipped with a relative d-critical structure
s. An orientation of (X — B,s) is a pair (£,0) consisting of a Z/2Z-graded line bundle £ together with

an isomorphism o: £&? ~ K}’g;B.

For simplicity of notation we will often denote an orientation simply by o with the graded line bundle £
being implicit.

Remark 4.23. In the above definition we consider graded orientations as in [KPS24]. In [Bra+15] the
authors consider an analogous notion where £ is an ungraded line bundle.

There is a natural notion of isomorphisms of orientations: an isomorphism (£1,01) — (£L2,02) is given by
an isomorphism f: £; — Lo of graded line bundles such that the diagram

2 e 2
LY LY
K3

commutes.
We have the following functoriality of orientations:

(1) Consider a commutative diagram of stacks

x Tox
o)
B—-pB
with X’ — X xp B’ a smooth morphism. Consider a relative d-critical structure s on X — B

and its pullback s’ to X’ — B’. For an orientation (£,0) there is an orientation (L[x/yrea ®
Kxi/x x 5Bl (x7)rea, p*0), of (X" — B',s"), where

]77*0: (L|(X/)red ®KX//XXBB/|(X/)red)®2 L’ L®2‘(X/)red ® K®/2/XXBB/|(X/)red

o®id vir ®2
- X/B|(X/)red @KX//XXBB'|(X’)red
Tx_x vir

X//B/ .

For a composable pair

X//LX/LX

Lk

B”4q>B/4>B

of commutative diagram of stacks as above the natural isomorphism §* K x//x  , 5 ® K x7/x/x B =
Kxn/x B induces an isomorphism of orientations

(4.16) 7'pro=(qop)*o
using Proposition 4.14(3).
(2) Consider geometric morphisms of stacks X — B 2, S, where p is smooth and X — B is equipped
with a relative d-critical structure s and an orientation (£, 0). Then there is an orientation (L], (x s)rea®
KB/slpy(x,s)reds P+0), where

0 (Llpy(x,5)700 @ KB/l (x,)700) &2 > LB2|, (x syret @ KTy (x yrea

o®id i ®2
= KX lps (x50 ® K5 glp, (x,s)re
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(4.17)

(4.18)

(4.19)
(3)

(4.20)

(4.21)

(4.22)

(4.23)
(4)

(4.24)

Ep vir
— Ky (x5

Given another smooth morphism ¢: S — T we obtain an isomorphism
@xPx0 = (g O p)x0
using Proposition 4.21(1). For a commutative diagram of stacks

XIH_BILSI

RN

X——B——S

with B — S, B’ — B x5S and X’ — X x g B’ smooth and relative d-critical structure s on X — B
and its pullback s’ on X’ — B’ we have a diagram

p;((X/,SI) - o S/

P
px(X,s) — 5.
Then using Proposition 4.21(2) we obtain an isomorphism
7*ps0 = piq*o.
For a geometric morphism of stacks X — B equipped with a relative d-critical structure s and an
orientation (£, 0) of parity d: X — Z/2Z there is an orientation (£,0) of (X — B, —s), where

—. r®2 ©° vir Rg vir
0: L% — X/B,s — > B x/B,—s*

Since R, squares to the identity, the identity morphism of graded line bundles induces an isomorphism
of orientations

For a commutative diagram of stacks

J/Tr/ lﬂ'
B -*.pB
with X’ — X x g B’ smooth, a relative d-critical structure on X — B and an orientation o and its
pullback to X’ — B’, using Proposition 4.14(6) we obtain an isomorphism
L3

70 ~ p*0.

For morphisms X — B % S, where p is smooth and X — B is equipped with a relative d-critical
structure s and an orientation o, using Proposition 4.21(3) we obtain an isomorphism

D0 = px0.
For a pair X; — B, X5 — Bs of geometric morphisms of stacks equipped with relative d-critical

structures s1, so and orientations (£1,01), (L2, 02) there is an orientation (£1 X L2, 01 Xl 02) of X7 x
X5 — By x Bsy equipped with the relative d-critical structure s; [ s2, where

~ s vi vi (18) vi
01X 02: (L1 6 L2)%% = (£1)®2 K (L)% 225 KXY KIKXE 5, — KX« x0/B1x By
This construction is unital and associative in the obvious sense. It is also commutative in the
following sense: for the swapping isomorphism o: X5 x X; — X; x X5 using the symmetry of (4.8)
we obtain an isomorphism

o* (01X o02) = 02X 01,
70



which on the level of underlying graded line bundles is the usual swapping isomorphism o*(£1[x]L2) =
Lo X L1 of ungraded line bundles multiplied by the Koszul sign (—1)deg(£1)des(£2)  For j = 1,2 let

p;

T

pi

be a commutative diagram of stacks with X! — X, x g, B, smooth, equipped with an oriented relative
d-critical structure (s;,0;) on X; — B; and its pullback on X — Bf. Then using the compatibility
of the isomorphism (4.8) with Yx/,x, we obtain an isomorphism

(4.25) (P1 x P2)*(01 X 02) = (pTo1) X (p302)

given by the obvious isomorphism involving the Koszul sign. For i = 1,2 let X; — B; £5 S; be
morphisms of stacks, where p is smooth and X; — B; is equipped with an oriented relative d-critical
structure (s;,0;). Then using the compatibility of ¥, with products we obtain an isomorphism

(4.26) (p1 % p2)x(01 X 02) = (p1,%01) X (p2,%02)

again given by the obvious isomorphism involving the Koszul sign.
Given a geometric morphism X — B, we denote by DCrit®"(X/B) the groupoid of oriented relative
d-critical structures (s,£,0) on X — B. The assignment (X — B) — DCrit®"(X/B) determines a functor
DCrit®": Fun(A', Sch)oP? — Gpd.

Osmooth

Since DCrit(—) and the stack of graded line bundles satisfy étale descent, so does DCrit® (—).
We will use canonical orientations of relative critical loci defined as follows:

(1) For the identity morphism Y — Y of stacks equipped with a relative d-critical structure specified
by a function f: Y — A! there is a canonical trivialization K;’,‘/ry >~ Oyrea which corresponds to

the identity isomorphism under x, for every y € Y. We define the canonical orientation ogﬁl/ny of

Y i, Y, f) to be the even line bundle Oy+ea whose square is equipped with the above isomorphism

to Kyl

(2) More generally, suppose p: Y — B is a smooth geometric morphism of stacks together with a function
f:Y — A'. The relative critical locus Crity 5 (f) — B is a d-critical pushforward of (¥ i, Y, f)
along p and we call the pushforward orientation the canonical orientation oa‘;ty/B( £)/B = Px ogf‘/ny

whose underlying graded line bundle is Ky /g|cyit, Jg(fyred-

Example 4.24. Suppose p: U — B is a smooth morphism of schemes equipped with a function f: U — A'.
The morphism p: U — B provides a critical chart for X = Crity,g(f) — B. In this case the isomorphism

o‘éi?tU/B(f)/B: K??B‘CritU/B(f)red ~ K}’;;B coincides with the canonical isomorphism from Theorem 3.33(1).

For a critical morphism ®: (U, f) — (V, g) of LG pairs over B of even relative dimension recall the po-torsor
Py parametrizing orientations of the orthogonal bundle (Ny /v |cyit,, 15 (f)? go). Via the above description it
can also be interpreted as a pa-torsor parametrizing isomorphisms o%i?tU/B( £)/B > OCrity 15(9)/ Blority s (r) Of
canonical orientations.

We have the following functoriality of canonical orientations:

(1) Consider a commutative diagram

’

y' 2oy

|

B ——=B
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(4.27)

(4.30)

of geometric morphisms of stacks, where Y — B and Y/ — Y x g B’ are smooth, together with a
function f: Y — A'. Let f/: Y’ — Al its pullback to Y’, so that we obtain a commutative diagram

Cl“ity//B/(f,) SN CI‘ity/B(f)

l l

B’ B.

The natural isomorphism p'* Ky /B Ky 1)y g = Ky p of graded line bundles induces an isomor-
phism

—k _can ~ ~Can
P OCrity 5 (f) = OCrityrp/ (f7)

of orientations, using (4.19) applied to the diagram

V=—=Y' ——>P
Y—=Y ——B.

Consider smooth geometric morphisms of stacks Y 2> B; % B, together with a function f: ¥ — Al
The natural isomorphism Ky p, ®p* Kp, /5, = Ky/p, of graded line bundles induces an isomorphism

can ~ ~Can
4xOCrity 5, (f)/B1 = OCrity s, (f)/B2

of orientations, using (4.17) applied to the morphisms Y =Y 2, B % B,.
d. Consider a smooth morphism of stacks Y — B equipped with a function f: Y — A'. The identity
morphism of graded line bundles induces an isomorphism

Ogirilty/B(f)/B = O%a;rilty/B(*f)/B
of orientations, using (4.23) applied to Y =Y — B.
For a pair of smooth morphisms Y; — By and Y2 — By equipped with functions f;: Y7 — Al and
fo: Y5 — Al the natural isomorphism Ky, /B, K Ky, /B, = Ky, xv,/B, x B, induces an isomorphism
can

can ~ can
OCrity, /g, (f1)/B1 OCTitYQ/BQ(f2)/Bz = OCrity, xvy/B, x By (f1Ef2)/B1x B2

of orientations, using Proposition 4.21(4).

If X — B is a morphism of schemes equipped with a relative d-critical structure s and an orientation o,
we can compare in each critical chart o and the canonical orientation. This gives rise to the following data:

(1)
(2)

(3)

For a critical chart (U, f,u) of (X — B,s) with dim(U/B) (mod 2) equal to the parity of o we have
a po-torsor Qf 4, on Crity,p(f) parametrizing isomorphisms 0|Critu/5(f) — ogi?tU/B(f)/B.
For a critical morphism ®: (U, f,u) — (V, g,v) of even relative dimension we have an isomorphism

ACPZ Q(\)/,g,v|critu/3(f) = Pq) ®;L2 Q([)],f;u,

of pp-torsors coming from the composition ofcyit,,,(f) — i (f)/B OCCar?tV/B(g)/B|CritU/B(f). It

is associative for a composite (U, f, u) 2, (V,g,v) R (W, h, w) of critical morphisms of even relative
dimension via the isomorphism Z¢,y: Pyos — P‘1/|CritU/B(f) Qu, Pa.
Consider a commutative diagram

x -r.ox

|,

B-r.B
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with X’ — X x g/ B smooth with the pullback relative d-critical structure on X’ — B’. Consider a
commutative diagram

U ——=U

L,

B >R
with U’ — U x g B smooth, where (U, f,u) is a critical chart for X — B and (U, f/, ') is a critical
=% can (427) can

chart for X’ — B’. Then the composite ﬁ*o|critU,/B,(f,) = D OG5 (/B " Ot i (1))

determines an isomorphism of ps-torsors

Sk
(4'31) Q?J,f,u|CritU//B/(f’) = Ql[}/:}/’u/-
(4) For a critical chart (U, f,u) of (X — B, s) and another smooth morphism ¢: B — S the composite
can (428) can d t 3 : h' f t
50| Crity 5 (f) — GOty (1B~ OCnity s (f)/s determines an isomorphism of jip-torsors
(4.32) Qb fulorivn(r) = QU

(5) For a critical chart (U, f,u) of (X — B,s) the composite 0 — O((:Ja;riltU/B(f)/B 29) Ot 5 (—)/B

determines an isomorphism of ps-torsors
(4.33) QU fu = Q[6J7_f7u.
(6) For another morphism of schemes X’ — B’ equipped with a relative d-critical structure s’, an orien-

. . _ 4.30
tation o' and a critical chart (U’, f’,u’) the composite oX o' — Ot 5 (£)/B O%ar?tU//B/(fl)/B/ ICON

can . . .
OcritUxU’/BxB’ (fEf")/BxB’ determines an 1somorphlsrn of ,LLQ—tOI‘SOI'S
o o ~ oo’
(434) QU,f,u QU’,f’,u’ = UXU’,ff/,uXu"

5. PERVERSE PULLBACKS

The goal of this section is to construct a perverse pullback functor for a morphism of higher Artin stacks
equipped with a relative d-critical structure. Locally the perverse pullback will be given by the functor of
vanishing cycles. To glue it into a global functor, we will construct the stabilization isomorphisms for critical
morphisms of critical charts. All schemes are assumed to be separated and of finite type over C.

5.1. Vanishing cycles for orthogonal bundles. As the first step to construct stabilization isomorphisms,
we will construct them for stabilizations defined by an orthogonal bundle. Given an orthogonal bundle (E, q)
over a scheme U we consider the diagram

E 35, Al
O ( \LWE
U.

as in Section 3.1. We will be interested in the following functorialities of orthogonal bundles:

(1) (Base change) Let p: V' — U be a morphism of schemes and consider the pullback orthogonal bundle
F =p*Eover V. Let pg: F — E be the corresponding projection morphism. Let g := fop: V — AL
We have a pullback diagram

£ F
‘/IUE
O

\%
(5.1) lp
U——F
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The isomorphism det(F') =~ p* det(E) induces an isomorphism

(5.2) orp =~ p*org.

(2) (Isotropic reduction) Given an isotropic subbundle K € FE, we can form a “Lagrangian correspon-

dence” D: F' --» E, that is, a correspondence

D
sm.surj cl.emb
F E

with D := K+ and F := K/K the reduction of E by K. Then we have a fiber square

(5.3)
{k ;/D/E

and a commutative square

(5.4) D
N
F FE
N
Al

Consider the hyperbolic localization functor
Locp = (7p/p)sipp: DL(E) — DP(F).
Then we have a natural transformation
(5.5) Exg®: ¢fonparlocn — LoCD®forp+as

given by the composite

Ex% 0 Ex!

1 ! @ 1
¢fOTFF+‘1F(7TD/F)*ZD/E — (WD/F)*¢foer+qpowD/FZD/E - (WD/F)*ZD/EQSJCOTFE-H]E

and natural isomorphisms

(5.6) Locp(0p)« = (7p/r)xip/p(0m) B, (mpyr)«(0p)x = (0F)4

and

(5.7) LOCDTFL (wD/F)*zD/Eﬂ? (ﬂ'D/F)*TrD/FTFF[I“k( )—rk(D)];ﬂ;7

where the last isomorphism is given by the composite

pur,
id —t’ (TD/F)*WD/F —D/F’ (WD/F)*WL/F[Tk(F) —1k(D)].

Remark 5.1. The natural transformation Ex¢ 1s not necessarily invertible. But Lemma 5
that it becomes invertible after composing with 7TE.

We are ready to define the stabilization isomorphisms for quadratic bundles.
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Theorem 5.2. For a scheme U, a function f: U — Al and an orthogonal bundle E of even rank on U there
exists a natural isomorphism

stabg: (05)xds(—) = rompranh((—) ®pu, orp)
of functors Perv(U) — Perv(E) uniquely determined by the following properties:
(1) (Smooth base change) For a smooth morphism of schemes p: V. — U, the diagram

stabp

Py (08) s (—) P forns+asTh((—) ®uy OTE)
lEx;,Ex!* lEx;@(S.Z)
stabp
(0F)sdgp’(—) —

commutes, where g == fop, F:=p*E, and pg = p|p.
(2) (Isotropic reduction) Given an isotropic subbundle K < E, the diagram

bgorrptarT (P (=) @, 0rp)

stab (5.7)®(3.3)
(OF)*¢f(_) — ¢fO7TF+qF7T;r?((_) ®M2 OrF) < ¢fO7TF+C[FLOCD7TTE((_) ® OrE)

~l(5.u) J{Exioc

stabp
Locp (0p)xdr(—) - Locpé forp+as 7 ((—) @pp OLE)

commutes, where D := K+ and F := K+/K.

From now on E will be an orthogonal bundle of even rank over a scheme U. The rest of the section is
devoted to the construction of the stabilization isomorphisms and a proof of their properties. One plausible
way of constructing stabilization isomorphisms is to consider the local isomorphisms given by the Thom-—
Sebastiani isomorphism for trivial orthogonal bundles and glue them. However, we then need to show that
these local isomorphisms are compatible with the transition maps along changing the orthogonal coordinates
which is quite non-trivial—we need a relative version of [Bra-+15, Proposition 3.4]. Instead, we will use
special orthogonal Grassmannians which are smooth with connected fibers so that a smooth-local construction
without considering the transition maps will be sufficient (as the pullback on perverse sheaves is then fully
faithful). In the special orthogonal Grassmannians we have Lagrangian subbundles so that we can define
the stabilization isomorphisms via reduction by the Lagrangian subbundle.

5.1.1. Case 1: stabilization isomorphism for metabolic bundles. Assume that there exists a Lagrangian sub-
bundle M < E. Then the reduction of E by M is just U. We define the stabilization natural transformation

(5.8) stab} : 0p s — GfonptanTy

of functors Perv(U) — Perv(E) as follows. For any J € Perv(U) the sheaf ¢ forp4q5 (WE&") is supported on the
zero section of E by Proposition 2.21(1). Using (5.6) we see that the functor Locy, : DP(E) — D! (U) defines
a left inverse to (0g)s: DP(U) — DP(E). Therefore, stab} is uniquely determined by the commutative
square

stabM
(59) LOC]V[OE,*(;SJC z >LOCM¢foﬂ-E+qEﬂ'TE
(5.6) ~ EXEOCT
bf (V);l’) ¢sLocarml

Lemma 5.3. Given a Lagrangian subbundle M of an orthogonal bundle E over a scheme U, the natural
transformation

Exgoc: (bfLOCM’]TTE — LOCM¢fowE+qE7TTE'

is an isomorphism.
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Proof. Since the statement is local on U, we may assume that U admits a closed immersion i: U — U’ into
a smooth scheme U’ and there is a vector bundle M’ on U’ and E = i*E’, where E' = M'@® (M’)" equipped
with the hyperbolic quadratic form. Let M = i*M’. Since i, is fully faithful, it is enough to show that

i*EXgoc is an isomorphism. The diagram
goc
. t . i
tx@rLocymy ——ixLoCy @ rong+qunTp
lEXi’EX!* J/Exg;,Ex!*

t ExI(/;OC "
¢ Locay gty ———>=Locy @ pron 4 qm Tpis

of exchange natural transformations commutes: it follows from the compatibility of EX!* and Ex‘ﬁ with
compositions as well as the commutative diagram from Proposition 2.21(3). As the vertical morphisms are
isomorphisms, it is enough to show that the bottom morphism is an isomorphism. Thus, we are reduced to
showing the claim for the smooth scheme U’.

Consider the Gy,-action on E’ given by the weight 1 action on M’ and the weight (—1)-action on (M’)".
Then M’ is the attractor scheme, so the attractor correspondence for this action is U’ «— M’ — E’. The
function qg : B’ — A! is Gy -invariant, so the claim follows from the fact that vanishing cycles commute
with hyperbolic restriction, [Nak17, Proposition 5.4.1]. O

In particular, stabg is a natural isomorphism.

Remark 5.4. When f = 0, the statement of Lemma 5.3 also follows from the dimensional reduction
isomorphism as in [Dav17, Appendix A].

5.1.2. Case 2: stabilization isomorphism for oriented bundles. Assume that FE has an orientation o €
I'(U,org). Consider the special orthogonal Grassmannian

OG*(E): (T — U) ~ {positive Lagrangian subbundles on E|z}.
Let Mg < E|og(k) be the universal Lagrangian subbundle. Consider the projection
p: OGT(E) — U.
Lemma 5.5. The morphism p: OGT(E) — U is smooth with connected fibers.

Proof. The question is étale local on U, so we may assume that E is trivial, i.e. E = U x V for a non-
degenerate quadratic space (V,¢) which admits a Lagrangian. In this case OGT(E) = U x OG™* (V). More-
over, OG™ (V) is a homogeneous space for the special orthogonal group SO(q). But SO(q) is smooth and
connected, which implies that OG™ (V) is smooth and connected. ]

Therefore, the pullback
p': Perv(U) — Perv(OGT(E))
is fully faithful by Proposition 2.9(6b), i.e., for any F, G € Perv(U), the pullback
(5.10) p': Hompery (1) (F, §) = Hompe, (og+(my) (0'F, p'9)
is an isomorphism. We define the stabilization natural isomorphism
(5.11) stab%: 0p xdf —> GronptanTy
of functors Perv(U) — Perv(E) as the unique natural transformation that fits into the commutative square

stab®

i T i
VB« Or < > PpPforptanTp
! ! 1
~ Exd),Ex* " NJ{EXQs
stabElE N
OGT(E) T
0 e - T ¥
E|0G+(E)’*¢f‘OG+(E)p ~ ¢f\oc+(E)7TE\v+qE\OG+(E) E‘OG+(E)p )

with respect to the isomorphism (5.10), where stab%E . is the stabilization morphism defined in (5.8).
oG E
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5.1.3. Case 3: stabilization isomorphism in general. Assume now F is arbitrary. Consider the orientation
bundle org geometrically: we have an étale surjection p: org — U and an automorphism o: org — org
over U exchanging the two sheets such that o2 = 1.

g
orp ———>org

N
U
By descent, for any F, G € Perv(U), the pullback establishes an isomorphism

(512) pT: HomPerv(U) (?v 9) — HomPerv(orE) (pTSZ pTg)U’

where (—)? denotes the o-invariant subspace. Hence to construct the stabilization isomorphism in general, it
suffices to know how the stabilization isomorphism from (5.11) changes under the change of the orientation.

Proposition 5.6. Let E be an orthogonal bundle over U equipped with an orientation o € T'(U,org). Then

stabp” = —stab%: 0p xdf —> GfonprapT -

Proof. Let V be the standard one-dimensional space C equipped with the quadratic form x2. The statement
is étale local, so we may assume that E = U x V2" for some n. By definition of stab}, it is enough to show
that sta b%[ ! = —sta b]‘E/["‘ for any two Lagrangian subbundles M7, My < E which induce different orientations
of E. In turn, by naturality of the stabilization isomorphism it is equivalent to showing that for some
A € O(2n) with det(A) = —1 the induced action on ¢ s (—Xlwy2n) is by (—1). Using the Thom-Sebastiani
isomorphism TS this boils down to showing that 2 — —z acts by (—1) on @ 2wy .

The morphism ¢ = z2: A’ — A! is finite, so we get an isomorphism Ex?: qu¢z2ws1 = ¢pqswar. The
sheaf gywy1 € DP(A?) fits into a fiber sequence

2 K[2] — quwar — wya,

where j: G, — A! is the inclusion of the complement of the origin and X is lisse of rank 1. Therefore,
(tqxwar)qoy = K|1[2]. By proper base change, we have a short exact sequence

0 — K| — Hg™(¢7'(1)) — R —0,

where the second morphism is the trace map. Since t — —t acts by permuting the fibers of ¢g~1(1), it acts
by —1 on X|;, which proves the claim. O

The pullback F|., admits a tautological orientation og. Since we have 0*(og) = —og, the map
Stabiﬁom () ®ok: 0gl.., e ‘bp*fOﬂE\ME Bl 7rTE|O,.E (— ®p, OrE\orE)
is o-invariant and hence descends to an isomorphism

(5.13) stabg: 0,40 (=) = GrompranTh(— Ops 0p).

5.1.4. Proof of Theorem 5.2. The stabilization isomorphism is given by (5.13). The uniqueness is clear:

e Using the base change property for the orientation torsor orgp — U the stabilization isomorphism
for a general even rank orthogonal bundle is uniquely determined by the stabilization isomorphism
for an oriented even rank orthogonal bundle.

e Using the base change property for the special orthogonal Grassmannian OG*(E) — U the sta-
bilization isomorphism for an oriented even rank orthogonal bundle is uniquely determined by the
stabilization isomorphism for a metabolic bundle.

e The isotropic reduction property uniquely determines the stabilization isomorphism for a metabolic
bundle using the diagram (5.9).

Let us now prove the relevant properties:
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(1) (Smooth base change) The claim is local, so we may assume that E admits a Lagrangian Mg c E.
Let F = p*E, M = p*Mg, pg = p|r and py = p|ar.. Consider the diagram

™™g iMp/F

\%4 Mp F
(5.14) Jp l J”
U T™Eg E IMg/E E

where both squares are Cartesian. This gives rise to a base change isomorphism
(5.15) p'Locar, = LOCMFpTE

determined by Ex!*. We have to show that the outer rectangle in the diagram

Loc

5.6 (5.7 x
pTLOCMEOE,*QSf pT(ZSf pTQSfLOCMEWTE — pTLOCME¢fOWE+qE7TTE‘
l(SAIS),ExZ,,Ex!* lEx;) l(ms),Ex; l(&lS),Ex;
L 0 t (5.6) t (5.7) L ot Ex5°° L by
OCMp F,*(bgp (bgp qbg OCMpT D 4> 0CMF¢gOWF+QF7TFp

commutes. This follows from the commutativity of the individual squares:
e The commutativity of the leftmost square follows by applying the 6-functor formalism D to the
3-cell

\

\
/Y’f/
\

in the oo-category of correspondences.

e The commutativity of the middle square follows from the fact that the exchange natural transfor-
mation Ex), intertwines the unit of the adjunction T, — (g )« and the unit of the adjunction
W]T/IF = (ﬂ-MF)*'
e The commutativity of the rightmost square follows from Proposition 2.21(2)-(3).
(2) (Isotropic reduction) The claim is local, so we may find a Lagrangian subbundle M < F together
with a splitting F = M @® MY and F = F® K ® K. We have an isomorphism

(5.16) Locpgr = LocyLocp

induced by EX!*. Then the claim reduces to the commutativity of the diagram

ExLoc
¢
¢rLocuar Locyior @ forp+qs
l(s.m) l(a.m)
ExgOC Ex;OC
¢rLocyLocp ————— Locar@forp+qprliocp ————— LocyLocpd fornp+qp

which follows from Proposition 2.21(3).

5.1.5. Properties of the stabilization isomorphisms.
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Proposition 5.7. Let U be a scheme, f: U — A' a function and E, F orthogonal bundles of even rank over
U. Then the diagram

stabE®p

Oper«9r(—) Ofomper+aser Tror(— ® OTEeF)

l lm)

OFIE,*OE,*¢f(_) ¢fO7FEO7rF\E+qEOTrF\E+CIF|EWL|E(7‘—E(_ Opa OrE) Opia OrFlE)

%M

t
OF|E,*¢fO7rE+qE7TE(_ ®M2 OrE)
18 commutative.

Proof. The claim is local, so we may assume that F' admits a Lagrangian subbundle M < F. Let K =
0® M c E® F be the corresponding isotropic subbundle. Then K+ = E@® M and hence K+/K = E.
Writing stabp,, locally as stab]\F/ﬁ . the claim reduces to the isotropic reduction property of the stabilization
isomorphism from Theorem 5.2. (|

Next we prove a finite base change property.

Proposition 5.8. Let U be a scheme, E an orthogonal bundle of even rank over U, f: U — Al a function
and p: V. — U a finite morphism. Let g :== fop, F:=p*E, and pg := p|g. The diagram

stab
(05) s fpa(—) ——F > D orpranTh

o3
lEX*

(PE)«(0F)xdg(—)

(P« (—) Qps org)
=
i

(pE)*¢gowF+qp7TF(_ O, orp)

Ex}®(5.2)
stabp

commutes.

Proof. The claim is local, so as in the proof of the smooth base change property we may assume that E
admits a Lagrangian My < E. Let F = p*E and Mpr = p*Mpg. Diagram (5.14) induces a base change
isomorphism

(5.17) Locar, (PE)+ = pxLocar,
determined by EX!*. We have to show that the outer rectangle in the diagram
(5.6) (5.7) t ExLo° +
Locy,0p 4@ rps ¢——— ¢fp* — (bfLOCMEﬂ'Ep* E— LOCME¢fowE+qE7TEp*
lEXi,(;,_m) lEXd) J{Ex!*,(;'xﬁ) Ex, iEx’*,Exi,(&w)
(5.6) (5:7) P B

p*LOCMFOF *¢g — p*d)g — P*¢9LOCMFWF —> p*LOCMstgowFJrqu}

commutes. This follows from the commutativity of the individual squares:
e The commutativity of the leftmost square follows by applying sheaf theory D to the 3-cell

Vs
SN SN
SN N

U
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in the oo-category of correspondences.

e The commutativity of the middle square follows from the fact that the exchange natural transfor-
mation Ex) intertwines the unit of the adjunction mhr, — (Tap)« and the unit of the adjunction
WE\X}F = (ﬂ-MF)*

e The commutativity of the rightmost square follows from Proposition 2.21(2)-(3).

Next we prove a compatibility with Verdier duality.

Proposition 5.9. Let U be a scheme, E an orthogonal bundle of even rank over U and f: U — A' a
function. The diagram

stab
(08)4¢D(=) —> Gfomp+asT o (D(—) By, 0r5)
l1~3xqﬂ[’,1~:x*,[D J{EXTW,EX%%(:;Q)

stabz

]D)(OE)*¢*f(_) -~ Dqﬁ*fo‘”E*qETrTE(_ Ops Orf)
commutes.

Proof. The claim is local, so we may assume FF = M @ M " for a pair of Lagrangian subbundles M, M c E.
The orientations of E induced by M and MY differ by (—1)™()/2, Similarly, the morphism (3.2) acts on
volume forms by (—1)"™(®)/2_ Thus, we have to show that the diagram

stab™

(05)x¢sD(—) —————> ¢ fonpranTsD(—)

lEXd)’D,EX*,D J{E){T’D,Exd"ﬂI

MY
sta bE

D(0g)s¢—f(—) ~————Dé_ forp—qpTm(—)

commutes. For this, it is sufficient to show that it commutes after applying Loc,s, as in the definition of
stab% .
Consider the Cartesian diagram

U—22

J/OMV iiM

inv
MY ——sF.

Then we have a natural transformation H : 7er7>,<i!Mv — w1t defined as the mate of the composite
isomorphism

. Ex* e

id = 7a 1001050 Thpe —— T ingingy 1 Tago -
By [Bra03] (considering the Gp,-action on E with M of weight 1 and MV of weight —1) H is an isomor-
phism on Gp,-equivariant complexes; in particular, it is an isomorphism on the subcategory of constructible
complexes on E supported on U.

Using the definition of the stabilization isomorphism and commuting Locy; past D the claim reduces to

the following ones:

(1) The diagram

-~ Ex!* .
id —————— w00y ——— i, 0,

~ ifgspOE

Ex!>|< | " -
Ty w00y e —> T sy Op, % —> 133,04
commutes. Plugging in the definitions of EX!*, H and fgspy, as mates of the respective natural
transformations, the claim follows from the compatibility of Ex;* with compositions.
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(2) The diagram

pur

Tt rk(E)] maryry [20k(M)] L R i

l pury . l unit

- pur,.
ik e[ —1k(E)] S iy T [—TK(E)] <=— marv o7y [—2k(M)] =5 marv o750

commutes. Unpacking the definition of H as a mate, the commutativity of this diagram reduces to
the commutativity of

EX' unit | . %
id ————mp10010%, 7k, ——————————— manith i T T TETE MY (T
Tpurﬂl‘:
coumt counit PUlz s Py ~
sk * . *
~—— WA T Ty <~ T T Tare 4T [21K(B)] <———— manik mhm i k. [20k(B)]

which follows from the compatibility of the purity isomorphism with respect to compositions.
(3) The diagram

I Exi I Ex;ﬁ |
QMY wlppe —= TMY 5@ fompy Ingy —= TMY xipgy @ forp+an

Ex? EX:

1
¢fﬂMllM < T '¢f07fM7’M <— T ‘2M¢f07rE+CIE

commutes. Plugging in the definitions of H, Exf5 and EX;‘: as mates, the commutativity of this
diagram follows from Proposition 2.21(3).

O
Finally, we prove a compatibility with products.

Proposition 5.10. Let U,V be schemes, E an orthogonal bundle of even rank over U and f: U — A and
g: V — Al two functions. Let E' = E x V be the pullback orthogonal bundle over U x V. Then the diagram

stabg[Xxlid
_—

(02)x05(—) B dy(=) G fonp-+arTh(— ®p 0rp) [ 6y (—)

lTS \LTS@(SQ)

stab
(0% ¢ rmg(— X —) Gfomp+apmeTy ((— B —) @p, o)

commutes.

Proof. The claim is local, so we may assume that there is a Lagrangian subbundle M < E. Let M’ < E’ be
its pullback to U x V. Then we have to show that the outside rectangle in

( EXLOC

Locy (0g)«¢f(— )l¢q(—)<;¢f( ).(bg(_)*)(bfLocMﬂ-E( )& g (—) —> LocarforpranT p(—) B dg(—)

| = | |
Ex Loc

(5.6) (5.7) 1 x4 t
Loca (0p)x@pmg(— X —) <—— dsmg(— X —) — ¢ smgLocny T (— B —) —— Locn @ for s +qpmg T (— X —)

commutes. But in the above diagram individual squares commute: this follows from the compatibility of the
isomorphisms Ex!*7 the unit id — w47}, Exf and Exib with products. O
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5.2. Symmetries of vanishing cycles. In this section we construct and analyze stabilization isomorphisms
for étale morphisms of critical charts.

Let ®: (U, f) — (V,g) be a smooth morphism of LG pairs over B, so that by Proposition 4.1 ® restricts
to a smooth morphism ®: Crity,g(f) — Crity/g(g) of the same relative dimension dim(U/V'). There is a
natural comparison isomorphism

b5 (U — BY! % 0o, (v - BYT 50 % (V > B)![dim(U/V)]

of functors Perv(B) — Perv(U). By Proposition 2.21(1) the image of these functors is supported on the
relative critical locus Crity/p(f) and thus we get a natural isomorphism

(5.18) Exa: (95U = B))(Dlowite,n(r) = (09(V = B)) ()l crity,n(p [dim(U/V)].

Lemma 5.11. Let (U, f) 2, (V,9) =z (W, h) be a composite of smooth morphisms of LG pairs over B.
Then

Exgoop = EX\I"Critu/B(f) ° Exg.

Proof. The claim follows from the functoriality of EX;& with respect to compositions, Proposition 2.21(2), as
well as the functoriality of the purity isomorphism, Proposition 2.14. |

Example 5.12. Let (U, f) be an LG pair over B and (V, q) a vector space equipped with a nondegenerate
quadratic form. Let M be an orthogonal automorphism of (V,¢) and consider an automorphism id x M of
the LG pair (U x V, fHq) over B. Then

EXidxM = det(]\f)]'__‘]}(id7

where det(M) = +1 since M is orthogonal. Indeed, using the naturality of the stabilization isomorphism
from Theorem 5.2 it reduces to the fact that M: V — V acts by det(M) on the orientation us-torsor.

The following statement, which is a family version of [Bra+15, Theorem 3.1], explains that Exe depends,
up to an explicit sign, only on the étale morphism

®|crity 5 (r) Crity/p(f) — Crity,p(g).

Theorem 5.13. Let @, ®1: (U, f) — (V,g) be étale morphisms of LG pairs over B. Let X = Crity/g(f)
and Y = Crity,p(g) and assume that

(I)0|X=<I)1|X:X—>Y

(1) Consider the induced isomorphisms

d@o‘x,d@ﬂx: TU/B|Xred — TV/B yred.

Then det(d®1|yreq © dPo|xrea): X7 — Al is a locally constant map with values +1.
(2) We have
Exg, = det(dq)lb_(}ed 0 d®g|xrea) - Exg, .

Proof of Theorem 5.13(1). The function A = det(d®, |;ed 0d®p]| xrea): X — Al is a function on a reduced
scheme. Therefore, the equation A? = 1 can be checked pointwise on X4, For a k-point b e B let

U, = U x g Speck, Vi, =V x g Speck
be the corresponding smooth schemes over k and X, = Crity, (f). Then it is sufficient to show that A?|x, = 1.
But this is the content of [Bra+15, Theorem 3.1 (a)]. O

Next we will prove Theorem 5.13(2) under an additional assumption.

Proposition 5.14. Consider the setting of Theorem 5.13 and suppose that for a point u € Crity p(f) we
have
(d®1]," 0 d®oly, —id)* = 0: Ty/pu — Tu/pou.
For each perverse sheaf I € Perv(B) there is an open neighborhood X° < Crity,g(f) of u such that
Exg, (F)|xo = Exa, (F)|xo.
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Proof. Applying Proposition 3.35, we obtain an LG pair (W, h) over B x A! together with étale morphisms

(W, h)
y X
(U =< AL, fE0) (V x A, gE0)

and a map w: A! — W satisfying the conditions of Proposition 3.35. Consider the following data:

o P = (¢f(U — B)T)(?)|CritU/B(f) € Perv(CritU/B(f)).
Q = (¢g(V = B))(F)lcuity, s (s) € Perv(Crity,5(f))-
An isomorphism a: P — Q in Perv(Crity/g(f)) given by Exg,.
e An isomorphism 3: P — Q in Perv(Crity/p(f)) given by Exg,.

e An isomorphism 7: (P[X] Ry: [1])|CritW/B><A\1(h) — (QX R [1])|CritW/B><A\1(h) given by Exy,, o Exgllj

Wo
\ij \\I,\‘: 0
@9

U v

From the commutative diagram

we get v|i—o[—1] = O‘|Critw0/3(ho)v where hy: W; — A! is the restriction of h: W — Al to the fiber at t € Al.

Similarly, from the commutative diagram
Wi
P,

U v

we get y|i=1[—1] = /B|Critwl/3(h1)' Therefore, the claim follows from [Bra-+15, Proposition 2.8]. |
We are now ready to prove Theorem 5.13(2) in general.

Proof of Theorem 5.13(2). Consider a point u € Crity,p(f) and let v = ®o(u) = ®1(u). The differentials
d®y and d®; fit into a commutative diagram

0——Tx/pu—>Ty/Bu—>Nu—>0

ld(cptx)u J/(dq)t)lu i

0——Typpy—> Ty —> Ny —=0

where both rows are exact. Choosing an arbitrary splitting of the top exact sequence and using that
Dylx = D1|x, we get

_ id
(519) d(I)l‘ul Odq)o‘u = I:IT‘%] : TX/B,u®Nu — TX/B,u('BNu

By Proposition 3.14(1) the Hessian Hess(f),, restricts to a nondegenerate quadratic form on N, and by
Proposition 3.14(2) the induced morphisms (N, Hess(f),) — (N,, Hess(g),) are orthogonal. Thus, M is an
orthogonal automorphism of (N,,, Hess(f),).

If M = id, we are finished by Proposition 5.14 as then (d®;|,! o d®gl|, —id)? = 0. We will now adjust
the setting to put the étale morphisms in the form suitable for the application of Proposition 5.14. For
this, using Proposition 3.26 we may find an LG pair (W, h) over B, a point w € Crity,/g(h) and a critical
morphism Z: (W, h) — (U, f) which satisfies

(1) E(w) = u.
(2) Terity,zh)u = Tw/Bu-
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The last property implies that the normal space of Z: W — U° at w is canonically isomorphic to N,,, such
that the quadratic form ¢g from Proposition 3.32 is identified with Hess(f),,. Thus, applying Proposition 3.23
to = we obtain a diagram

W*O>W><Nu

we Ue
T
w—= sy vy

with ¢: (W°,h°) — (W, h) an open immersion and 3: (U°, f°) — (U, f) and a: (U°, f°) - (W x N, hH
Hess(f).) étale morphisms of LG pairs over B. By assumption w € W*°; denote u® = Z°(u) € Crityo/p(f°).

Since M is orthogonal, id x M is an automorphism of the LG pair (W x N,,, hFH Hess(f),,) over B. Thus,
we may form the fiber product

(5.20) p— T Ly

iﬂ'l l(idxM)oa

Ue— % W x N,
which comes equipped with a function d: P — A! given by
d= fOO’/To = fOO’]Tl.

By the universal property there is a point p € Critp,g(d) such that m(p) = 71(p) = u°. For t = 0,1 define
the étale morphisms

0, =d,090m: P—V
which send p to v. Identifying Tp/p, = Tw/p,w ® Ny using d(a o m), we get that

_ id | =
d@1|p10d@0‘p: |: 0 [id :| :TP/B,p_’TP/B,gr

Fixing a perverse sheaf F € Perv(B), by Proposition 5.14 we get an open neighborhood P° < Critp/p(d)
of p such that

Exg, (¥)|pe = Exe, (F)|po.
Using Lemma 5.11 we get
(Exa,|po 0 Ex,|po o Exa|1}1> 0 Exq|po 0 Exyy|po)(F) = (Exa, |pe 0 Ex;|po 0 Exa|l§% 0 Exq|po 0 Exqp, | po ) (F).
Using the commutative diagram (5.20) we get
(Exiaxar|po 0 Exa|pe 0 Expy|po ) (F) = (Exa|pe 0 Exp, |po ) (F).
By Example 5.12 we have Exjqx s = det(M) and therefore
Exg, (F)|pe = det(M) - Exq, (F)|po.
Using (5.19) we see that
det(M) = det(d®,|,* o d®ol.).

Here P° — Crity/p(f) is an étale neighborhood of u € Crity/p(f). Varying over different points u €
Crityg(f) we get that

Exo, (F) = det(d® |t © d®o| xrea) - Exg, (F)

is true on an étale cover of Crity,p(f) and hence, by étale descent, is true on all of Crity/g(f). Since this
is true for every JF € Perv(B), this finishes the proof. O
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5.3. Perverse pullbacks for schemes. Given an étale morphism ®: (U, f) — (V,g) of LG pairs over B,
there is a natural isomorphism (5.18)

Exq: (¢5(U = B))(2)lcrivy,s () — (@(V = B)N)(=)lcrieys(s)-

In the following statement we extend this isomorphism to arbitrary critical morphisms; this is a family
version of the stabilization isomorphism from [Bra+15, Theorem 5.4].

Theorem 5.15. Let ®: (U, f) — (V, g) be a critical morphism of LG pairs over B of even relative dimension.
Then there is a natural isomorphism

staba : (¢5(U = B)N)(=)lcriey, () — (69(V = B))(lcriew s Ops Peo

of functors Perv(B) — Perv(Crityp(f)) uniquely determined by the following properties:

(1) Let (U, f) be an LG pair over B and (E,q) an orthogonal bundle over U of even rank. For the zero
section Og: (U, f) — (E, fomg + qg) we have

stabgy = stabpg

defined in Theorem 5.2.
(2) If ®: (U, f) — (V,g) is an étale morphism of LG pairs over B, then

stabe = Exo.
It additionally satisfies the following properties:
(8) Let ®y,®1: (U, f) — (V,g) be critical morphisms of even relative dimension such that

Polcrity5(f) = Pilerity,s(r) ¢ Critys(f) — Crity,p(g).
Then we have an equality
stabg, = stabg, : (5 (U — B)T)(_)|Critu/3(f) — (pg(V — B)T)(_)|CritU/B(f) ®p, Po.

(4) For the identity critical morphism id: (U, f) — (U, f) we have stabyq = id.

(5) For a composite (U, f) 2, V,9) N (W, h) of critical morphisms of even relative dimensions we have
a commutative diagram

(61U = BN (lcrity, () e (¢9(V = BY(=))lcuityyn(r) @us Po

J{Stab\po@ J{stab\p(@id

1d®Z=E
(6 (W — B))) (=)l ity 5(f) @uz Puos — (¢n(W = B))(=)|crity 5 (1) @ns Pulcrivy, s (s) @ Po.

(6) For a commutative diagram

(U1, f1) — (V1,91)
lw lwv
(Us, f2) — (V2, 92)

with Ty and my smooth morphisms and ®1 and ®o critical morphisms of even relative dimension
such that Uy — Vi xy, Us is étale, the diagram

stabg

((bfl (Ul - B)T)(_)|Critul/3(f1) ((bgl (Vl - B)T>(_)|CritUl/B(f1) ®N2 P‘I’l

J{Exﬂu iEx,rV@g(:a.u)

(¢f2(U2 — B)T)(_)|CritU1/B(f1)[dim(U1/U2)] stabq,2

(69:(Va = B)N)(Dlcity, n (1) Opa 7 P, [dim (U /Us)]

commutes.
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7) For a smooth morphismp: B’ — B with ® : (U’, f') — (V', ¢’) the base change of ® and 7y : Crity g (f') —
/
Crity g(f) the corresponding projection, the diagram

stabg/

(@5 (U" = B))(=)lcxitys 0 (57) (b9 (V" = BY)(=)lcritys) o (£) ®ua Par

\LEX; iExL@(:s.u)
stabg

(65 (U = B))(lcrity,n(n) > 7 (34 (V = B))(=)losity,n() Opa Po)

commutes. ~ o ~ ~
(8) For a finite morphism ¢: B — B with ®: (U, f) — (V,g) the base change of ® and ¢y: U — U and
cy: V — V projections, the diagram

stab.
(05 (U = B)ex)(=)lcritym(r) ——— (8g(V = B)Tex) (=)l ity 5 () Ous Pa
lExi,Ex!* lEx;‘;,Ex;Q@(gﬂ)
stabg ~ ~

(EU)*((%”([? - B)T)(_)|Critg/§(f)) - (EV)*((%(V - B)T)(_)‘Critg/é(f) O, P<i>>

commautes.
(9) Let p: B — B’ be a smooth morphism and stabg the stabilization isomorphism for ® viewed as a

morphism of LG pairs over B and stabg the stabilization isomorphism for ® viewed as a morphism
of LG pairs over B'. Then the diagram

stabf

(¢.f(U - B)TPT)(—)\CritU/B«(f) - (%(V - B)TpT)(_”CritU/B,(f) Qu, Pa
(65U = BN ()csitn o (1) i (g (V = BY)Y(=)lcnity, () uz P

commutes.
(10) The diagram

stab
(65U = B)Y'D)(lcriewn(n — (6g(V = B)D)(=)lcrity, s () Oz Po
lExT’d’,Ex(b’D lExT@,Exd”D@(B.l(i)
stabz

(Do (U = B))(Hlerie,s(r) ¢ D—g(V = B))()lcrieys(r) Ous Py

commautes.

(11) Given another critical morphism @' : (U', f') — (V',¢') of LG pairs over B’ of even relative di-
mension, ® x &' (U x U, fAf) — (VxV',gBJ) is a critical morphism over B x B’ and the
diagram

stabg[Xlstabg/

(((bpr)(_)‘CritU/B(f) (¢f’p/T)(_)|CritU//B/(f’)) (¢qu)(_)|CritU/B(f) (¢g’q/T)(_)|CritU//B/(f’) ®pu, (Po X Pgr)

lTS lTS@(:i,lS)

stabg 7
b (0 % D) (orivy ,or s (5B bgmg (4 % 4" ()|crity o 50 (5B Opz Poxar

commutes.

Proof. Using Proposition 3.23 we may find a collection of {Uy,, fa}sea of LG pairs over B with open morphisms

ta: (Ua, fo) — (U, f) such that {R, = Crity,/;p(fa) — R = Crity,p(f)} is an open cover, a collection

{Vay Ga}aca of LG pairs over B with étale morphisms j,: (Va,9.) — (V,g) and a collection {E,, ¢s}qeca of

trivial orthogonal bundles over U with étale morphisms oy : (Va, ga) — (Ea, f o Tr, + qg,) which fit into a
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commutative diagram
Og

U—— E,
T an
Uy — J
ol

U——V

By descent it is enough to construct the stabilization isomorphism stabg restricted to R, and show that
these stabilization isomorphisms are equal on Ry, = R, X g Ryp.
By construction there is a canonical isomorphism

(5.21) Ps|r, = org,|R,-

Let my: U — B and 7y : V. — B be the natural projections. We define stabg|r, as the composite

stabg,
6 (1l (D Re ®ps OB, | Ry > (b f0mp, +a5, T, 7 ()| r,

Exa,

2 (¢g, 7, ()R,
Exq
—5 (¢l (<), -
The above isomorphism is determined uniquely by properties (1) and (2).
We will now show the following facts:

(1) stabg glues into a global isomorphism over R, i.e. stabg|r, = stabs|g, above.

(2) stabg is independent of the choices of the local model given in Proposition 3.23. For this, making
two choices for the local model, we again have to prove stabg|r, = stabs|g,.

(3) Property (3) of the stabilization isomorphism holds, i.e. given two critical morphisms ®¢, ®;: (U, f) —
(V. g) such that @o[crity,,5(f) = P1lcrity,s(r) We have stabg, = stabg,. For this we repeat the above
construction with ®; on U, and ®; on U,. We have to prove again stabg,|r, = stabs, |g,-

Since E, and Ej} are trivial, we may identify the two; we denote the resulting orthogonal bundle E. Let
Uwp = U, xy Up. We have a diagram

with the two squares as well as the left triangle commutative. When we prove the first two items in the above
list, the two composite morphisms U,, — V are equal (given by the composite Uy, — U 2, V). When we
prove the last item in the above list, we only have the weaker statement that the two composite morphisms
R,y — Uy, — V are equal. So, from now on we only use this weaker assumption.

For a point u € R, we have an isomorphism E|, =~ E|, given by

1 -1
- (daa)lg, () (d20)|@ g (u) (d70)| g, () (daw) |y (u)
E‘u = NU/E[“u NUa/Va,u NU/V,u NUb/Vb,u

NU/Eb,u = E|u

Let M,,: E|, — E|, be the corresponding matrix; by Proposition 3.32 it is an orthogonal matrix. The two
isomorphisms Pg|g,, = org, |r,, and Pg|gr,, = org,|r,, given by (5.21) differ by det(M) in a neighborhood
of u.

By Lemma 5.11 we have to show that we have an equality

(5.22) Exa,| R, © Ex), 5! 0 Exy, |R,, © EXa, |5, = det(M) -id

ab

of natural automorphisms of ¢ forp4qs (7TTE(7r(TJ(—)))|Rab in a neighborhood of w.
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For this, let Vy, = V, xg V, equipped with a function g.: Vo, — A! compatible with g, and g, on V,
and V, and consider the corresponding diagram
N

)
4

Ja ©PasJb O Pb: (Vabv gab) - (‘/7 g)
of LG pairs over B such that the two composites

Va

V
Do

Ryp —Vyp ——F
N
Po

Vo

Then we have two étale morphisms

Ry — Crity,,/p(gap) — Crity,5(g)
are equal. Identifying Tv,, /B ®,,w) = Tv/B,u ® E|,, using the étale morphism V,; — F we have

. _ id | 0
(dP0) | 0y © (20) gy ) © (7)) © (dPa) 0y () = [W]

det ((dpn)[5" y © (A1) © (), ) © (AP, a9 ) = clet (M),
Applying Theorem 5.13 we get (5.22) as claimed.

Let us now show the remaining properties of the stabilization isomorphism. It is enough to establish
property (1) locally when E is a trivial orthogonal bundle. In this case the critical morphism 0g: U — E is
already in a local model, so that stabg = stabg by definition.

In the setting of property (2) we are again in a local model: the corresponding diagram from Proposi-
tion 3.23 is

Thus, we have

U—
U——U
:
U—2-v

and by definition we get stabg = FExg.

Property (4) of the stabilization isomorphism is obvious as for the identity critical morphism we may take
E=0and U, =U =V, =V in the local model given in Proposition 3.23.

It is enough to show the commutativity of the diagram from property (5) locally. For this, consider
Ue, Ve, Vs, W°, (E1,q1), (F2,q2),U as in the proof of Proposition 3.32(2), so that we have a local model of
the critical morphism ¥ o ® as

Restricting the diagram to U, we get local isomorphisms Py =~ orp,, Py = org, and Pyes = Orp,@m,-
The commutativity of the diagram then follows from Proposition 5.7.

Let us now show property (6). First assume that ®5 is étale. As ®; factors through a composite of étale
morphisms Uy — Vi xy, Uy — Vi, it is also étale. In this case the commutativity of the diagram follows from
Lemma 5.11. For an arbitrary critical morphism ®5, we may use Proposition 3.23 to assume, étale locally,
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that @, is given by the zero section Us — E of an orthogonal bundle in which case stabg, = stabg. As in
the proof of Proposition 3.32(4), étale locally we have that ®; is given by the zero section Uy — 75 E of the
pullback orthogonal bundle. In this case property (6) follows from the compatibility of stabg with smooth
base change, Theorem 5.2(1).

Property (7) is proven similarly to property (6): if ® is étale, it follows from Proposition 2.21(2) and if ®
is the zero section of an orthogonal bundle E, it follows from the compatibility of stabg with smooth base
change, Theorem 5.2(1).

Property (8) is proven similarly to properties (6) and (7): if ® is étale, it follows from Proposition 2.21(2)
and if ® is the zero section of an orthogonal bundle E, it follows from the compatibility of stabp with finite
base change, Proposition 5.8.

Property (9) is obvious from construction.

Property (10) follows from Proposition 2.22(2) if ® is étale and from Proposition 5.9 if ® is the zero
section of an orthogonal bundle.

Let us finally prove property (11). Writing ® x & = (® x id) o (id x ®') and using the compatibility
of the stabilization isomorphism with respect to compositions, property (5), we reduce the claim to the
case ® = id. Then if ® is étale, the claim follows from Proposition 2.24(2). If ® is the zero section of an
orthogonal bundle, the claim follows from Proposition 5.10. (Il

We are now ready to define perverse pullbacks for relative d-critical structures.

Theorem 5.16. Let w: X — B be a morphism of schemes equipped with a relative d-critical structure s and
an orientation o. There is an exact functor

7% Perv(B) — Perv(X),
called the perverse pullback, uniquely determined by the following properties:

(1) For every critical chart (U, f,u) of (X — B,s), such that dim(U/B) (mod 2) coincides with the
parity of o, we have a canonical natural isomorphism

(5.23) (T () lcxitw, s () = 65 (U = BYF))|crity,n(5) Ons QT

(2) For a critical morphism ®: (U, f,u) — (V,g,v) of critical charts of even relative dimension the
diagram

(5.23)

(W“a(?))\ch/B(f) ¢f((U - B)T(?))|Critu/3(f) s Q0U7f,u

i(S.QS) istabcp(@id

° 1d®As o
$g (V' = B)N(I))lcrisy,5(f) Ouz @¥g.0 —= S9(V = B)N(F))lcuitr () Oz Po @z QP 1,0

commautes.
In addition, it satisfies the following properties:

(3) Given an isomorphism of orientations o1 = o of the same relative d-critical structure (X — B,s),
there is a natural isomorphism 7§ = 7§ of the perverse pullback functors with respect to the two
orientations, which is associative. Moreover, the automorphism of an orientation (£,0) given by
multiplication on £ by a sign o € py acts on ¢ by the same sign p.

(4) If R is a field, then the perverse pullback functor n% extends uniquely to a colimit-preserving t-exact
functor

¥ D(B) — D(X).

Proof. The assignment X — Perv(X) of the category of perverse sheaves forms a sheaf of categories over the
Zariski site of X. Therefore, the assignment X +— Funey(Perv(B), Perv(X)) forms a sheaf of categories as
well. We may then glue the local descriptions of the perverse pullback functor 7% using Corollary 3.30, where
the relevant properties of the stabilization isomorphisms were verified in Theorem 5.15. This establishes
properties (1) and (2).

Let us now show property (3). For an isomorphism of orientations 01 = 0y using Corollary 3.31 we need
to specify the natural isomorphism 7¢ = 7¢ locally on critical charts. On a critical chart (U, f,u) we let
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it be the isomorphism Q‘,}l fu = Q‘g}" £ 8lven by precomposing the isomorphism oy = oéar‘iltU/B 0 with the
isomorphism 07 = 09. For an automorphism of an orientation o given by a sign ¢ € ps the corresponding
isomorphism Q7 ; ,, = Q s, is given by acting by the same sign and hence, using the local description of
perverse pullbacks, it acts on 7% by the same sign.

Property (4) follows from Corollary 2.18 since all exact functors on Perv(—) extend uniquely to D(—). O

5.4. Compatibility with base change. We first establish a compatibility of perverse pullbacks with
smooth pullbacks.

Proposition 5.17. Let m: X — B be a morphism of schemes equipped with an oriented relative d-critical
structure. Let p: X' — X be a smooth morphism of schemes. Consider the pullback oriented relative d-critical
structure on X' — B. Then there is a natural isomorphism

ap: (mop)?(=) = plr?(-)
of functors Perv(B) — Perv(X') which satisfies the following properties:
(1) Qiq = id.
(2) For a composite X" % X' £ X of smooth morphisms with an oriented relative d-critical structure
on w: X — B and pullback oriented relative d-critical structures on X" — B and X' — B we have
Qp O (g = Qlpog-
If R is a field, oy extends to a natural isomorphism of functors D(B) — D(X').

Proof. Denote by o the orientation of X — B and by o’ the pullback orientation of X’ — B. By Theorem 4.3
we may find a cover of X’ by critical charts (U, f/,u)) and a cover of the image of p: X’ — X by critical

charts (Ug, fa,uq) together with a smooth morphism p,: (UL, i) — (U, f,) fitting into a commutative
diagram

(524) X’ <L CrltUé/B(f(;) _— U(;

T

X & CritUa/B(fa) _—> Ua

We define ozp|ch, Js(fy) 88 the unique natural isomorphism which fits into the commutative diagram

(5.23)

(¢ (Uy — B)T)(_”CritU{L/B(f(’L) ® Q([)Ji)fé)u/

a

(7T © p)(p(_)|CritU(/l/B(f(’;)

J{aplch(,l/Bm;) J{Exﬁa®(4.31)
(5.23),pur . o
(PTW‘P)(*)\CritU:L/B(f;) —— ¢y, (Ua — B)T)(*)|CritU,a/B(f(;)[dlm(UQ/Ua)] ® QU foua|Crityy (12

We will now show that thus defined local natural isomorphisms ap|cuit,, 52 glue into a global natural

isomorphism «,. For this, we need to check that the restrictions of OéplCritU(/l 15 (f1) and aparit to

U,’)/B(f{))
Crity p(fo) xx Crity, /5 (f¢) coincide. Consider the étale local model of the intersection given by Proposi-
tion 4.4:

P!, @
(5.25) (Uas faruy) =—— (U, o2 uy) —= (Upy, faps ) =—— (U f3° s uy) —— (U}, fo, )

A S

(Uaa fayua) <~ (Ug7 37’“2) — (Uabvfab;uab) <;b (Ul;>7 fl?aug) —— (Ubafbaub)

with all vertical morphisms smooth and all morphisms to the pullback squares étale. Let
Rab = CritUg/B(fg) X x CritUbO/B(fbo)v :;b = CI‘itU{/lo/B(f(;O) X x CI‘itUgo/B(féo).

By definition (see Theorem 5.16(2)) the composite natural isomorphism

(¢fa (Ua - B)T)(_)‘Rab ®Q[0]a,fa,ua|Rub — WW(_)|Rab — (¢fb(Ub - B)T)(_”Rab ® Q(O]b,fb,ub|Rab
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is given by the composite of stabilization isomorphisms with respect to the bottom critical morphisms in
(5.25). Similarly, the composite natural isomorphism

(67, (Us = BYN)()ry, ® Qs g1t Irr, < (mop)? ()R, = (¢5:(Uy = B)) ()R, ® QY 51wy | R,
is given by the composite of stabilization isomorphisms with respect to the top critical morphisms in (5.25).

The equality of the restrictions of ozp|CritUé’/B( ) and ap\CritU{)/B( ) to R/, therefore follows from the com-

patibility of the stabilization isomorphisms with smooth pullbacks, Theorem 5.15(6).

The functoriality of the natural isomorphism «,, follows from the functoriality of the natural isomorphism
Exp, Lemma 5.11, and the functoriality of the purity isomorphism pur,, Proposition 2.14.

The extension of a, to a natural transformation of functors D(B) — D(X") is given by Corollary 2.18. O

Next we establish a compatibility of perverse pullbacks with smooth base change.
Proposition 5.18. Let
X x
B_r.pB
be a commutative diagram of schemes with p: B' — B and X' — B’ xp X smooth. Let s e I'(X,8x,p) be a

relative d-critical structure and denote by s" € I'(X',8x//p/) its pullback. Let o be an orientation of X — B
and o its pullback to X' — B’. Then there is a natural isomorphism
app: (1)p (=) = Pl (-)
of functors Perv(B) — Perv(X') which satisfies the following properties:
(1) Qid,id = id.
(2) Given a diagram

X//$_XIL>X

Bi”$-i’i>£

with B” % B'" % B, X' —» B' x5 X and X" — B" xp X' smooth, we have

Qpp © Aq,g = Qpog,pog-
If R is a field, oy extends to a natural transformation of functors D(B) — D(X’).

Proof. Let us first assume that the diagram is Cartesian. Consider a cover of X by critical charts (U, fa, tq)
and let (U, f!,ul) be their base change along p which define a cover of X’ by critical charts. We define
Crity/ pr(f4) 38 the unique natural isomorphism which fits into the commutative diagram

Qp,p
Moot (5.23) , ; o
((W ) p )(7)|Critué/3/(f;) - ((bffl (Ua - B) )(*)|CritU(/L/B,(f[1) ® QU;,f{I,u{z
iap,plchA/B, (&) lEx;@(at.:n)
. (5.23) .
(PTW“D)(—)|critUé/B,(f;) — (¢, (Ua — B)U(_)‘Critué/B(fé) ® QU foualCrityy s (1)

The fact that these locally defined natural isomorphisms O‘p,ﬁ‘CritU/ 1m0 (F) glue into a global natural iso-
morphism a3 is shown as in the proof of Proposition 5.17:

e By Proposition 3.25 we have a Zariski local model of the intersection Crity, ,g(fa) xx Crity,/5(fs)
given by

P, P
(Uaa faaua) -~ (U;7 ;71142) —_— (Uab7fabauab) é (U;;,f;;,UZ) —_— (Ub7fb7ub)'
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e Let

[} P
(U(;’ (i’ ufz) <~ (U(;O’ (lzo’u:zo) — (UZzbv f(lzbv u;b) -~ (Ul:ov l:o7u;70) - (Ul/ﬂ flivu'%)

be the base change of the above local model along p: B’ — B which provides a Zariski local model
of the intersection Crity. /p/(f) x x» Crity, 5/ (fy).

e The compatibility of the two local models of the isomorphism «, follows from the compatibility of
the stabilization isomorphisms with smooth base change, Theorem 5.15(7).

For an arbitrary commutative diagram we factor it as

p—r _p
and then define oy, 5 as the composite a5 0 a4
The functoriality of oy, 3 can be checked in a critical chart, where it follows from the functoriality of Exiﬁ
with respect to compositions, Proposition 2.21(2). a

Proposition 5.19. Let

Finally, we establish a compatibility of perverse pullbacks with finite push-forwards.
c
—_—

X X
B—°s>pB
be a Cartesian diagram of schemes with ¢: B — B finite. Let s € I'(X,8x,p) be a relative d-critical structure
and denote by § € I‘(X', S)"(/B) its pullback. Let o be an orientation of X — B and denote by o its pullback.
Then there is a natural isomorphism
Be: TCy —> CuT?

of functors Perv(B) — Perv(X) which satisfies the following properties:

(1) Biq = id.
(2) Given a diagram

¢ . xXx_°.x
5 d c l

B—Y~B—°+B

I<T><zz

with B% B % B a composite of finite morphisms and both squares Cartesian, we have

ﬁc o Bd = ﬁcod-
(8) Let

x I x
B -8B
be a diagram of schemes with p: B' — B and X' — B’ xp X smooth. Let s € I'(X,8x,p) be a

relative d-critical structure and denote by s € I'(X',8x//p:) its pullback. Let c: B — B be a finite
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morphism and denote by X=X xpB, B =B x5 B and X' = X' xg B their base changes which
fit into commutative diagrams

X ‘o x Loy xrtox °.x
B/45>B/$B B/Lé%B

Let o be an orientation of X — B and consider its pullbacks to X', X and X'. Then the diagram

& ~ Qs> o~
(5.26) (1) P —2om B (7)9p! 20 25 %

! !
lEX* lEx*

(W/)WPTC* e, pTﬁwC* & > ﬁTE*ﬁw

commautes.
If R is a field, 5. extends to a natural transformation of functors D(B) — D(X).

Proof. Consider a cover of X by critical charts (U,, fas ug) and let (U,, fas U,) be their base change along ¢
which define a cover of X by critical charts. Let ¢q: U, — U, be the projection. We define ﬂc|cr1tUa/B(fa)
the unique natural isomorphism which fits into the commutative diagram

(5.23) ,
(72 cs)(Fexity, n(f) — (05, (U = B)Tex) (=) @ QY 4 |orite, ()

iEx!*(@id
Belcrity, /5 (fa) (f1.(ca)x(Us — BN (-) ® Q. fo | Crity, /5 (fa)

iExi@(xl.i%l)

. (5.23) _ ~ ~ -
() (it im0 ——= E((67, T = BN @ QY - . Moty m(r)

The fact that these locally defined natural isomorphisms Bc\crit% 15 (fa) glue into a global natural isomor-
phism S, is shown as in the proof of Proposition 5.17:

e By Proposition 3.25 we have a Zariski local model of the intersection Crity, ;5(fa) xx Crity, ;5(fp)
given by

éa’ q> o (o) (o)
(Uaafaaua) < (U;,f;,u;) > (Uabvfabauab) < (Ub7fbaub) > (Ubvfb;ub)'
o Let

T - ~ %a 7 Foo~ ¢ 7 o ~o TF
(Uaafaaua) (Ug (Cz)a Z)H(Uabafabauab)é([]by b’ub) (Ubvflnub)

be the base change of the above local model along ¢: B — B which provides a Zariski local model
of the intersection Critga/é(fa) X g Critﬁb/g(ﬁ,).

e The compatibility of the two local models of the isomorphism 3, follows from the compatibility of
the stabilization isomorphisms with finite base change, Theorem 5.15(8).

The properties of . can be checked in a critical chart. The functoriality of 8. follows from the func-
toriality of Ex? and Ex) with respect to compositions, Proposition 2.21(2). Property (3) follows from
Proposition 2.21(3). O

5.5. Compatibility with d-critical pushforwards. In this section we establish a compatibility of perverse
pullbacks with d-critical pushforwards. First we analyze a compatibility with d-critical pushforwards along
smooth morphisms.
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Proposition 5.20. Let 7: X — B be a morphism of schemes equipped with a relative d-critical structure s
and an orientation o. Let p: B — S be a smooth morphism. Let py (X, s) be the d-critical pushforward which
fits into a commutative diagram

p*(X,s)%)I
S~ B

Consider the orientation pyo of p«(X,s). Then there is a natural isomorphism

Yp: 7fpl = i, 7
of functors Perv(S) — Perv(X) which satisfies the following properties:

(1) It is functorial for compositions in p.
(2) Consider a commutative diagram

(5.27) X -~.p-rT.og

T
XxX_—"~.p-*._ g

of schemes with p, as, B’ — S8 xg B and X' — X xpg B’ smooth, a relative d-critical structure
seI(X,8x/p) and s" = q*s its pullback. Let

7

p;(X’,S/) L) S’

Pk
px(X,s) ——= 5

be the diagram of d-critical pushforwards with i': pl (X', s") — X' the natural inclusion. Let o be an
orientation of X and consider orientations ¢*o of X', pxo of px(X,s) and plg*o of pi (X', s"). Then
the diagram of natural isomorphisms

gtrept Jera (r)alpt —= (7")?(p')Ta}

\L Tp \L Tp!
I

X « q
T =% ¥t atme 929 =ye T
qisT? ——— i, T ~—— i, (T)¥a)

commutes.
(8) Consider a commutative diagram

7 D
——B—— S

X ~
\Lq c1 lcz
p

X——->B—>358

oo

-

of schemes with both squares Cartesian, cy finite and p smooth. Let s € I'(X,8x,5) be a relative
d-critical structure and let 5 = ¢*s be its pullback to X. Let



be the Cartesian diagram of d-critical pushforwards with i: ﬁ*(X, 5) — X the natural inclusion. Let
o be an orientation of X and consider orientations q*o of X, pxo of px(X, s) and pxq*o of p«(X,5).
Then the diagram of natural isomorphisms

Ex; Be

7T<ppT (c2)x & ’/T(’O(Cl)*ﬁT e (I*'ﬁ'wﬁT

\L"/p l'ﬁ")
ﬁcz

s — . =P ~ <~ =P
577 (C2) % T (T > QxlxT
commutes.
If R is a field, vy, extends to a natural isomorphism of functors D(S) — D(X).

Proof. Consider a cover of X by critical charts (U, fa,us) and let (Uy, fq,T,) be the corresponding cover
of p4 (X, s) by critical charts. Let i,: Crity, s(fa) — Crity,/5(fa) be the obvious inclusion. In the critical
chart (Ug, fa,u,) the isomorphism 7, is the isomorphism

1. Ua = B)'0'()lorive, 5(f) ® QU fo e — (ia)s (01, (Ua = ) (=)leritn, s (70) ® QT o i)
obtained from (4.32) and the unit of the adjunction i} H (i4)s which is an isomorphism since ¢y, (U, —
S)t(—) is supported on Crity;, /s(fa) by Proposition 2.21(1).

The compatibility of the two locally defined isomorphisms <y, in two critical charts follows as in the proof
of Proposition 5.17 from the local model of the intersection given by Proposition 3.25 and Theorem 5.15(9).
By construction vy, is obviously functorial for compositions in p. The rest of the properties can be checked
in critical charts in which case they follow from the naturality of the unit of the adjunction 7* — i, with
respect to pullbacks. O

5.6. Compatibility with duality and products. We begin by establishing a compatibility of perverse
pullbacks with Verdier duality. Using the isomorphisms Ex"? and Ex.p we observe that the category
Perv(X) n D(Perv(X)) is stable under f' for f smooth and f, for f finite. Moreover, if R is a field, it
coincides with the category Perv(X) of perverse sheaves.

Proposition 5.21. Let 7: X — B be a morphism of schemes equipped with a relative d-critical structure s
and an orientation o. Let w# be the perverse pullback for (X — B, s) with respect to o and w%~ the perverse
pullback for (X — B, —s) with respect to 6. Then there is a natural isomorphism

§: D = D%
of functors Perv(B) n D(Perv(B)) — Perv(X) which satisfies the following properties:
(1) There is a commutative diagram

o L DD7x®

v s
79DD —2 5 DD,

(2) Consider a commutative square of schemes

X Ty X
B B
with p: B — B and X' — B’ xg X smooth, so that X' — B’ carries the pullback oriented relative

d-critical structure. Then the diagram

(71_/)<ppTD Ap,p ﬁTﬂ'WD & ﬁTDTF%_

lEx“D lExT’[D

(n)?Dpl —2— D(x')9—p! <22 Dptre—
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commutes.

(8) Let
X ‘. x
B—SsB

be a Cartesian diagram of schemes with ¢: B — B finite, so that X — B carries the pullback oriented
relative d-critical structure. Then the diagram

Be _ - S~ mvee.—
Pcye) ——= Co¥D ——— ¢, D7¥

iEX*)D lEX* ,D

5 _ Be L,
TP Dy ——> D%~ ¢y <—— D, 7%

commaudtes.
(4) Let m: X — B be a morphism of schemes equipped with a d-critical structure s and p: B — S a
smooth morphism. Let pyx(X,s) be the d-critical pushforward which fits into a commutative diagram

p*(X7s)*i>X

Then the diagram
7P D — > i TPD — > i DT
iExT'D iEx,HD
Dpt — 2 D pt <2 Di e
commutes.

If R is a field, & extends to a natural isomorphism of functors D(B) — D(X).

Proof. Given a closed immersion of schemes i: Z — Y and a constructible complex F € DP(Y') supported
on Z the natural morphism ¢;: i'F — i*F is an isomorphism. In particular, in this case we have a natural
isomorphism

ADF < g B prg

which will be implicit from now on.
Consider critical charts (U, fa, uq) for m: X — B. We define §|cyit,,, /5(fa) @s the unique natural isomor-
phism which fits into commutative diagrams

(T DD lositn, 15 (a) —s (67, (Ua = B)D(=)lcsice, 1o (0) @ Q1
lExTvm’@id
Slerity, /g (fa) (¢7.D(Ua = B) (=))lcxity, 5(f) ® QP fo s
lEx"”D@(f”lJi.‘s)
(D7~ (=) |crite, o (1) e (D1, (Ua = B (=Nlcsiten, () ® QB fo -

The fact that these locally defined natural isomorphisms & |Critua 15 (fa) glue into a global natural isomorphism
¢ is shown as in the proof of Proposition 5.17, using the compatibility of the stabilization isomorphisms with
Verdier duality, see Theorem 5.15(10).
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The properties of § can be checked on critical charts. (1) follows by combining Proposition 2.22(1) and
Proposition 2.15. (2) follows from Proposition 2.22(2). (3) follows from Proposition 2.16 and Proposi-
tion 2.22(3). (4) follows from Proposition 2.8. O

Remark 5.22. As in Remark 2.23 we may define a natural isomorphism
§: mD = Dr¥

which fits into a commutative diagram

¥ r g i DD#¥
X ;
DD 0 Dr¥D,

where T': ¥ — 7% is the natural isomorphism given locally by the monodromy operator of the functor of
vanishing cycles.

Next we establish a compatibility of perverse pullbacks with products. If R is not a field, in general the
external tensor product does not preserve perversity already in the case when the base is a point. We denote
by

(Perv(B;) x Perv(Bs))gpery < Perv(Bi) x Perv(Bs)
the full subcategory consisting of pairs (F1,F2) such that F; X Fs € DE(Bl x Bj) is perverse.

Proposition 5.23. Let my: X3 — B; and wo: Xo — Bs be morphisms of schemes equipped with relative
d-critical structures s1 and s and orientations o1 and oz, respectively. Consider the morphism m X mwo: X1 X
Xo — Bi x By equipped with the relative d-critical structure sy [H ss and orientation o1 Xl oo. Then there is
a natural isomorphism

TS: 7f (=) K75 (=) = (m x m2)?(— & -)
of functors (Perv(By) x Perv(Bs))gperv — Perv(Xy x Xs). It satisfies the following properties:

(1) It is associative: given another morphism of schemes ws: X3 — Bz equipped with an oriented relative
d-critical structure (ss,o3) the diagram

TSXxlid

(=) B (=) K mg(-) (m1 % m2)? (= & =) R g (—)

lidTS \LTS
7 (=) B (72 x m3) 9 (— E =) — > (11 x ™y % 73)%(— & — & —).

commutes, where we use the natural isomorphism o1 [x] (02 [Xl03) = (01 X1 02) Kl 03 of orientations.
(2) It is unital: if w1: pt — pt equipped with the relative d-critical structure s = 0 and the trivial
orientation, then TS = id.
(8) It is graded-commutative: for the swapping isomorphism o: Xox X1 — X1 x X9 and F; € D2(X;), Tz €
DP(X5) the diagram

o* (78 (F1) B 78 (F2)) — > 0*(my x m2)(F1 D F2)

X |

7 (F2) B f (F1) — > (g x m)? (F @ F1),

, L . , , 4.24
where the right vertical isomorphism uses the natural isomorphism o* (01 Xl 02) (a2) 02 X 01 of
orientations, commutes up to (—1)des(o1)deg(o2),
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(4) Fori=1,2 let

T

B s B,
be a commutative diagram of schemes with p;: Bl — B; and X! — B, xp, X; smooth. Consider
oriented relative d-critical structures on X; — B; and their pullbacks to X! — Bj. Then the diagram

(m4)2p] (—) B () #ph(—) — (5 x mh)# (pl (=) B ph(—)) — = (7} x )¢ (p1 % p2)T(~)

J{O‘m,mo‘pz,pz \L“Pl Xp2,P1XP2
_ _ ~ _ _ TS _ _
PLf (=) RPLrs (=) — = (By x BT (f (1) W 7g (=) —=> (B x P2) T (m1 x m2)?(— R —)

commutes.
(5) Fori=1,2 let

be a Cartesian diagram of schemes with ¢;: B;Z — B; finite. Consider oriented relative d-critical
structures on X; — B; and their pullbacks to X; — B;. Then the diagram

781 (=) BT o u(—) — > (1 X m2)? (e1,0(—) B Co,u(—)) — > (11 X m2)?(c1 X €2)5(—E—)

lﬁcl Be, lﬁq xes

1t (<) BTt (—) — > (€1 % C2)x (AL () D75 (—)) — > (€1 X T (71 X 72)?(—H —)

commutes.

(6) Fori = 1,2 let X; = B; 2, S; be morphisms of schemes, where ; is equipped with an oriented
relative d-critical structure (s;,0;). Let p; «(X;,s;) be the d-critical pushforward which fits into a
commutative diagram

pi,*(Xu 51) — X;

Consider the orientation p; +0; of p; «(Xi,s:;). Then the diagram
TS ~
m{pl (=) R TS ph(—) ——= (m1 x m2)?(p}(—) R ph(—)) — = (m1 x m2)#(p1 x p2) (- K -)
l"/m’YPZ l"/m Xpo
. - . . ~ . . . . S . . _ —
i1 27 (=) Rin 75 (=) —> (i1 X i2)a (7 (=) WFL (=) — (i1 X i2)4(F1 X 72)#(— B —)

commutes.
(7) The diagram

7 (D(—)) B (D(—)) —> (m1 x 75)#(D(—) B D(-)) (1 x m2)?(D(— & —))

o ]

D(x (=) BD(rE ™ (=) B D™ (—) B (<) <22 D((my x 1) (— E )

commutes.
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If R is a field, TS extends to a natural isomorphism of functors D(By) x D(Bs) — D(X; x Xa).

Proof. Let (Ui ,q, f1,4,u1,6) and (Uzq, f2,4, U2,4) be critical charts for m; and 7o, respectively. Write Uqa 4 ==
Ut x Uzq, Bia == By x Ba, and fi12.4 = f1,0 H f2,4, and denote by p14: Ur,a — B1, p2,a: Uze — Ba,
and pi2q: Uig,q — Biz the projections. Recall that (U124, fi2,a,U1,4 X U2,4) Is a critical chart for .
Identifying Crity,, ,/B,, (f12,a) = Crity, /B, (f1,a) x Crity, ,/B,(f2,4), We define TS|CritU12,a/312(f12,a) as the
unique isomorphism which fits into commutative diagrams

(5-23)B(5-23)
(Tr(lb(_)ﬂg(_))brityu /B12 (f12,0) —_— (¢f1 apl a( )¢f2yap12-7a(_))|CritU121a/’B12<f12.a>®Q([)]111a7f1_u,ul_u Q?fz.uﬁfz,muz,a

lTS\chu /B2 lTS@(l,;;l)

(5.23) i 5
(7T¢(_ _))‘Critulz(l/slz (f12,a) ((/)fw,uplz,a(_ _))lcritUlz,a/'Blz (f12.0) ® Q([)]llio;Uﬂz,a,flvafﬂzva,ul,a XU2,q

for each a. The fact that these locally defined isomorphisms glue into the global isomorphism TS is shown
as in the proof of Proposition 5.17, using Theorem 5.15(11).

The associativity and unitality property of 7 follows from the corresponding properties of the Thom—
Sebastiani isomorphism TS for the sheaves of vanishing cycles. The graded-commutativity of 7 follows from
the following facts:

(1) The Thom-Sebastiani isomorphism TS for the sheaves of vanishing cycles is commutative.
(2) The diagram

o* (p] o(F1) B DS ,(F2)) ——= o*pl, . (F1 R F2)

PLo(F2) ®pl ,(F1) — = ply ,(F2 R T1)
commutes up to the sign (—1)30Ur.a/B1)dim(Us,a/B2) — (_7)deg(o1) deg(02) due to the presence of the

shifts [— dim(U; o/B;)] in the definition of pza.
(3) The commutativity of the diagram

(4 34) (Q01.02 )
Ul,a X U2,a;f1,af2,a7u1,a XU, q

J/("““)
- Q o*(01o2)
U2 a XUz, ayf? afl a U2,a XU1,a

J/ (4.24)
Q .Q (4 5-1) Q0201
Uz,a,f2,a,U2,a Ut,a:f1,a,U1,a U2, a XUt a,f2,aEf1,a,82,a XU1,a

(QUI u7f1 aUl,a .QU2 a7f2 a,U2, a)

is equivalent to the commutativity of the diagram

01,02

o (L1 W L2) —— o (Ku, ulcrity, ,m, (f1.0) B KU o [Crite, iy (F2.0) > 0" KUy uxUs ol Crite, , cuy o o xmy (F1aBfe.n)

JM |

02,01

LoX L) ——— KU2Q|Cr1tUz By (f2,a .I{Ulu‘Cth1 /1 (f1,a) —_— KUquUlu Critu, vy 4/Byx By (f2,0Hf1,0)

which commutes on the nose.

The compatibilities of o, 8 and = with respect to products follow from the compatibility of the isomorphisms
Ex;, Ex? (see Proposition 2.24) as well as the unit id — i4i* for a closed immersion i with products. The
diagram in property (3) in a critical chart reduces to the commutative diagram from Proposition 2.24(4). O

5.7. Perverse pullbacks for stacks. We will now define the operation of perverse pullback along any
morphism of higher Artin stacks equipped with a relative d-critical structure.
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Theorem 5.24. Let m: X — B be a morphism of higher Artin stacks locally of finite type equipped with an
oriented relative d-critical structure. There is an exact perverse pullback functor

7?: Perv(B) — Perv(X)

together with the following natural isomorphisms:

(1)

(2)

(3)

(4)

(5)

Let
x -r.x

o)
- *.pB
be a commutative diagram of higher Artin stacks locally of finite type with p: B’ — B and X' —
B’ xg X smooth and the pullback oriented relative d-critical structure on X' — B’. Then there is a
natural isomorphism
app: (n')7pt = pla?,
Let

X5

[

b

-
3

sy

be a Cartesian diagram of higher Artin stacks locally of finite type with c: B — B finite and the
pullback oriented relative d-critical structure on X — B. Then there is a natural isomorphism

Be: TPy —> Cyu?.
Consider morphisms X = B £ S of higher Artin stacks locally of finite type, where p is smooth and

7 is equipped with a relative d-critical structure s and an orientation o. Let py (X, s) be the d-critical
pushforward which fits into a commutative diagram

px (X, s) — =X
Lk
S~ B
and which carries the orientation pyo. Then there is a natural isomorphism
Yp: TPl T iy TP

For a morphism X = B of higher Artin stacks locally of finite type equipped with an oriented relative
d-critical structure there is a natural isomorphism

§: D = Dr¥

where ©?~ denotes the perverse pullback with respect to the opposite oriented relative d-critical
structure.

For a pair of morphisms 7 : X1 — By and my: Xo — Bs equipped with oriented relative d-critical
structures with w1 X ma: X1 X Xo — By x By equipped with the product oriented relative d-critical
structure there is a natural isomorphism

TS: 7f(—) K75 (=) = (m1 x m2)¥(— X —).

These natural isomorphisms satisfy natural compatibility relations as in Propositions 5.18 to 5.21 and 5.25.
Moreover, if R is a field, #® (along with the natural isomorphisms «, ,7,8, TS and their compatibility
relations) extends to a colimit-preserving t-exact functor

¥ D(B) — D(X).
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Proof. Denote by DCrit(Art'™) the co-category of triples (X — B,s,0) where X — B is a morphism in
Art'™ equipped with a relative d-critical structure s and an orientation 0. A morphism (X1 - By,s1,01) —
(X5 — Bs, s2,02) is a morphism (X; — By) — (X3 — Bs) in Fun(Al,Artlft)OSmoothJsmooth such that sy is
the pullback of s, together with an isomorphism of orientations 01 =~ (X; — X3)*(03). Consider also the
full subcategory DCrit(Sch**P™) consisting of (X — B,s,0) where X and B lie in Sch®". We consider the
functor
0: DCrit(Sch**P™)°P — Fun(A, Cat™),

where Cat® is the category of R-linear abelian categories and R-linear exact functors, determined by the
following data:

e Forevery (m: X — B, s,0) in DCrit(Sch**P™), the perverse pullback functor 7 : Perv(B) — Perv(X)

defined in Theorem 5.16.
e For every commutative square in Sch*°P'

X' = B
ool
X T+ B
where B' — B and X’ — X x g B’ are smooth, the commutative square in Cat

Perv(B) AN Perv(X)

[ »
Perv(B’) -, Perv(X’)
determined by the invertible natural transformation «, 7 of Proposition 5.18, where 7’ is equipped

with the pullback relative d-critical structure p*(s) and orientation p* (o).
That this defines a functor is guaranteed by Proposition 5.18(1,2). Since © satisfies étale descent, it extends
uniquely to an étale sheaf
©: DCrit(Art™)°P — Fun(A!, Cat)
which by [Kha25, Corollary 3.2.6] is given by the formula (compare (1.4)):

O(X — B,s,0) = lim O(X'— B',s,0),
(X'—>B’,s",0',p)

where the limit is taken over (X' — B’,s',0',p) € DCritor(Schsepft)/(XHB}s’o) with p: (X' — B',¢',0') —
(X — B,s,0) a morphism in DCrit® (Art'"™) and (X’ — B’,s',0') € DCrit® (Sch®"™"). As the forgetful
functor DCritor(Schsep“) J(X—B,s,0) — (Fun(At, Schsepft)OSmoothJsmooth) /(x—B) 18 cofinal, it can equivalently
be taken over (X’ — B’ p) with p: (X’ - B’) > (X — B) in Fun(Al,Artlft)osmooth,hmooth and X', B’ €
SChSEpft.

Unwinding, we have for every morphism 7: X — Bin Art"" and every oriented relative d-critical structure
(s,0) a functor O(n: X — B, s,0), which is by definition the limit of the functors

7'¢: Perv(B') — Perv(X')

over morphisms p: (7': X’ - B') - (7: X — B) in Fun(Al,Artlft)()smooth,lsmooth where X', B' € Sch**P!t
and 7’ is equipped with the pullback oriented relative critical structure. A simple cofinality argument shows
that we have the natural equivalences

lim Perv(B') = Perv(B), lim Perv(X') > Perv(X),
(X’'—>B’,p) (X’'—>B’,p)

1ft

under which ©x/p s, is identified with a natural functor
7°: Perv(B) — Perv(X).

Moreover, © encodes the (associative) natural isomorphisms «,, 5 of (1).

The natural isomorphisms 3, v, § and TS defined for separated schemes of finite type in Propositions 5.19
to 5.21 and 5.23 extend to natural isomorphisms defined for higher Artin stacks locally of finite type using
the commutation of 8, v, § and 7 with «. For example, in the situation of (3) let Sy — S, By - B x5 So,
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and Xg - X xp By be smooth surjections from schemes in Sch®P® and denote by S,., B, and X, the
respective Cech nerves of Sy — S, By — B, and Xo — X. Denote by me: X¢ — B, and p,: B, — S,
the induced morphisms and by (s.,0.) the induced oriented relative d-critical structures. Note that by
Proposition 4.19, the induced morphism pg «(Xo, so) = p«(X,s) is smooth surjective and its Cech nerve
is identified with the d-critical push-forward pe (X, s.). Thus, we may conclude by repeatedly applying
the following observation: if we are given natural isomorphisms 7y, : & pI = i, x7me compatible with smooth
pullbacks, then by totalization we obtain a natural isomorphism ~: 7¢p’ =~ i, 7® compatible with smooth
pullbacks. We first apply this in the case when X, B and S have schematic diagonal, so that the X,, B., and
S, are all schemes and we have the v, by Proposition 5.20. Next, if X, B and S are 1-Artin then X,, B,,
and S, are all algebraic spaces (hence a fortiori have schematic diagonal), so we have the ~, by the previous
case. Similarly, the case of n-Artin stacks reduces to that of (n — 1)-Artin stacks for each n > 1.

Moreover, using the same commutation with a the proofs of the compatibility relations between the
natural isomorphisms S, 7, 6 and TS for morphisms of higher Artin stacks reduce to the compatibility
relations between these natural isomorphisms for morphisms of separated schemes of finite type.

Finally, suppose that R is a field, so that D(X) =~ Ind(DP(Perv(X))) for any X € Sch**P® by Proposi-

tion 2.9(7). Applying Proposition 2.17, ©: DCrit(Sch**P)°P — Fun(A!, Cat™) promotes to a functor
©: DCrit(Sch**™")°P — Fun(Al,Prit’t)

valued in the co-category of presentable stable R-linear co-categories equipped with a t-structure, encoding
the t-exact perverse pullbacks 7¢: D(B) — D(X) for (r: X — B,s,0) in DCrit(Sch*"), together with
the natural isomorphisms «,, 5, associative up to coherent homotopy. As above, we now apply right Kan
extension to obtain a functor

®: DCrit(Art'™)°P — Fun(AL, Pr{"™)

encoding the t-exact perverse pullbacks 7#: D(B) — D(X) for (7: X — B, s,0) in DCrit(Art'™), together
with the associative natural isomorphisms ay, 3. The compatibilities between o and the various natural
isomorphisms f3, 7, §, and TS can be encoded as invertible 2-morphisms in the oo-category Fun(A?, Prit’t),
so these also extend to Art'™. |

6. PERVERSE PULLBACKS FOR EXACT (—1)-SHIFTED SYMPLECTIC FIBRATIONS

In this section we translate the construction of perverse pullbacks from the setting of morphisms of
algebraic stacks equipped with a relative d-critical structure to the setting of morphisms of derived algebraic
stacks equipped with a relative exact (—1)-shifted symplectic structure.

6.1. D-critical and shifted symplectic structures. The main source of relative d-critical structures is
given by the theory of shifted symplectic structures [Pan+13]. Namely, given a morphism of derived stacks
X — B the references [Pan | 13; Cal + 17; CHS25; Par24] define the spaces A>Y(X/B,n) (A%>*(X/B,n)) of
relative closed (exact) two-forms of degree n using the cotangent complex of derived stacks together with a
natural morphism A%**(X/B,n) — A%>°Y(X/B,n) and a forgetful map A>°!(X/B,n) — A%(X/B,n) to the
space of two-forms of degree n.

When X — B is a morphism of derived stacks with a perfect cotangent complex (e.g. an lfp geometric
morphism), an (exact) n-shifted symplectic structure is an element w € A%(X/B,n) (w € A>**(X/B,n))
such that the underlying 2-form induces an isomorphism w: LY /B = Lx,g[n]. We have the following natural
source of exact n-shifted symplectic structures.

Proposition 6.1. Let 7: X — B be a morphism of derived stacks together with a Gy, -action on X such that
7 is invariant. Let w € Z be an integer invertible in k. Let A>*(X/B,n)(w) and A*>Y(X/B,n)(w) be the
spaces of exact and closed relative n-shifted two-forms on X — B of weight w with respect to the Gy, -action.
Then the natural morphism

A%*(X /B, n)(w) — A% X /B, n)(w)

is an isomorphism. In particular, every n-shifted symplectic structure of weight w is canonically exact.
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Proof. We freely use the notation from [Pan+13; Cal+17]. Recall that for a morphism of derived stacks
X — B one has the relative de Rham complex

DRy (X) € CAlg(QCoh(B)&),
a graded mixed commutative algebra in QCoh(B) defined as in [CHS25, Section B.11] and [Par24]. Let
DR(X/B) = I'(B,DR (X)) € CAlgs™*

be the underlying graded mixed cdga over k.
If X is equipped with a G,-action, let X = [X/Gy,] and denote by

DR(X/B)(w) = I'(B x BG,, DRpxpg,, (X) ® O(—w))

m

the graded mixed complex of forms of weight w, where O(—w) is the line bundle on BG,, corresponding to
the one-dimensional Gy,-representation of weight —w. We claim that under the assumptions the complex
IDR(X/B)(w)| € Mody, is zero.

By construction the functor DRpxpg,, (—) sends colimits of stacks over B x BGy, to limits. Thus, the

m

claim is reduced to the case X is affine. The action map a: G, x X — X gives rise to the coaction map
a*: DR(X/B) — DR(X x G,/B) ~ DR(X/B) ® DR(G,),

where the last isomorphism is the Kiinneth isomorphism. The action map a is G, x G,-equivariant, where
on the left we act by the respective copy of Gy, on the corresponding factor and on the right the two copies
of Gy, act in the same way on X. Therefore, the coaction map restricts to a morphism

a*: DR(X/B)(w) — DR(X/B)(w) ® DR(Gy, ) (w).
If we denote the standard coordinate on G, by z, then DR(G,,)(w) is spanned by z* and z*~'dz. But then
IDR(Gp)(w)| = 0 since the de Rham differential is an isomorphism. In particular,
IDR(X/B)(w) ® DR(Gw)(w)| = [DR(X/B)(w)| ® [DR(Gw)(w)| = 0.
Let €: DR(Gy,)(w) — k be the counit map given by z* — 1 and dz — 0. The composite

DR(X/B)(w) > DR(X/B)(w) ® DR(Gnm)(w) 225 DR(X/B)(w)

is equivalent to the identity. Therefore, |DR(X/B)(w)] is a retract of the zero object and hence it is the zero
object itself. But since A%**(X/B,n)(w) — A%>(X/B,n)(w) is the fiber of

A*NX/B,n)(w) — A(X/B,n + 2)(w) = Mapyoq, (k[n + 2], [DR(X/B)(w)])
at the zero form, the claim follows. O

Given a derived stack B, consider the oo-category Sympf _; whose objects are Ifp geometric morphisms
m: X — B equipped with a relative exact (—1)-shifted symplectic structure w, and whose morphisms
(X1,w1) --» (Xo,wsy) are exact Lagrangian correspondences X «— L — X;. Given an lfp geometric
morphism p: By — By, it is shown in [Par24, Theorem A| that the base change functor p*: Sympf, | —
Symp3, _; admits a right adjoint py. Given (X,w) € Sympg| _;, we call

p«(X,w) € Sympf, 4

the symplectic pushforward of (X,w). It can be described explicitly as the zero locus of the moment
map, a canonical Lagrangian px: X — T*(B;/B2) (see [Par24, Proposition 2.3.1]).

Example 6.2. Let g: Y — B be an lfp geometric morphism between derived stacks and f a function on
Y. As explained in [Par24, Eq. (13)], the function f determines a relative exact (—1)-shifted symplectic
structure on the identity map Y — Y, which we also denote by f. The derived relative critical locus of
f is its symplectic pushforward
(RCrity/5(f) = B) = g«(Y. ).
When g is a smooth geometric morphism between classical stacks, RCrity /z(f) is a derived enhancement of
the relative critical locus defined in Definition 1.10. When f is zero, the derived critical locus recovers the
(—1)-shifted cotangent stack T*[—1](Y/B).
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Any morphism X — B of derived stacks induces on classical truncations a morphism X — B fitting
in a commutative square

X614>X

L

B —— B.
In particular, we obtain a pullback morphism A%**(X /B, n) — A%*(X /B n).
Theorem 6.3. Let X — B be an lfp geometric morphism of derived stacks equipped with a relative exact

(—1)-shifted symplectic structure w € A?>*(X/B,—1). Let i: X' — X be the inclusion of the classical
truncation. Then i*w is a relative d-critical structure on X' — B

Proof. Let us first prove the claim when the base B is a classical affine scheme. By [Par24, Corollary 4.2.2],
there exists an LG pair (U, f) over B and a (—1)-shifted exact Lagrangian correspondence

L
N
RCI‘itU/B (f) X,

where RCrity g (f) is the derived critical locus, a®! is an isomorphism and b is smooth surjective. In particular,
we have a smooth surjective morphism 5% o (a®)™!: Crity/p(f) — X such that

(b o (a®) ") *(i*(w)) = 55 € A>(Crityp(f)/B, —1).
By Proposition 4.13(2), i*w is a d-critical structure.

For a general derived stack B we consider the commutative diagram

XIHXCIHX

L

B/HBCIHB,

where X’ — B’ is a morphism of classical schemes and X’ — X! x ga B’ is smooth, where we consider the
fiber product in the co-category Stk. We have to prove that the pullback of w to X’ — B’ defines a relative d-
critical structure. By Proposition 4.13(2) it is enough to prove the claim when B’ is a classical affine scheme.
By the previous argument we know that the pullback of w to (X x% B’)! — B’ defines a relative d-critical
structure, where X x5 B’ is the fiber product in the co-category dStk. But X’ — (X x& B') = X x ga B’
is smooth by assumption, so by Corollary 4.8(1) the pullback of w to X’ — B’ defines a relative d-critical
structure. (]

We will next discuss orientations of such relative d-critical structures by describing the relative canonical
bundle Kx,/p = det(LLx/g). For a morphism of derived stacks X — B equipped with a relative (—1)-shifted
symplectic structure and a point z € X we construct an isomorphism

K9 Kx/po = det(77Lx g o) ®*
by the composition
Kx/p. = det(rS 'Lx,p,) ®det(t°°Lyx/p ) = det((17Ly/p,.) ¥ [1]) @ det(7°Lx 5. )
~ det(77°Lyp,.)%%,
where the first isomorphism is induced by the fiber sequence
T~ x/po — Lx/pe — 7 Lx/Bx

and the second isomorphism is induced by (—-w) |, 757 Ly g, = (77Lx,/p ) ¥ [1].
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Example 6.4. Let B be a scheme and (U, f) an LG pair over B. Let X = RCrity,g(f) be the derived
critical locus which carries a relative (—1)-shifted symplectic structure. We have a fiber sequence

Ly/glx — Lx/p — Lxu

and an isomorphism Lx /iy = Ly 7+ @w/B)lx = ]Lé/B [1]|x, hence we obtain an isomorphism

A, gy: Kx/plxres = K g xrea.
For x € X the diagram

Aw,ple
(6.1) Kx/po —————"—> Kl(?/2B

der

det(77°Ly/p ;)% —— det(Q ®2

_1Xc1/37 )
commutes up to the sign (—1)4™ /B2, This follows from the commutativity of the diagram [KPS24, (3.25)]
together with the discrepancy of the sign convention for k, explained in Remark 3.34.

Next we describe the behavior of the canonical bundle with respect to Lagrangian correspondences. Con-
sider a Lagrangian correspondence Y <2~ L 2% X of relative exact (—1)-shifted symplectic stacks over B.
As in [KPS24, (3.5)] we have a natural isomorphism

(6.2) Tionav): Kx/ple ® KPP = Kyl

Explicitly, this isomorphism is constructed as follows. First, there is an obvious isomorphism
Kx/lt ® Kp)x @ Kf )y = Ky /|1

On the other hand, the Lagrangian structure induces an isomorphism L} /X[l] =~ Ly [—1], which in turn
induces Ky )x =~ K/ Iy and hence we obtain the desired isomorphism. Note that if gx: L — X is smooth,
using the isomorphism L} x = Lzy[—2], we get that L)y is 2-connective. The following statement
for Y and L schemes and ¢x schematic in [Ben+15, Theorem 3.18(b)] and [Kin22, Theorem 4.9] (see also
[KPS24, Proposition 6.9] for a closely related statement). The proofs use the standard commutative diagrams
involving the isomorphisms i(A) and work verbatim for higher Artin stacks.

Lemma 6.5. Let B be a scheme and Y <2~ L 25 X be a Lagrangian correspondence of relative ezact
(—1)-shifted symplectic stacks over B. Assume that qx is smooth. For a pointl € L the diagram

der ‘
(ax,ay) !t

2
Kx/Bax) ® Kfix, Ky B.av )
l"‘;?(w@d l”‘;@r(z)
>0 ®2 ®2 D)’ >0 ®2
det(72"Lx/B,gx (1)) ® Ky, > det(77"Ly/B,qy (1))

commutes up to the sign (—1)dim(L/X), where the bottom isomorphism is induced by the fiber sequence
A: 72 Lxpax ) — 7 Lrypi — Lix
as well as the isomorphism ¢§ : 7°%Ly /g g 1) — 77 L5 -

We are now ready to compare the virtual canonical bundles of a relative d-critical locus and its derived
enhancement.

Proposition 6.6. Let X — B be an lfp geometric morphism of derived stacks equipped with a relative exact
(—1)-shifted symplectic structure w € A>**(X/B,—1). Let i: X' — X be the embedding of the classical
truncation. Then there is an isomorphism

. ~ vir
AX.KX/B|Xred - Xel/Bel
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such that for every x € X the diagram

Ax |z vir

(6'3) KX/B,gc Xel/Bel z

der
lnz l’iz

%
det(,rzo]]-‘X/B,w)®2 ; det(TZOLXcl/Bc17x)

commutes up to the sign (—1)rk(Q§</Bv1').

Proof. (6.3) uniquely determines the isomorphism Ay if it exists. The isomorphism £ is natural with

respect to base change since it involves the isomorphisms i(A) which are natural for isomorphisms. The
isomorphism k, is natural with respect to base change by Proposition 4.14(4). Therefore, it is enough to
establish the existence of the isomorphism Ax fitting into a commutative diagram (6.3) for B a classical
affine scheme.

As in Theorem 6.3 we may find an LG pair (U, f) over B and a (—1)-shifted exact Lagrangian correspon-

dence
L
RCI‘itU/B (f) X,

a®! is an isomorphism and b is smooth surjective. In particular, we get a smooth surjective morphism
c: R = Crityp(f) — X under which c¢*i*w = sy and such that the restriction i¥ : Lr/x — Lg/xea is an
isomorphism. Consider the unique isomorphism

AX}U: KX/B‘Rx'ed l’ K;(i({]/B|Rred
which fits into the diagram

der

2 (b,a)
KX/B Rred @ KI®//X Rred — > KRCritu/B(f)/B Rred
J{Ax,z@if \LA(U,.ﬂ
T

vir R—xcl vir
s — R

X<l/B

2
Rred ® K% el

Using the commutative diagram (up to sign) (6.1), the compatibility of £°" with Y4¢* given by Lemma, 6.5
and the compatibility of x with Y given by Proposition 4.14(4), for every r € R the diagram
Ax,ulr

KX/B,c(r) - K}/(i:l/Bcl,C(T)

lng‘(e;) lﬂa(v»)

det(r> Loy /5 o)) — = det(r> Loy g o(r))

commutes up to the sign (—1)"*(?x/5.2)  Therefore, Ax y descends along ¢ to an isomorphism A x independent
of choices. ]

We also note that the symplectic pushforward in [Par24] is compatible with the d-critical pushforward
along smooth morphisms.

Proposition 6.7. Consider lfp geometric morphisms of deried stacks X — By 2> Bo, where p is smooth,
equipped with a relative exvact (—1)-shifted symplectic structure w € A%*(X/By,—1). Then we have a
canonical isomorphism py (X, w) = pS (X< i*w) compatibly with the relative d-critical structures over BS'.

We now describe the behavior of the canonical bundle under the symplectic pushforward.
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Proposition 6.8. Consider lfp geometric morphisms of derived stacks X = B 2 S, where w is equipped
with a relative eract (—1)-shifted symplectic structure w € A>**(X/B,—1). Let T: ps(X,w) — S be the
symplectic pushforward, which fits into a commutative diagram

p*(X,w)—r>X

Then there is a canonical isomorphism
(6.4) 25t Kx Bl (x.0) ® K5l (x.0) = Kpy (x5
which satisfies the following:

(1) (It 18 {u(nctor;’al for compositions: Eﬂfr = id and given another morphism q: S — T with R =
qop)x(X,w) the diagram

id®i(A)?2
(6.5) Kx/plrn® K35 |r @ K§jpln ——— Kx/plr @ K31 |r

izge‘@d lzgg;
der
xde

2
Ky, (X w)/5|R ® K& | r ——————> K(qop)s (X,0)/R

commutes, where the top horizontal morphism is induced by the fiber sequence
A: p*]LS/T - ]LB/T I LB/S-

(2) Consider a commutative diagram of derived stacks

(6.6) X —>B sy

X—-p-"r.g

with all morphisms Ifp, the left square being Cartesian, equipped with a relative exact (—1)-shifted
symplectic structure w € A>**(X /B, —1) and let W' € A>**(X'/B’,—1) be the base change. Assume
that the map B' — B x5 S’ is smooth. We set R := p/,(X',w')". Then the diagram

vder@id
®2 ®2 L ®2
Kx/Blr ®KB/S|R’ ® KB’/BXSS’|R/ > Ky (xw)/s|r ®KB//BXSS/|R’

(67) KX’/B’lR’®Kg/23|R’®K®/2/BXSS/|R' Kp*(X,w)XsS'/S’|R’®K%/2/BXSS/‘R’
fd@(“ jr?::;
Kxip/|r ®K§,2/S,|R/

K / 7w ’ 4
ST p(xr w57 R

commutes, where
A LB/S|B’ —> LB’/S’ — LB//BXSS’
and
X' xrxpys) B
P (X', W) px(X,w) x5 5"

1s the Lagrangian correspondence given by the Beck—Chevalley map.
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(3) Assume that we are given an exact Lagrangian correspondence (Y,w') <2~ L 5 (X,w) over B,

q Jw! q ,w .
where qx s a smooth morphism. We let p,(Y,w’) 2 0) psL P (X0) (X,w) denote the induced
Lagrangian correspondence. Then the following diagram commutes:

der

KX/B|p*L®K%/23‘p*L®K?/2x|p*L : r Ky (XW)/S|p>x<L® p*L/p*(Xw)

der der
l’r(quqy) lr(qp*(wi)’qp*(\’,w/))
der
Ky /5lp.r ® K&%| r K \
Y/BlpxL B/S|pxL px(Yw')/SIpx L

(4) Assume that p is smooth and let s be the underlying d-critical structure on p': X! — B, Then the
following diagram commutes:

Eder
K x/Blpg (x0ye1 @ KBl (x et = Koy (x,0)/8|pa (x 0o

J/AX J/AP* (X,w)
b

vir ®2 »e! vir
KXo palpgxer syrea ® K i galpg (xesyed = Kl v o) getlpg (xet gea-
Proof. We first construct the isomorphism (6.4). Recall from [Par24, Proposition 2.3.1] that the stack
P« (X, w) fits into the Cartesian diagram
pe(X,w) —— X
B —2— T*(B/S).
In particular, there is a canonical isomorphism
Lpy(xw)/x = L s/9)lps(xw) = Lgs[Ulps x.0)-
Therefore we obtain a fiber sequence
A Lx/slpsxw) = Lpsxwys = Liys[Ulpw o)
which induces an isomorphism
i(A) v
Ky (xaw)/s = Kx/slps(x.) ® det(Lg s [1]) |y (x.0)

(6.9) s

KX/S|p*(X,w) ® det(}Lé/S)v |:D*(X7w)

1d®LLB/S

Kx /8l pa (X ,w) ® Kp/slpy (x,0)-

Now consider the fiber sequence
A" Lps|x = Lx/s = Lx/p-
It induces an isomorphism

Combining (6.9) and (6.10), we obtain the desired isomorphism.

The property (1) is obvious from the construction. The property (2) is obvious when the right square in
the diagram (6.6) is Cartesian. Therefore it is enough to prove the case when p and ay are identity maps.
Since we have pl, (X xp B ,w|xxz8) = 01,%(X xg B ,w|xxzp) = (X,w) x T*[-1](B/S), we may further
assume that X = B. In this case, the correspondence (6.8) is identified with the following Lagrangian

correspondence

T*[—1](B'/B)
108



given by the zero section. The map LE,/B[I] = Lp/r+[-1)(8//B)[—1] induced from the Lagrangian corre-
spondence is equivalent to the natural map. In particular, the isomorphism T‘(i;f 0) is identified with the
following isomorphism

Krs[—1)5/B)/BlB = Kp/p ® K jrs_11(5/8) = Kpr/p @ det(Lp s —1)(5/5)[—1])

=Kpp ®det(Ly 5[1]) = K%,Q/B.

On the other hand, ng’r is identified with the isomorphism

K%/Q/B =~ Kpyp @ Krx[_1)(B//B)/B' |B' = K1*[—11(B//B)/B'| B'

where the first isomorphism is induced by the isomorphism LT*[—l](B'/B)/B/\B' =~ L+ (p/B) = Lé,/B[l].
Therefore we obtain the commutativity of the diagram (6.6).

The property (3) is obvious from the construction. To prove the property (4), using (2) and Proposi-
tion 4.21(2), we may assume that B and S are classical affine schemes. Further, using (3), Proposition 4.21(3)
and [Par24, Corollary 4.2.2], we may assume that there exists a LG pair (U, f) over B and X = RCrity,g(f).
Using the functoriality of the isomorphism Eger7 we may assume X = B = U and the relative exact (—1)-
shifted symplectic structure is induced from f. In this case, we have p,(X,w) = RCrity,s(f) and the
isomorphism E;}er is identified with the isomorphism

~ ~ ®2
Krcrity)s(£)/5 = Kuyslreritys (1) @ Kreritys(5)/0 = Kiyjglrerity s (1)

where the latter isomorphism is induced from the isomorphism Lgcyis,, s(HU = Ly w)s) IrCrity s(f) =

\

U/S[—l]. On the other hand, ¥« is given by the natural isomorphism Kgrﬂtu/s(f)/s ~ K((??S\Critws(f)red.
By the construction of the map Agcyis,, Js(f)> e obtain the desired claim. (Il

Definition 6.9. Let 7: X — B be an lfp geometric morphism of derived stacks equipped with a relative
exact (—1)-shifted symplectic structure w. An orientation of (7: X — B,w) is a pair (£, 0) consisting of
a graded line bundle £ on X together with an isomorphism o: £®% = Kx/p = det(Lx/p)-

By Theorem 6.3 the induced morphism on classical truncations 7°': X! — B inherits a canonical relative
d-critical structure, and Proposition 6.6 implies that an orientation o of the relative exact (—1)-shifted
symplectic structure on X — B naturally induces an orientation o of the relative d-critical structure on
Xcl N BCl.

In the setting of Proposition 6.8, suppose that we are given an orientation (£, 0) for (X — B,w). Then
we define an orientation pyo on py(X,w) — S as the composite

)®2 o® 2

id P
Px0% (Llpy(x,0) ® K5l (x,0) % T Kx/Blps (x.0) ® K5 glps (x,0) = Kpy(x)/s-

As a special case, when X = B and w is induced from a function f on X, we equip 7: X — X with the

can .

obvious orientation 0§ I (’)?2 =~ Kx/x and define the canonical orientation Of&%lritx/g( /B = p*og(afx on
RCrit(f) = p«(X,w) — B. As aspecial case when f = 0, we obtain a canonical orientation on o%a,,?[_l](x/B)/B
on the (—1)-shifted cotangent stack T*[—1](X/B) — B. When X is smooth over B, it is clear from the
construction that the canonical orientation of the derived critical locus is compatible with that canonical
orientation of the classical critical locus with the natural d-critical structure. Namely, there exists natural
isomorphism
(Oﬁk%lritx/B(f)/Byl = O((:Tz;rilt 1 g (f)/B<”
xcl/pe

6.2. Perverse pullbacks. It is useful to express perverse pullbacks constructed in Theorem 5.24 in the lan-
guage of shifted symplectic geometry. For this, let R be a commutative ring and for a derived stack X define
Shv(X; R) = Shv(X°; R) and similarly for D(—), Perv(—). Let X — B denote an lfp morphism between
derived Artin stacks equipped with a relative exact (—1)-shifted symplectic structure w € A*(X/B,—1)
and an orientation o. Then Proposition 6.6 implies that the morphism induced on the classical truncations
X — B is naturally equipped with an relative exact d-critical structure, and inherits an orientation o°.
Therefore, by Theorem 5.24 we obtain a perverse pullback functor

7#: Perv(B) — Perv(X).
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When R is a field, it extends to a functor 7%¥: D(B) — D(X). The perverse pullback functor for morphisms
with oriented relative exact (—1)-shifted symplectic structures satisfies the following properties, as a direct
consequence of the corresponding properties in the d-critical setting (Theorem 5.24):

(1) Assume that we are given a finite morphism c: B — B and form the Cartesian diagram

¢

X ‘5 X
lfr l
B —~— B.

Equip 7: X — B with the pullback relative exact (—1)-shifted symplectic structure and orientation.
Then there exists a natural isomorphism

(6.11) /BC: WLPC* = E*,ﬁ-S@.
(2) Assume that we are given a smooth morphism p: B — S. Let p, (X, w) be the symplectic pushforward

which fits into a commutative diagram

pe(X,w) —— X

|7 .

S«—— B.
Equip p4(X,w) with the pushforward orientation p,o. Then there exists a natural isomorphism
(6.12) Yp: TPl T iy TP
(3) Let o be the orientation for (X — B, —w) defined in a similar manner as (4.20). We let 7%~ denote
the perverse pullback for (X — B, —w) with respect to 0. Then there is a natural isomorphism
§: 7D = Dr¥.

(4) Assume that we are given lfp morphisms between derived Artin stacks m;: X; — B; for i = 1,2
equipped with relative exact (—1)-shifted symplectic structures w; € A***(X,;/B;, —1) and orienta-
tions 0;. Equip 71 x mo: Xy x X9 — Bj X By with the relative exact (—1)-shifted symplectic structure
w1 Hws and orientation o1 [X] 0o. Then there exists a natural isomorphism

TS: wf (<) Wrg(—) > (m x m)P(~ B ).

The isomorphism « constructed for perverse pullbacks along morphisms equipped with a relative d-critical
structure has the following meaning in terms of shifted symplectic structures.

Proposition 6.10. Let 7: X — B be an Ilfp morphism of derived Artin stacks equipped with a relative
exact (—1)-shifted symplectic structure and orientation. Let p: B' — B be a smooth geometric morphism,
7' X' — B’ an lfp morphism of derived Artin stacks equipped with a (—1)-shifted symplectic structure,

X L4 X%, B

a Lagrangian correspondence over B' with § smooth, and q = pryoq: L — X the composite. Regard «' with
the induced orientation (6.2). Then there is a natural isomorphism

(6.13) W gy (0)FPT 5 dhg'n?
of functors Perv(B) — Perv(X').

Proof. On classical truncations, ¢ induces a smooth morphism f: (X")! ~ L — (X xp B')? — X°L.
Consider the relative d-critical structures s and s’ on 7¢': X! — B and 7/!: (X')?! — (B")! induced by
the relative (—1)-shifted symplectic structures on 7 and 7 (see Theorem 6.3). Using the given Lagrangian
correspondence, we obtain f*(sz) = s1. Applying Theorem 5.24(1) thus yields the isomorphism (7/°!)¢p! =~
fT(rh¥. Translating from the language of relative d-critical structures to the language of relative exact
(—1)-shifted symplectic structures, this becomes the isomorphism asserted. O

Remark 6.11. When p = id (resp. (¢,¢') = (id,id)), we will write a(q,q) = @ (q.¢) (TESP. p = O (q.4))-
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While we have defined d-critical pushforwards only along smooth morphisms, symplectic pushforwards are
defined along arbitrary Ifp geometric morphisms. We have the following additional compatibility between
perverse pullbacks and symplectic pushforwards with respect to closed immersions.

Proposition 6.12. Suppose given Ifp morphisms of derived Artin stacks X = B £ S, where p is a closed
immersion and T is equipped with a relative exact (—1)-shifted symplectic structure w € A>**(X /B, —1). Let
T: pe(X,w) — S be the symplectic pushforward, which fits into a commutative diagram

(X, w) s X

Pk

S<~— B.

Assume further that m: X — B is equipped with an orientation o, and equip T: px(X,w) — S with the
orientation pyo. Then r is smooth, and there is a canonical isomorphism

(6.14) Ep: TPy —> rim?,
functorial for compositions in p. Moreover, we have the following compatibilities between €, and the isomor-
phisms «, B, v, §, and TS of Theorem 5.2/:
(1) Let h: 8" — S be a smooth morphism and set B’ := B xg S’ with projections h': B' — B and
p': B — S Let 7': X' — B’ be an lfp geometric morphism equipped with a relative exact (—1)-
shifted symplectic structure w’, and
XL L4 XxyB
a Lagrangian correspondence over B’ with ¢ smooth. Form the symplectic pushforward S’ <—

Ph (X' W) s X' and consider the induced Lagrangian correspondence
Pl (X' W) Ky i>p;<(X xp B, h*w) =~ pu(X,w) xg S’
Then q is smooth, and the following diagram commautes:

Ex!

(T) 20 (W) 2 ()2 hip, 2 g gtnep,

() ()P () e, () % > g,

29,9 X'*
where g :=pry0§: L — X, §:=pryoq: L — ps(X,w), and « is as in Proposition 6.10.

(2) Assume that we are given a finite morphism from a derived Artin stack co: S" — S, ¢1: B’ — B,
p': 8" — B’ and form the following commutative diagram:

X' xrs(py5) B

i \

p*(X,W Xsg S/ / /) —T> XI
’ q ’
Co Xslds/ /ﬂ'
P (X, w) L X

=1l

\ 1,

P B/

S/ g B%

Here, the right square is Cartesian, w' € A»®X( X’/B’ 1) is the restriction of w, the front and
back squares are symplectic pushforward squares, ¢4 is the base change of ca, and i and h are the
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natural morphisms. Then h is smooth, © induces an isomorphism on the classical truncation and the
following diagram commutes:

Be Q(n,i)
= ~ = / 2 /(= : ’ : /o —/ ’
TOPsCl iy ——> TP Dy —— Ch (T X gidgs)?pl, —— ¢ ,ixh(7) D)

TTW“"CL* ? TTq*(ﬂ")‘P cé,*i*hT(T’)T(ﬂ’)“".
c1

Ex!*
(8) Assume that p fits in the following Cartesian diagram:

R+—— ¢
p

[

S+ B
where p is a closed immersion and q is smooth. Form the following commutative diagram:

DG (X, w) _— g% (X, w)

S
/ .y / ’
™ ™

Here, the top and bottom squares are Cartesian and the other four squares are symplectic pushforward
squares. Then the following diagram commutes:

!

Ex; _
ﬁsﬁp*q’f & ﬁ-tqulj* L g*(ﬁ-/)%ﬁ*

rireqgt — s ()% . 5,71 (m')%.
*
(4) We let w#~ denote the perverse pullback for (X — B,—w) with respect to the orientation 0 and
define ™~ in a similar manner. Then the following diagram commutes:

I,D
rireD — 2 piDre— EX L pptge—

ﬁ—@p*D m ﬁva* T} Dﬁw’_p*.

(5) Let X; =% B; 2, 8; be lfp morphisms between derived Artin stacks for i = 1,2, where m; is equipped
with a relative exact (—1)-shifted symplectic structure w; € A>**(X;/B;,—1) and an orientations o;.
We let ;2 pi «(Xi,wi) — S; be the symplectic pushforward and r;: p; +(X;,w;) — X; be the natural
map. Equip T X mo, T, T2 and Ty X To with orientations 01 X102, P1,%01, P2,%02 and Py 501 X P2 502
respectively. Then the following diagram commutes:

AL (=) BFEP2+ (=) =2 (F1 % 72)# (1,4 (=) Wp2,e(—)) —— (F1 % 72)#(p1 x po)u((—) B (—))

Eplsle lspl X P2

rinf (() Erinf (=) —=— (r1 x ) (af (1) D7 (-)) —5— (r1 x r2)T(m x m2)?((=) B (-)).
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Proof. To see that r is smooth, recall that p,(X,w) can be described as the zero locus of the moment map
px: X — T*(B/S) (see [Par24, Proposition 2.3.1]). Since p is unramified, L /g is of Tor-amplitude < —1.
Hence the zero section of T*(B/S) has cotangent complex of Tor-amplitude > 0 and is smooth.

To construct the isomorphism (6.14), form the Cartesian square of derived stacks

ps(X,w) xg B LN (X, w)

I I

B—r 5
and regard 7 with its induced oriented relative exact (—1)-shifted symplectic structure. Denote by ¢: py (X, w) —
px(X,w) xg B the unique morphism equipped with identifications p’ 07 =~ id and w o r = 7 o 4. Then the

diagram
DPx (Xa w)
X

px(X,w) xg B

defines an oriented Lagrangian correspondence between 7 and 7. Since 7 factors through p and p is a closed
immersion, p’ induces an isomorphism on classical truncations and hence so does its section i. Applying
Proposition 6.10 we deduce the canonical isomorphism 4,7 7% =~ 7%, hence r'7% =~ p/ 7. Combining this
with the canonical isomorphism 7#p, = p, 7% of Theorem 5.24(2), using that p is finite, we define:

— / —
£p: TPy = ph ¥ = rlr?,

Functoriality for compositions in p follows from the corresponding functoriality statements in Theorem 5.24(1,2).
The claims (1, 2, 3, 4, 5) follow from the fact that the map ¢, is constructed as a composite of the
isomorphisms « of Theorem 5.24(1) and 3 of Theorem 5.24(2), and these are both individually compatible
with «, 8, 7, §, and TS by Theorem 5.24. To illustrate this, we give a detailed proof of (3); the proofs of (1,
2,4, 5) are similar.
Consider the following commutative diagram:

/A

P (X, W) - g% (X, w) P (X, w) xg S’
§l J{s §><Ridsll
p*(X,LL)) — X p*(X,(U) Xs B.

Here, px and px are base change of p and p, and ¢t and ¢’ are naturally defined morphisms. By construction,
t and px are mutually inverse after passing to the classical truncation, and similarly for ¢ and px. Consider
the following diagram:

Ex,
Tepaqt = 7°q1ps 54 (7') ¥ D

L{J’p (B) /3pl

pxj*(fr ><Si(13)""(]T T [)X‘*(E XRi(ls/)*(fr/ ><Rids/)w 5*]7)(7*(771', XRids)"a

(4) la(m) (©) N (D) a(ml (@) .

Ex; _ _
pX,>x<7f>k7"Jr7T4'g(11r i) pX,*t*TTS*(ﬂJ)W i> pX,*t*g*FT(ﬂ'/)¢ e px,*(§ XR idS/)*t*FT(ﬂ'/)w — g*f)x,*t*ﬁ(ﬂ',)w

} (B) \ (F) ﬂ

rineqt s ()¢ 57 ()%,

Ep

V. !
a Exy,

It is enough to prove the commutativity of the outer square. The commutativity of the diagrams (A) and

(G) follows from the construction of the map €, and 5. The commutativity of the diagrams (D), (E) and
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(F) are obvious. The commutativity of the diagram (B) follows from the compatibility between the S_ and
~— proved in Theorem 5.24. Similarly, the commutativity of the diagram (C) follows from the compatibility
relation between o and the y_, which is also proved in Theorem 5.24. Hence we conclude the commutativity

of the outer square as desired. O
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