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Abstract. We give a short account of Voevodsky’s axiomatic con-
struction of six functor formalisms, and apply it to the motivic stable
homotopy category over derived algebraic spaces. Special care is taken
to eliminate various finiteness and separatedness hypotheses.
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Introduction

Cohomology theories of algebraic varieties take coefficients in various cate-
gories. These (∞-)categories are equipped with the formalism of six opera-
tions:

(a) Basic functoriality. For every morphism of schemes f ∶ X → Y , a
pair of adjoint functors

f∗ ∶ D(Y ) →D(X), f∗ ∶ D(X) →D(Y ).
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(b) Exceptional functoriality. For every locally of finite type morphism
of schemes f ∶X → Y , a pair of adjoint functors

f! ∶ D(X) →D(Y ), f ! ∶ D(Y ) →D(X).

(c) Tensor and Hom. For every scheme X, a pair of adjoint bifunctors

⊗ ∶ D(X) ×D(X) →D(X), Hom ∶ D(X) ×D(X) →D(X).

(d) Thom twist.1 For every scheme X and every perfect complex E , an
auto-equivalence ⟨E⟩ ∶ D(X) ≃ D(X).

This data is subject to the usual compatibilities and coherences. For example,
the tensor and Hom are part of closed symmetric monoidal structures on
D(X); the inverse image functor f∗ is symmetric monoidal; the functors f!

satisfy base change and projection formulas; there is an isomorphism f! ≃ f∗
when f is proper and an isomorphism f ! ≃ f∗⟨Ωf ⟩ when f is smooth (where
Ωf is the relative cotangent sheaf); and the Thom twist commutes with the
other six operations.

Up to this point the above description applies equally well to coherent
cohomology and the “classical” theories (`-adic, Betti, etc.). Characteristic
of the latter settings are the properties of A1-homotopy invariance and
localization. The first asserts that for every X, the projection p ∶X ×A1 →X
of the affine line induces an isomorphism

unit ∶ id→ p∗p
∗.

The second says that for any closed immersion i ∶ Z →X with open comple-
ment j ∶ U → S, there is an “exact sequence”

D(Z) i∗Ð→D(X) j∗Ð→D(U)
where i∗ is fully faithful with essential image equal to the kernel of j∗. Let’s
use the term constructible to describe categories of coefficients satisfying
both these properties2.

Typically the difficult part of constructing a six functor formalism is the
exceptional functoriality. An interesting observation of Voevodsky [Vo2] is
that, for constructible categories of coefficients, the exceptional operations
come “for free” in the sense that they are uniquely determined by the rest
of the data. More precisely, note the following consequence of the existence
of the exceptional operations: for a smooth morphism f , the isomorphism
f ! ≃ f∗⟨Ωf ⟩ implies that f∗ also admits a left adjoint f♯ (given by f!⟨Ωf ⟩)
which also satisfies the base change and projection formulas. Voevodsky’s

1If this looks unfamiliar, here are two examples. In the étale setting, ⟨E⟩ is canonically
identified with (r)[2r], where r is the rank of E . In the coherent setting (i.e., ind-coherent
or solid quasi-coherent sheaves), ⟨E⟩ is tensoring with the (graded) determinant of E . The
Thom twist is not one of the “official” six operations, but it can be recovered from them.

2In [Kh1] I used the term motivic ∞-category (of coefficients). The reason for this
rebranding attempt is that this class of categories includes many examples that have
nothing to do with motives, while any mention of motives seems to scare people away. I’m
also open to other suggestions though.
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result says that it is enough to check this property to have the full formalism
of six operations on a constructible category.

A complete account of Voevodsky’s criterion was first given by Ayoub in his
thesis [Ay], with some quasi-projectivity hypotheses that were later dropped
by Cisinski–Déglise [CD]. In this note I propose to revisit the topic again
with the benefit of recent technological advancements to give a proof that is
considerably shorter (and essentially self-contained). It is also slightly more
general in the following ways:

(a) I work in the setting of derived algebraic geometry. This generality
is necessary for some applications (see [Kh4]), and comes for free in
view of derived invariance (Lemma 2.13).

(b) I work with algebraic spaces instead of schemes. This extension also
comes for free, since every qcqs algebraic space is Nisnevich-locally
affine. However, there is one place where we will greatly benefit
from working in this larger category: see the proof of Theorem 2.43,
which uses Rydh’s result that any unramified morphism admits a
canonical, global, factorization through a closed immersion and an
étale morphism, in the category of algebraic spaces (see [Ry]).

(c) Standard arguments are used to drop noetherianness hypotheses.

(d) The exceptional operations are usually only constructed for sep-
arated morphisms of finite type. This restriction is dropped us-
ing ∞-categorical descent techniques developed by Liu and Zheng
[LZ2, LZ1].

(e) The purity isomorphism f ! ≃ f∗⟨Ωf ⟩ has also only been constructed
for smooth morphisms that are separated. This restriction is dropped
using Theorem 2.43 mentioned above. Note that in the étale setting,
this can be achieved via gluing as in [LZ2], where the homotopy
coherence problem is avoided using certain t-structure arguments.
This technique does not apply in our setting: for example, in the
stable motivic homotopy category even “constant” coefficients are
not discrete with respect to the standard t-structures.

The universal example, the motivic stable homotopy category, is discussed
in Sect. 1. The proof of Voevodsky’s theorem is undertaken in Sect. 2. I also
discuss some complementary results such as descent properties and behaviour
of objects of geometric origin.

0.1. Conventions.

● A symmetric monoidal structure on a presentable ∞-category is pre-
sentable if the tensor product ⊗ preserves colimits in each argument.
A symmetric monoidal presentable ∞-category is a presentable ∞-
category equipped with a presentable symmetric monoidal structure.

● A colimit-preserving functor of presentable ∞-categories is compact
if its right adjoint preserves filtered colimits.
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● A morphism of derived algebraic spaces is of finite type/presentation if
the induced morphism of classical truncations is of finite type/presentation.

0.2. Acknowledgments. This note is meant to subsume the still-unpublished
parts of my thesis. Thanks to my advisors Denis-Charles Cisinski and Marc
Levine for their guidance and encouragement over the years. I also thank
Marc Hoyois for helpful discussions, and Tomoyuki Abe for pointing out a
mistake in my thesis.

1. The motivic stable homotopy category

In this section we construct the ∞-category of motivic spectra over a qcqs
derived algebraic space, and show that it is a constructible sheaf theory.

1.1. Unstable category. Let S be a qcqs derived algebraic space. We write
Asp/S for the ∞-category of derived algebraic spaces of finite presentation
over S.

Definition 1.1 (Nisnevich topology).

(i) A Nisnevich square over X ∈ Asp/S is a cartesian square of derived
algebraic spaces

W V

U X

p

j

(1.2)

where j is a quasi-compact open immersion, p is étale and of finite pre-
sentation, and there exists a closed immersion Z ↪X complementary
to j such that the induced morphism p−1(Z) → Z is invertible.

(ii) The Nisnevich topology on Asp/S is the Grothendieck topology as-
sociated to the pretopology generated by the following covering
families: (a) the empty family, covering the empty space ∅; (b) for
any X ∈ Asp/S and for any Nisnevich square over X of the form (1.2),

the family {U →X,V →X}, covering X.

Remark 1.3. The Nisnevich topology admits many alternative characteriza-
tions, see [BH, App. A], [Lu2, §3.7.4], and [Kh2, §2.2].

Definition 1.4. We say that a full subcategory A/S ⊆ Asp/S is admissible if

it is essentially small3 and satisfies the following conditions:

(i) S belongs to A/S .

3As in [Ho1, App. C], it can be useful to relax the condition that A/S is essentially
small to the following weaker condition: there exists an essentially small full subcategory
A

0
/S ⊆ A/S such that every Nisnevich sheaf of anima on A/S is the right Kan extension of

its restriction to A0
/S . For example, in loc. cit. it is shown that for any scheme S (not

necessarily qcqs), the category of all smooth schemes over S satisfies this weaker condition.
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(ii) If X belongs to A/S and Y is étale and of finite presentation over X,
then Y belongs to A/S .

(iii) If X belongs to A/S , then X ×A1 belongs to A/S .

(iv) If X and Y belong to A/S , then X ×S Y belongs to A/S .

We say that a morphism f ∶ X → S is admissible (with respect to the
admissible subcategory A/S) if it exhibits X as an object of A/S .

Example 1.5. We denote by Sm/S ⊆ Asp/S the admissible subcategory of
smooth derived algebraic spaces of finite presentation over S.

Definition 1.6. Let A be an essentially small ∞-category admitting finite
coproducts and V an ∞-category admitting finite products. Following Vo-
evodsky [Vo4] we say that a V-valued presheaf F ∶ Aop → V is radditive if
it commutes with finite products, i.e., if RΓ(∅,F) is contractible and the
canonical maps

RΓ(X ⊔ Y,F) →RΓ(X,F) ×RΓ(Y,F)
are invertible for all X,Y ∈ A. Here RΓ(X,F) ∈ V denotes the sections of F
over any X ∈ C.

Definition 1.7. Let S be a qcqs derived algebraic space and A/S ⊆ Asp/S
an admissible subcategory.

(i) An A-fibred animum over S is a presheaf of anima on A/S .

(ii) An A-fibred animum F satisfies Nisnevich descent if it satisfies Čech
descent with respect to the Nisnevich topology (restricted to A/S).
Equivalently, for every Nisnevich covering family (Uα → X)α, the
augmented cosimplicial diagram

RΓ(X,F) →∏
α

RΓ(Uα,F) ⇉∏
α,β

RΓ(Uα ×
X
Uβ,F) →→→ ⋯.

exhibits RΓ(X,F) as the homotopy limit (totalization).

(iii) An A-fibred animum F satisfies A1-homotopy invariance if, for every
X ∈ A/S , the map

RΓ(X,F) →RΓ(X ×A1,F)
is invertible.

(iv) An A-fibred animum F is motivic if it satisfies Nisnevich descent and
A1-homotopy invariance. We write H(A/S) for the ∞-category of
A-fibred motivic anima over S, and simply H(S) in case A/S = Sm/S .

(v) For any ∞-category V admitting limits, we can similarly define
A-fibred motivic V-objects over S as V-valued presheaves on A/S
satisfying Nisnevich descent and A1-homotopy invariance.

Remark 1.8. The ∞-category H(A/S) is an accessible left Bousfield local-
ization of the ∞-category of A-fibred anima. In particular, it is presentable.
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This follows from [Lu1, Props. 5.5.4.2, 5.5.4.15, 5.5.8.10]. The localization
functor, which we denote F ↦ L(F), can be computed as the transfinite
composite

L(F) ≃ limÐ→
n⩾0

(LA1 ○LNis)○n(F), (1.9)

where LNis and LA1 are the Nisnevich and A1-localization functors, respec-
tively. See [Kh2, Rem. 2.4.3] and [CK, Rem. 2.1.16(iii)].

Example 1.10. For any derived algebraic space X over S which belongs to
A/S , the presheaf represented by X defines an A-fibred animum hS(X). Its
motivic localization

LhS(X) ∈ H(A/S)
is called the A-fibred motivic animum represented by X. When there is no
risk of confusion, we will sometimes write simply X instead of LhS(X).

As X ranges over A/S , the objects LhS(X) generate H(A/S) under sifted
colimits. See [Kh2, Prop. 2.4.4] and [CK, Rem. 2.1.16(iv)]. Moreover,
these objects are compact, as follows from the fact that the conditions of
Nisnevich descent and A1-invariance are stable under filtered colimits (by
[Kh2, Thm. 2.2.7] and by definition, respectively).

Example 1.11. We write

ptS ∶= LhS(S) ≃ hS(S)

for the motivic A-fibred space represented by the base S. This object is
terminal in H(A/S).

1.2. Pointed category.

Definition 1.12. Let S be a qcqs derived algebraic space and A/S ⊆ Asp/S
an admissible subcategory. A pointed motivic A-fibred animum over S is a
pair (F , s), where F ∈ H(A/S) and s ∶ ptS → F is a morphism in H(A/S).
We write H(A/S)● for the ∞-category of pointed motivic A-fibred anima,
and simply H(S)● in case A/S = Sm/S .

Remark 1.13. The ∞-category H(A/S)● is presentable and admits a canon-
ical presentable symmetric monoidal structure. We denote the monoidal
product by ∧. Moreover, the forgetful functor H(A/S)● →H(A/S) admits a
symmetric monoidal left adjoint F ↦ F+ which freely adjoins a base point.
From Example 1.10 it follows that the objects LhS(X)+ ∈ H(A/S)● are
compact and generate under sifted colimits as X ∈ A/S varies. See [Ro,
Cor. 2.32].

Example 1.14. Let E be a finite locally free sheaf on S. Write E = VS(E)
for its total space, p ∶ E → S for the projection, and E∖S for the complement
of the zero section. The Thom animum of E is the pointed motivic A-fibred
animum

ThS(E) ∶= LhS(E)/LhS(E ∖ S),
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i.e., the cofibre of the inclusion E ∖ S ↪ E taken in the ∞-category H(A/S).
This is well-defined as an A-fibred motivic space as long as p is admissible
(i.e., E ∈ A/S). As a finite colimit of compact objects, ThS(E) is a compact
object of H(A/S)●.

Example 1.15. The Thom animum of the free sheaf of rank one is denoted
simply

TS ∶= ThS(OS) = A1
S/(A1

S ∖ S).
Note that we have a canonical isomorphism

TS ≃ ΣS1(A1
S ∖ S)

in H(A/S)●, where ΣS1 denotes suspension with respect to the topological
circle.

1.3. Stable category.

Definition 1.16. Let S be a qcqs derived algebraic space and A/S ⊆ Asp/S
an admissible subcategory. An A-fibred motivic spectrum over S is a TS-
spectrum object in the ∞-category H(A/S)●. That is, it is a sequence
(Fn)n⩾0 of pointed motivic A-fibred anima Fn, together with isomorphisms

ΩT(Fn+1) ≃ Fn
for every n ⩾ 0, where ΩT denotes the loop space functor formed with respect
to TS ∈ H(A/S)● (Example 1.15). We write SH(A/S) for the ∞-category of
A-fibred motivic spectra, and simply SH(S) in case A/S = Sm/S .

Remark 1.17. The ∞-category SH(A/S) can be defined more precisely as
the cofiltered limit of the tower

⋯ ΩTÐÐ→H(A/S)●
ΩTÐÐ→H(A/S)●

which can be taken either in the (very large) ∞-category of large ∞-categories,
or in the subcategory of presentable ∞-categories and right adjoint functors
(see [Lu1, Thm. 5.5.3.18]). Dually, SH(A/S) can be described as the colimit
of the tower of left adjoints

H(A/S)●
ΣTÐÐ→H(A/S)●

ΣTÐÐ→ ⋯,
in the ∞-category of presentable ∞-categories and left adjoint functors (see
[Lu1, Cor. 5.5.3.4]). In particular, SH(A/S) is presentable.

Remark 1.18. For every n ⩾ 0 we have a pair of adjoint functors

Σ∞−n
T ∶ H(A/S)● → SH(A/S), Ω∞−n

T ∶ SH(A/S) →H(A/S)●,
which are the inclusions/projections of the nth component of the colimit/limit.
(For example, Ω∞−n((Fm)m⩾0) = Fn for every n.) Since the object TS ∈
H(A/S)● is compact, ΩT commutes with filtered colimits, so by [Lu1,
Prop. 5.5.7.6] each functor Ω∞−n preserves filtered colimits. In other words,
each functor Σ∞−n is compact.

By construction, the family of functors

Ω∞−n
T ∶ SH(A/S) →H(A/S)●
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is conservative as n ⩾ 0 varies. Dually, the functors Σ∞−n
T generate under

filtered colimits.

Remark 1.19. Combining the above with Remark 1.13, we find that the
compact objects Σ∞−n

T LhS(X)+ generate SH(A/S) under colimits as n ⩾ 0
and X ∈ A/S vary.

Remark 1.20. The presentable ∞-category SH(A/S) admits a canonical
symmetric monoidal structure. We denote the monoidal product by ⊗ and
the unit by 1S . This symmetric monoidal structure is presentable and we
have moreover:

(i) The functor Σ∞
T ∶ H(A/S)● → SH(A/S) is symmetric monoidal.

(ii) The object Σ∞
T (TS) ∈ SH(A/S) is ⊗-invertible.

In fact, Σ∞
T is universal among symmetric monoidal functors that invert

TS . This follows from [Ro, Cor. 2.22] in view of the fact that the cyclic
permutation of T∧3

S is homotopic to the identity. This follows by functoriality
from the case S = Spec(Z), see [Vo1, Lem. 4.4] or [Ay, Lem. 4.5.65].

Remark 1.21. From Lemma 1.28 below it will follow that in fact the Thom
animum ThS(E) becomes ⊗-invertible in SH(A/S) for every finite locally
free sheaf E .

1.4. Functoriality.

Proposition 1.22. Let f ∶ T → S be a morphism of qcqs derived algebraic
spaces. Let A/S ⊆ Asp/S and A/T ⊆ Asp/T be admissible subcategories such
that, for every X ∈ A/S , the base change X ×S T ∈ Asp/T belongs to A/T .
Then there exists a functor

Lf∗ ∶ SH(A/S) → SH(A/T )

satisfying the following properties.

(i) Lf∗ commutes with colimits, hence in particular admits a right
adjoint

f∗ ∶ SH(A/T ) → SH(A/S).
(ii) For any X ∈ A/S and n ⩾ 0, there is a canonical isomorphism

Lf∗(Σ∞−n
T LhS(X)+) ≃ Σ∞−n

T LhT (X ×
S
T )+.

(iii) Lf∗ is compact, i.e., its right adjoint f∗ preserves colimits.

(iv) Lf∗ is symmetric monoidal.

Proof. By assumption, the base change functor X ↦ X ×S T restricts to a
functor f−1 ∶ A/S → A/T . Restriction of presheaves along f−1 induces a
functor f∗ from A-fibred anima over T to A-fibred anima over S. It has a
left adjoint f∗ given by left Kan extension, hence characterized uniquely by
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commutativity with colimits and the formula f∗(hS(X)) ≃ hT (X ×S T ) for
any X ∈ A/S .

Since base change preserves Nisnevich covers and A1-projections, we see that
f∗ preserves motivic anima and thus induces a functor

f∗ ∶ H(A/T ) →H(A/S).
Thus it has a left adjoint given by localizing f∗:

Lf∗ ∶ H(A/S) →H(A/T ).
Since f∗ and L commute with finite products, Lf∗ is cartesian monoidal.

Since Lf∗ and f∗ both preserve terminal objects, they have obvious extensions
to pointed motivic anima:

Lf∗ ∶ H(A/S)● →H(A/T )●, f∗ ∶ H(A/T )● →H(A/S)●.
The left adjoint is the unique extension of the unpointed Lf∗ that commutes
with the functor F ↦ F+, H(A/S) →H(A/S)●. It also inherits a symmetric
monoidal structure by the universal property of [Ro, Cor. 2.32].

Since Lf∗(TS) = TT , it follows that Lf∗ commutes with the T-suspension
functor ΣT. By adjunction, f∗ commutes with ΩT. Therefore we get unique
extensions of Lf∗ and f∗ from pointed motivic anima to motivic spectra:

Lf∗ ∶ SH(A/S) → SH(A/T ), f∗ ∶ SH(A/T ) → SH(A/S)
such that Lf∗ commutes with Σ∞

T and f∗ commutes with Ω∞
T . By the

universal property of Remark 1.20, Lf∗ inherits a symmetric monoidal
structure. �

Proposition 1.23. Let f ∶ T → S be a morphism of qcqs derived algebraic
spaces. Let A/S ⊆ Asp/S and A/T ⊆ Asp/T be admissible subcategories as

in Proposition 1.22. If f is admissible, then the inverse image functor Lf∗

admits a left adjoint

Lf♯ ∶ SH(A/T ) → SH(A/S).
This functor is characterized uniquely by commutativity with colimits and
the formula

Lf♯(Σ∞
TLhT (Y )+) ≃ Σ∞

TLhS(Y )+
for any Y ∈ A/T . Moreover, it is SH(A/S)-linear; in particular, we have the
projection formula

Lf♯(G) ⊗ F ≃ Lf♯(G ⊗Lf∗(F))
for every F ∈ SH(A/S) and G ∈ SH(A/T ).

Proof. We adopt again the notation of the proof of Proposition 1.22. The
assumption that T ∈ A/S implies that the functor f−1 ∶ A/S → A/T admits a
left adjoint, the forgetful functor

(X → T ) ↦ (X → T
fÐ→ S). (1.24)

In this case f∗ coincides, at the level of fibred anima, with the functor of re-
striction of presheaves along (1.24), and admits a left adjoint f♯ characterized
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uniquely by commutativity with colimits and the formula f♯(hT (Y )) ≃ hS(Y )
for Y ∈ A/T . It is easy to check that f♯ satisfies the projection formula. More-

over, since (1.24) preserves Nisnevich covering families and A1-projections,
it follows that f∗ ≃ Lf∗ sends motivic anima over S to motivic anima over
T , and that it admits as left adjoint the functor

Lf♯ ∶ H(A/T ) →H(A/S)
which still satisfies the projection formula and is therefore a morphism of
H(A/S)-modules. Since Lf♯ preserves terminal objects, it extends to a
functor

Lf♯ ∶ H(A/T )● →H(A/S)●
which is a morphism of H(A/S)●-modules and hence induces, by extension
of scalars along the symmetric monoidal functor Σ∞

T ∶ H(A/S)● → SH(A/S),
an SH(A/S)-linear functor

Lf♯ ∶ SH(A/T ) → SH(A/S).
�

Remark 1.25. In the situation of Proposition 1.23, we will write f∗ ∶= Lf∗,
as the proof shows that the underived functor already preserves motivic
objects.

Proposition 1.26 (Admissible base change). Suppose given a cartesian
square of qcqs derived algebraic spaces

T ′ S′

T S

g

q p

f

where p and q are admissible. Then there are canonical isomorphisms

Lq♯Lg
∗ → Lf∗Lp♯,

f∗p
∗ → q∗g∗.

Proof. The first morphism is the composite

Lq♯Lg
∗ unitÐÐ→ Lq♯Lg

∗p∗Lp♯ ≃ Lq♯q
∗Lf∗Lp♯

counitÐÐÐ→ Lf∗Lp♯

and the second is its right transpose. To show that it is invertible, it suffices
to evaluate it on objects of the form Σ∞−n

T LhS(X)+, where X ∈ A/S and
n ⩾ 0, since each functor involved commutes with colimits. Then the claim is
clear. �

Corollary 1.27. Let j ∶ U → S be an open immersion of qcqs derived
algebraic spaces. Then the functor j∗ is fully faithful.

Proof. Apply Proposition 1.26 to the self-intersection square

U U

U S.

j

j
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�

Lemma 1.28. Let (fα ∶ Uα →X)α be a Nisnevich covering family. Then the
family of functors

f∗α ∶ SH(A/X) → SH(A/Uα)
is jointly conservative as α varies.

Proof. Since the functors Ω∞−n
T ∶ SH(A/S) →H(A/S) are jointly conservative

as n ⩾ 0 varies, it suffices to show the claim at the level of motivic anima.
This follows from the definitions, see [Kh2, Prop. 2.5.7]. �

1.5. Thom and Tate twists.

Construction 1.29. Let E be a finite locally free sheaf on a qcqs derived
algebraic space S. The Thom twist is the endofunctor

F ↦ F⟨E⟩ ∶= F ⊗Σ∞
T ThS(E)

of SH(A/S). By Remark 1.21 this is an auto-equivalence, whose inverse we
denote by F ↦ F⟨−E⟩. For example, we have

F⟨O⟩ = ΣT(F), F⟨−O⟩ = ΩT(F)
for all F ∈ SH(A/S).

Proposition 1.30. Let f ∶ T → S be a morphism of qcqs derived algebraic
spaces and let E be a finite locally free sheaf on S. Then we have:

(i) There is a canonical isomorphism

f∗(F⟨E⟩) ≃ f∗(F)⟨f∗E⟩,
natural in F ∈ SH(A/S).

(ii) There is a canonical isomorphism

f∗(G⟨f∗E⟩) ≃ f∗(G)⟨E⟩,
natural in G ∈ SH(A/T ).

(iii) If f is admissible, then there is a canonical isomorphism

f♯(G⟨f∗E⟩) ≃ f♯(G)⟨E⟩,
natural in G ∈ SH(A/T ).

Proof. The first claim follows from the fact that f∗ sends the Thom ani-
mum ThS(E) to ThT (f∗E). The second and third follow from the first by
adjunction and by the projection formula, respectively. �

Proposition 1.31. Let S be a qcqs derived algebraic space and let

E ′ → E → E ′′

be an exact triangle of finite locally free sheaves on S. Then there are
canonical isomorphisms

F⟨E⟩ ≃ (F⟨E ′⟩)⟨E ′′⟩ ≃ (F⟨E ′′⟩)⟨E ′⟩,
natural in F ∈ SH(A/S).
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Proof. The claim is clear when the triangle is split. To reduce to this case,
consider the derived algebraic space parametrizing splittings; since it is an
affine bundle (being a torsor under the Hom-bundle HomS(E ′,E ′′)), inverse
image along it is fully faithful by homotopy invariance. �

Remark 1.32. The Thom twist construction ⟨E⟩ extends from locally free
sheaves to perfect complexes. In fact, it extends to a canonical map of
spectra

K(S) → AutSH(A/S)(SH(A/S)) ≃ Pic(SH(A/S)),
where the target is the ∞-groupoid of automorphisms of SH(A/S) as a
SH(A/S)-module. Moreover, the map is natural in S (with respect to inverse
image). This essentially follows from Propositions 1.30(i) and 1.31. More
precisely, by Nisnevich descent (which we will prove in a more general setting
in Theorem 2.51) it is enough to construct the map on the site of affine
derived schemes. In that case, the source is the group completion of the
presheaf of finite locally free sheaves and the target is group-complete. Hence
the map in question is induced by (the motivic localization of) the canonical
map sending a finite locally free sheaf to the associated Thom animum
(viewed as a fibred animum).

Notation 1.33. Writing

1 ∶= [OS] ∈ K(S), n ∶= n ⋅ 1 ∈ K(S)
as usual leads to the notation

F⟨1⟩ ∶= F⟨OS⟩ = ΣT(F)
as well as more generally

F⟨n⟩ ∶= F⟨O⊕nS ⟩, F⟨−n⟩ ∶= F⟨−O⊕nS ⟩,
for any integer n ⩾ 0.

Notation 1.34 (Tate twist). For any F ∈ SH(A/S) and any integer n ∈ Z
we write

F ↦ F(n) ∶= F⟨n⟩[−2n],
so that F(n)[2n] = F⟨n⟩.

Remark 1.35. Tate twists can be defined without reference to Thom twists:
we have

F(1) ≃ F ⊗Σ∞
T (A1

S ∖ S)[−1],
where A1

S ∖ S is pointed by any nonzero section (e.g. by the unit section).
This follows from Example 1.15.

1.6. Localization. Let S be a qcqs derived algebraic space and suppose
given a diagram of qcqs derived algebraic spaces

Z S Ui j

where i is a closed immersion and j is the complementary open immersion.
We refer to this data as a (qcqs) closed/open pair in S.
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Theorem 1.36. Let S be a qcqs derived algebraic space and (i, j) a
closed/open pair in S as above. Assume that every X ∈ A/S is smooth.
Then we have:

(i) The direct image functor i∗ ∶ SH(A/Z) → SH(A/S) is fully faithful.

(ii) An A-fibred motivic spectrum F ∈ SH(A/S) belongs to the essential
image of i∗ if and only if j∗(F) ≃ 0.

Proof. These claims are proven at the level of pointed motivic anima in [Kh2,
Thm. 3.2.4]. They imply that the functor

i∗ ∶ H(A/Z)● →H(A/S)●

lifts to a morphism of H(A/S)●-modules (see [Kh2, Prop. 3.4.2]). Extending
scalars along Σ∞

T then yields the claim for motivic spectra. �

Remark 1.37. An equivalent reformulation of Theorem 1.36 is that, for any
closed/open pair (i, j) as above, there is a canonical exact triangle

j♯j
∗(F) counitÐÐÐ→ F unitÐÐ→ i∗i

∗(F),

natural in F ∈ SH(A/S).

Example 1.38. Let p ∶ E → S be the total space of a finite locally free sheaf
E on a qcqs derived algebraic space S. Denote by s ∶ S → E the zero section
and consider the following diagram.

S E E ∖ S

S

s j

p
q

Assume that p is admissible. Applying Remark 1.37 to the upper row and
then taking the ♯-direct image along p, we have an exact triangle

q♯(1E∖S) → p♯(1E) → p♯s∗(1S).

This is identified with the image along Σ∞
T of the cofibre sequence of pointed

motivic anima

LhS(E ∖ S)+ → LhS(E)+ → ThS(E)

of Example 1.14. In particular, there is a canonical isomorphism

p♯s∗(1S) ≃ Σ∞
T ThS(E).

In fact, by the projection formula, it follows that there is a canonical isomor-
phism

p♯s∗ ≃ ⟨E⟩

of auto-equivalences of SH(A/S).
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1.7. Examples of motivic spectra.

Example 1.39 (K-theory). Over every qcqs derived algebraic space S, there
is a motivic spectrum KGLS ∈ SH(A/S). It is stable under arbitrary inverse
images: there are canonical isomorphisms

Lf∗(KGLS) ≃ KGLT

for every morphism f ∶ T → S of qcqs derived algebraic spaces.

We recall the construction, which essentially follows Voevodsky [Vo1, 6.2]
and Cisinski [Ci]. For a qcqs derived algebraic space S, let KH(S) denote its
homotopy invariant K-theory spectrum (see [Kh3, §5.4]). Let KHS denote
the presheaf X ↦ KH(X) restricted to the site A/S . This satisfies Nisnevich

descent and A1-invariance, hence defines an A-fibred motivic S1-spectrum (in
the sense of Definition 1.7(v) with V the ∞-category of spectra). Moreover,
it can be described as the Bott periodization of the connective K-theory
spectrum [Kh3, Proof of Thm. 5.13]. It follows therefore from [Ho3, Prop. 3.2]
that KHS deloops uniquely to a Bott-periodic motivic E∞-ring spectrum
KGLS ∈ SH(A/S). Since KHS is stable under inverse image in S [Kh3, Proof
of Thm. 5.13], so is KGLS .

Example 1.40 (Motivic cohomology). We define the motivic cohomology
spectrum Zmot

S ∈ SH(Sm/S), over a qcqs derived algebraic space S, as the
inverse image of Spitzweck’s motivic cohomology spectrum over Spec(Z)
[Sp]. For S the spectrum of a field (resp. Dedekind domain), Zmot

S can
be described in terms of the Bloch (resp. Bloch–Levine) cycle complexes
(see [Sp, Sect. 5, Thm. 7.18]). For S a noetherian classical scheme of finite
dimension, Zmot

S agrees with the cdh-local motivic cohomology spectrum of
Cisinski–Déglise, at least up to inverting the exponential characteristic [CD1,
Rem. 3.7]. It is stable under inverse image by definition.

Example 1.41 (Algebraic cobordism). We define the algebraic cobordism
spectrum MGLS ∈ SH(A/S), over a qcqs derived algebraic space S, as the
homotopy colimit

MGLS = limÐ→
(X,E)

f♯(1X)⟨E⟩

over the ∞-category4 of pairs (X,E) with f ∶X → S an admissible morphism
and E ∈ K(X) a K-theory class of virtual rank 0. This is stable under inverse
image and, in case A/S = Sm/S , one can show as in [BH, Thm. 16.13] that
this it agrees with Voevodsky’s description [Vo1, Subsect. 6.3].

2. The six operations

2.1. (∗, ♯,⊗)-formalisms and Voevodsky’s conditions.

Notation 2.1.

4i.e., the “total space” of the cartesian fibration associated to the presheaf sending
X ∈ A/S to the virtual rank 0 part of K(X)
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(i) Fix a qcqs derived algebraic space S0 and a full subcategory S of
the ∞-category of qcqs derived algebraic spaces over S0 which is
closed under coproducts and fibred products. Assume also that for
any S ∈ S, we have: (a) U ∈ S for every quasi-compact open U ⊆ S;
(b) Z ∈ S for every closed subspace Z ⊆ S; (c) P(E) ∈ S for every
finite locally free sheaf E on S.

(ii) Fix a class of admissible morphisms in S, containing all open immer-
sions and projections X ×Pn →X (n ⩾ 0), closed under composition
and base change, and satisfying the 2-out-of-3 property. Let A ⊆ S
denote the (non-full) subcategory of S spanned by admissible mor-
phisms.

(iii) Given a presheaf of ∞-categories D∗ on S, we will write

D(S) ∶= D∗(S)

for every S ∈ S. For every morphism f ∶ T → S in S, we denote by

f∗ ∶= D∗(f) ∶ D(S) →D(T )

the functor of inverse image along f .

(iv) If D∗ takes values in presentable ∞-categories and colimit-preserving
functors, then we say simply that D∗ is a presheaf of presentable
∞-categories. In this case, every inverse image functor f∗ admits a
right adjoint f∗ called direct image along f .

(v) If D∗ moreover factors through the ∞-category of symmetric monoidal
presentable ∞-categories, then we say that D∗ is a presheaf of symmet-
ric monoidal presentable ∞-categories. We write ⊗ ∶ D(S) ⊗D(S) →
D(S) for the monoidal product and 1S ∈ D(S) for the monoidal unit
over any S ∈ S. Since ⊗ commutes with colimits in each argument
(see conventions), it admits as right adjoint an internal hom bifunctor
Hom ∶ D(S)op ×D(S) →D(S).

Definition 2.2. A (∗, ♯,⊗)-formalism on (S,A) is a presheaf D∗ of sym-
metric monoidal presentable ∞-categories on S satisfying the following
properties.

(i) For every admissible morphism f ∶ T → S in S, the inverse image
functor f∗ admits a left adjoint

f♯ ∶ D(T ) →D(S)

called ♯-direct image.

(ii) The ♯-direct image functors satisfy the projection formula. That is,
f♯ ∶ D(T ) → D(S) is a morphism of D(S)-modules, where D(T )
is regarded as a D(S)-module via the symmetric monoidal functor
f∗ ∶ D(S) →D(T ).

(iii) The ♯-direct image functors satisfy the base change formula, as in
Proposition 1.26.
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(iv) Additivity. For any finite family (Sα)α in S, the canonical functor

D (∐
α

Sα) →∏
α

D(Sα)

is an equivalence.

By default, when we speak of (∗, ♯,⊗)-formalisms on S, the admissible
morphisms will be taken to be the smooth morphisms in S (i.e., A = Sm).

Definition 2.3 (Thom twist). Let D∗ be a (∗, ♯,⊗)-formalism on (S,A).
Let S ∈ S and let E be a finite locally free sheaf on S. Write E = VS(E)
for its total space, p ∶ E → S for the projection, and s ∶ S → E for the zero
section. Define the Thom twist ⟨E⟩ as the endofunctor on D(S) given by

F ↦ F⟨E⟩ ∶= p♯s∗(F).
This is well-defined as long as p is admissible.

Definition 2.4 (Voevodsky conditions). Let D∗ be a (∗, ♯,⊗)-formalism on
S and consider the following conditions.

(i) Homotopy invariance. For every S ∈ S and every vector bundle
p ∶ E → S, the unit map

id→ p∗p
∗

is invertible.

(ii) Localization. For every closed/open pair

Z S Ui j

in S, the functor i∗ is fully faithful with essential image spanned by
objects in the kernel of j∗.

(iii) Thom stability. For every S ∈ S and every finite locally free sheaf E
on S, the endofunctor ⟨E⟩ on D(S) is an equivalence.

When these hold, we say that D∗ satisfies the Voevodsky conditions. (Com-
pare [Vo2, §2, 1.2.1].)

Example 2.5 (Motivic spectra). Let S be the ∞-category of qcqs derived
algebraic spaces. Write SH∗ for the (∗, ♯,⊗)-formalism on S given by the
presheaf S ↦ SH(S), f ↦ Lf∗. For simplicity we will omit the decoration L
from Lf∗ and Lf♯ below. SH∗ satisfies Voevodsky’s conditions:

(i) Homotopy invariance. To show that F → p∗p
∗(F) is invertible for

all F ∈ SH(S), it will suffice to show that the induced map

Maps(Σ∞−n
T (X+),F) →Maps(Σ∞−n

T (X+), p∗p∗(F))
is invertible for all X ∈ Sm/S and n ⩾ 0. By adjunction, this is
identified with the map

RΓ(X,Ω∞−n
T (F)) →RΓ(X ×

S
E,Ω∞−n

T (F)).
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Since the motivic animum Ω∞−n
T (F) ∈ H(S) satisfies Nisnevich de-

scent, we may assume that E is a trivial vector bundle Ar
S . For r = 1

the claim is just the A1-homotopy invariance property, and for r > 1
it follows by induction.

(ii) Localization. This is Theorem 1.36.

(iii) Thom stability. Follows from Remark 1.21 and Example 1.38.

Example 2.6 (Étale sheaves). Let S0 be a qcqs derived algebraic space, `
an integer which is invertible on S0, and S the ∞-category of qcqs derived
algebraic spaces over S0. Let D∗

ét(−,Z/`Z) denote the presheaf

S ↦Dét(S,Z/`Z)

sending S ∈ S to the derived ∞-category of étale sheaves of Z/`Z-modules on
the small étale site of S. Then the results of [SGA4] (cf. [CD2, §1]) imply
that D∗

ét(−,Z/`Z) defines a (∗, ♯,⊗)-formalism which satisfies Voevodsky’s
conditions. Note that in this setting, the Thom twist ⟨E⟩ by any finite locally
free sheaf E of rank r is canonically identified with (r)[2r]. The functor p♯,
for a smooth morphism p of finite presentation, is given by

p♯ = p!⟨Lp⟩ ≃ p!(d)[2d],

where d is the relative dimension of p. Similarly, the `-adic derived ∞-
category D∗

ét(−,Z`) also defines a (∗, ♯,⊗)-formalism ∞-category satisfying
Voevodsky conditions.

Remark 2.7. Let D∗ be a (∗, ♯,⊗)-formalism on S. If D∗ satisfies the
Voevodsky conditions then the ∞-categories D(S) are stable for all S ∈ S.
Indeed, one has 1S⟨OS⟩ ≃ 1S(1)[2] ≃ S1 ⊗ 1S(1)[1] by homotopy invariance
(cf. Remark 1.35). Hence if D∗ is Thom stable, then the topological circle
S1 acts invertibly on D(S).

Remark 2.8. Let D∗ be a (∗, ♯,⊗)-formalism on S. The base change formula
for ♯-direct image has the following consequences for a closed/open pair

Z S Ui j

in S. First, the functors j♯ and j∗ are fully faithful (consider the self-
intersection, as in Corollary 1.27). Second, j∗i∗ ≃ 0 and i∗j♯ ≃ 0 (consider
the intersection of i and j).

Remark 2.9. Let D∗ be a (∗, ♯,⊗)-formalism on S. If D∗ satisfies the
localization property, then for any closed/open pair (i, j) in S as above,
there is a canonical exact triangle

j♯j
∗ counitÐÐÐ→ id

unitÐÐ→ i∗i
∗

of endofunctors of D(S) (cf. Remark 1.37). Moreover, i∗ admits as right
adjoint the functor i! defined as the homotopy fibre

Fib(i∗ unitÐÐ→ i∗j∗j
∗).
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By right transposition from the triangle above, we therefore get another
triangle

i∗i
! ≃ i!i!

counitÐÐÐ→ id
unitÐÐ→ j∗j

∗.

Remark 2.10. For any closed/open pair (i, j) in S as above, the localization
property implies that the stable ∞-category D(S) admits a semi-orthogonal
decomposition

D(S) = ⟨D(S)+,D(S)−⟩,
where D(S)+ is the essential image of i∗ and D(S)− is the essential image
of j∗.

Proposition 2.11 (Constructible separation). Let D∗ be a (∗, ♯,⊗)-formalism
on S. If D∗ satisfies the localization property, then for any S ∈ S and any
constructible covering family5 (jα ∶ Sα → S)α, the family of inverse image
functors

j∗α ∶ D(S) →D(Sα)
is jointly conservative as α varies.

Proof. It suffices to consider families of the form (i, j), where i and j form a
closed pair, so the claim is immediate from localization. �

Lemma 2.12 (Nisnevich separation). Let D∗ be a (∗, ♯,⊗)-formalism on S.
If D∗ satisfies the localization property, then for any S ∈ S and any Nisnevich
covering family (fα ∶ Sα → S)α, the family of inverse image functors

f∗α ∶ D(S) →D(Sα)
is jointly conservative as α varies.

Proof. It suffices to consider families of the form (j ∶ U → S, p ∶ V → S),
where

W V

U S

p

j

is a Nisnevich square. If i ∶ Z → S is a closed immersion complementary to
j, then it follows from localization that the pair (j∗, i∗) is jointly conserva-
tive. But since p is an isomorphism over Z, it follows that (j∗, p∗) is also
conservative. �

Lemma 2.13 (Nil invariance). Let D∗ be a (∗, ♯,⊗)-formalism on S. Let
i ∶ S′ → S be a surjective closed immersion of derived algebraic spaces in S.
Then the pair of adjoint functors

i∗ ∶ D(S) →D(S′), i∗ ∶ D(S′) →D(S)
is an equivalence of ∞-categories. In particular, for every S ∈ S, there are
canonical equivalences

D(S) ≃ D(Scl) ≃ D(Scl,red)
where Scl is the classical truncation and Scl,red is its reduction.

5i.e., any family that generates a covering for the constructible topology
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Proof. By localization, the pair of functors (i∗, j∗) is conservative, where j
is the complementary open immersion. But the open complement is empty
by assumption. �

Remark 2.14 (Universal property of SH). For any (∗, ♯,⊗)-formalism on S
satisfying Voevodsky’s conditions, there exists a unique system of colimit-
preserving functors

RS ∶ SH(S) →D(S)
for every S ∈ S, which commute with ♯-direct images (along smooth mor-
phisms), inverse images, tensor products, and arbitrary Thom twists.

Indeed, consider the functor MS ∶ SmS → D(S) sending (p ∶ X → S) ↦
p♯(1X), which is symmetric monoidal by the smooth projection and base
change formulas. Its left Kan extension to the ∞-category of Sm-fibred anima
sends A1-projections to isomorphisms in D(S) (by the homotopy invariance
property of D∗) and Nisnevich squares to cartesian squares in D(S) (by
localization and smooth base change, cf. proof of Lemma 2.12). Thus MS

extends uniquely to a symmetric monoidal colimit-preserving functor H(S) →
D(S). Since the target is pointed (has a zero object), this in particular
factors through H(S)●. By Thom stability, it sends TS (Example 1.15) to
a ⊗-invertible object and hence factors by Remark 1.20 through SH(S) as
desired. The resulting functor RS is, by construction, the unique symmetric
monoidal colimit-preserving functor which sends Σ∞−n

T (X+) to p♯(1X)⟨−n⟩
for every (p ∶ X → S) ∈ Sm/S and every n ⩾ 0. It is immediate from this
description that RS commutes with ♯-direct image, with inverse image (by
smooth base change), and with Thom twists.

Definition 2.15 (Compact generation). Let D∗ be a (∗, ♯,⊗)-formalism on
(S,A). We say that D∗ is compactly generated if the following conditions
hold:

(i) For every S ∈ S, the ∞-category D(S) is compactly generated.

(ii) For every morphism f ∶ T → S in S, the functor f∗ ∶ D(S) →D(T )
is compact, i.e., preserves compact objects.

See [DFJK, Def. A.5]

Definition 2.16 (Continuity). Let D∗ be a (∗, ♯,⊗)-formalism on (S,A).
We say that D∗ is continuous if, for every cofiltered system (Sα)α of affine
derived schemes with limit S, the canonical functor

limÐ→
α

D(Sα) →D(S)

is an equivalence, where the colimit is taken in the ∞-category of presentable
∞-categories and left adjoint functors. In other words, D∗ restricts to a fil-
tered colimit-preserving functor R ↦D(Spec(R)) from derived commutative
rings to presentable ∞-categories. See [DFJK, App. A] for details.

Remark 2.17. Let D∗ be a (∗, ♯,⊗)-formalism on S satisfying Voevodsky’s
conditions. We will see (Theorem 2.51) that D∗ satisfies Nisnevich descent.
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Therefore, if D∗ satisfies continuity as in Definition 2.16, then it will in fact
satisfy continuity for any cofiltered system in S with affine transition maps.

Example 2.18. The (∗, ♯,⊗)-formalism SH∗ satisfies continuity. This es-
sentially follows from the fact that Sm/S is the colimit of Sm/Sα (see [To,
Prop. 1.6]). See [Ho1, Prop. C.12(4)] for details.

2.2. Closed base change. Let D∗ be a (∗, ♯,⊗)-formalism on S satisfying
Voevodsky’s conditions.

Lemma 2.19 (Closed base change). Suppose given a commutative square
in S

Z ′ S′

Z S

i′

g f

i

which is cartesian on classical truncations. Then there is a canonical isomor-
phism

f∗i∗ → i′∗g
∗

of functors D(Z) →D(S′).

Proof. Consider the natural transformation

f∗i∗
unitÐÐ→ i′∗i

′∗f∗i∗ ≃ i′∗g∗i∗i∗
counitÐÐÐ→ i′∗g

∗.

By smooth base change, we can work locally on S and assume in particular
that i has quasi-compact open complement. Since i∗i∗ ≃ id by the localization
property, it will suffice to show that it is invertible after applying i∗ on
the right. It also suffices (by Proposition 2.11) to show it is invertible
after applying either i′∗ or j′∗ on the left, where j′ is the open immersion
complementary to i′. The first claim is obvious and the second follows from
Remark 2.8. �

Lemma 2.20 (Closed projection formula). Suppose given a closed immersion
i ∶ Z → S in S. Then the functor i∗ ∶ D(Z) →D(S) is a morphism of D(S)-
module ∞-categories. In particular, there are canonical isomorphisms

i∗(F ′) ⊗ F → i∗(F ′ ⊗ i∗(F))
natural in F ,G ∈ D(S) and F ′ ∈ D(Z).

Proof. Recall that i∗ is symmetric monoidal, so by abstract nonsense its right
adjoint i∗ admits a canonical structure of lax morphism of D(S)-modules.
More concretely, there is a canonical natural transformation

i∗(−) ⊗ (−) → i∗(− ⊗ i∗(−)),
which is the right transpose of the natural transformation

i∗(i∗(−) ⊗ (−)) ≃ i∗i∗(−) ⊗ i∗(−)
counitÐÐÐ→ (−) ⊗ i∗(−).

By definition, this lax structure is strict if this morphism is invertible. By
smooth base change, we can work locally on S and assume in particular that
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i has quasi-compact open complement j. It will suffice (by Proposition 2.11)
to show it is invertible after applying either i∗ or j∗ on the left. The first
claim is clear from i∗i∗ ≃ id and the second from j∗i∗ ≃ 0 (Remark 2.8). �

Lemma 2.21 (Smooth-closed base change). Suppose given a cartesian square
in S

Z ′ S′

Z S

i′

q p

i

where i is a closed immersion and p and q are smooth. Then there is a
canonical isomorphism

p♯i
′
∗ → i∗q♯

of functors D(Z ′) →D(S).

Proof. Consider the natural transformation

p♯i
′
∗

unitÐÐ→ i∗i
∗p♯i

′
∗ ≃ i∗q♯i′∗i′∗

counitÐÐÐ→ i∗q♯.

By smooth base change, we can work locally on S and assume in particular
that i has quasi-compact open complement j. It will suffice (by Propo-
sition 2.11) to show it is invertible after applying either i∗ or j∗ on the
left. Again, the claims follow from i∗i∗ ≃ id and j∗i∗ ≃ 0 (Remark 2.8),
respectively. �

Remark 2.22. Recall the Thom twist functor ⟨E⟩ ∶ D(S) →D(S) associated
to any finite locally free sheaf E on a derived algebraic space S ∈ S. It follows
from the smooth and closed projection formulas that we have canonical
isomorphisms

F⟨E⟩ ≃ F ⊗ 1S⟨E⟩,

natural in F ∈ D(S). In other words, the operation ⟨E⟩ is D(S)-linear.

Remark 2.23. Let AutD(D) denote the presheaf that sends S ∈ S to the
∞-groupoid AutD(S)(D(S)) of D(S)-linear auto-equivalences of D(S). Of
course, this is canonically isomorphic to the Picard ∞-groupoid Pic(D(S))
of ⊗-invertible objects. Note that the assignment E ↦ ⟨E⟩ extends to a
canonical map of presheaves

K→ AutD(D) ≃ Pic(D).

In the universal case D = SH∗ this is Remark 1.32. In general, the desired
map is the composite

K→ AutSH(SH) RÐ→ AutD(D)

with the map induced by the morphism of (∗, ♯,⊗)-formalisms R ∶ SH∗ →D∗

(Remark 2.14).
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2.3. Proper base change. Fix again a (∗, ♯,⊗)-formalism on S satisfying
Voevodsky’s conditions. In this subsection we extend the lemmas from the
previous subsection from closed immersions to proper morphisms.

Theorem 2.24. Let f ∶X → Y be a proper morphism in S. Then we have:

(i) Proper base change. For any commutative square in S

X ′ Y ′

X Y

g

u v

f

which is cartesian on classical truncations, there is a canonical iso-
morphism

Ex∗∗ ∶ v∗f∗ → g∗u
∗

of functors D(X) →D(Y ′).
(ii) Smooth-proper base change. For any cartesian square in S

X ′ Y ′

X Y,

g

p q

f

where p and q are smooth, there is a canonical isomorphism

Ex♯,∗ ∶ q♯g∗ → f∗p♯

of functors D(X ′) →D(Y ).
(iii) Atiyah duality. If the proper morphism f is smooth, then the canon-

ical morphism of functors D(X) →D(Y ) (see Construction 2.27)

εf ∶ f♯⟨Lf ⟩ → f∗

is invertible. In particular, f∗⟨−Lf ⟩ is left adjoint to f∗.

(iv) Proper excision. If f is an isomorphism away from a closed subspace
Z ⊆ Y , then the commutative square

id i∗i
∗

f∗f
∗ g∗g

∗

(2.25)

is cartesian in D(Y ), where i ∶ Z → Y is the inclusion and g ∶ f−1(Z) ⊆
X → Y is the induced morphism.

We begin with a construction of the morphism which is asserted to be
invertible in Theorem 2.24(iii). This will require a preliminary result:

Theorem 2.26 (Relative purity). Let S ∈ S, let X,Y ∈ Sm/S with structural
morphisms p ∶X → S and q ∶ Y → S, and let i ∶X → Y be a closed immersion
over S. Then there is a canonical isomorphism

q♯i∗ ≃ p♯⟨NX/Y ⟩,
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where NX/Y is the conormal sheaf of i.

Proof. Note that if we set PS(X,Y ) ∶= q♯i∗, then we have

PS(X,NX/Y ) = p♯π♯s∗ ≃ p♯⟨NX/Y ⟩,

where π ∶ NX/Y → X is the projection of the normal bundle (i.e., total
space of NX/Y ) and s ∶X → NX/Y is the zero section. Let DX/Y denote the
deformation to the normal bundle [KhRy, Thm. 4.1.13], so that there are
morphisms of pairs (i.e., homotopy cartesian squares)

(X,Y ) → (X ×A1,DX/Y ) ← (X,NX/Y )

given by the inclusions of the fibres over 0 and 1 of DX/Y → A1. It will
suffice to show that the induced morphism (cf. [CD, 2.4.32])

PS(X,Y ) → PS(X ×A1,DX/Y ) ○ pr∗ ← PS(X,NX/Y )

is invertible, where pr ∶ X ×A1 → X is the projection. For this, one may
either follow the proof of [CD, Thm. 2.4.35] or first use Nisnevich separation
(Lemma 2.12) and derived invariance (Lemma 2.13) to literally reduce to the
case of loc. cit. �

Construction 2.27. Let f ∶ X → Y be a smooth proper morphism in S.
Its diagonal is a closed immersion ∆f ∶ X → X ×Y X (since f is separated)
whose conormal sheaf is canonically identified with the cotangent complex
Lf . Consider the homotopy cartesian square

X ×Y X X

X Y.

pr1

pr2 f

f

The exchange transformation Ex♯,∗ associated to this square (defined just as
in Lemma 2.21) gives rise to the desired morphism

εf ∶ f♯ = f♯pr2,∗∆f,∗
Ex♯,∗ÐÐÐ→ f∗pr1,♯∆f,∗ ≃ f∗⟨Lf ⟩

where the isomorphism comes from relative purity (Theorem 2.26). Note
that formation of εf commutes with smooth inverse images, by the smooth
base change formula.

Lemma 2.28. Let f ∶ X → Y be a smooth and proper morphism. If
D∗ satisfies Atiyah duality (Theorem 2.24(iii)) for any base change of f ,
then it also satisfies proper base change and smooth-proper base change
(Theorem 2.24(i)-(ii)) for f .

Proof. The natural transformations are defined just as in Lemmas 2.19 and
2.21. The proof of (i) is similar to (ii) (cf. [CD, Lem. 2.4.23(1)]), so we only
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prove the latter. Consider the commutative diagram

X ′ X ′ ×Y ′X ′ X ′

X X ×Y X X.

∆g

p

pr1

p′ p

∆f pr1

(2.29)

It will suffice to show that

Ex♯,∗ ∶ q♯g∗pr1,♯∆g,∗ → f∗p♯pr1,♯∆g,∗

is invertible, since pr1,♯∆g,∗ ≃ ⟨Lg⟩ is invertible (Theorem 2.26). This mor-
phism fits in the diagram

q♯g∗pr1,♯∆g,∗ f∗p♯pr1,♯∆g,∗ f∗pr1,♯p
′
♯∆g,∗ f∗pr1,♯∆f,∗p♯

q♯g♯ f♯p♯

Ex♯,∗ Ex♯,∗

εg εf

where the vertical arrows are as in Construction 2.27, hence are invertible
by Atiyah duality for f and g. The right-hand upper horizontal arrow is
also invertible by smooth-closed base change (Lemma 2.21) for the left-hand
square in (2.29). In view of the definition of ε, the diagram commutes by
abstract nonsense, so the claim follows. �

Lemma 2.30. Let f ∶ X → Y be a smooth proper morphism in S. If D∗

satisfies smooth-proper base change (Theorem 2.24(ii)) for f , then it also
satisfies Atiyah duality for f (Theorem 2.24(iii)).

Proof. This is immediate from the construction of εf (Construction 2.27). �

Lemma 2.31. Let f ∶ X → Y be a proper morphism of derived algebraic
spaces. If D∗ satisfies proper base change for f (Theorem 2.24(i)), then it
also satisfies proper excision for f (Theorem 2.24(iv)).

Proof. Let Z ⊆ Y be a closed subspace such that f is an isomorphism
over Y ∖ Z. To show that the square (2.25) is cartesian, it is enough by
Proposition 2.11 to show that it becomes cartesian after applying inverse
image along both i ∶ Z → Y and j ∶ Y ∖Z → Y . The former follows easily from
the localization property and proper base change, while the latter follows
from the smooth base change formula. �

We now prove Atiyah duality for projective bundles, using Hoyois’s Pontryagin–
Thom construction.

Lemma 2.32. Let S ∈ S be a derived algebraic space. For any finite locally
free sheaf E on S, consider the projection f ∶ P(E) → S of the associated
projective bundle. Then D∗ satisfies Atiyah duality for f .

Proof. Set X ∶= P(E) to simplify the notation. We first reduce to the case
where S is affine and E is free, since the claim is local on S. Indeed, formation
of εf commutes with smooth base change so this follows from Lemma 2.12.
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Now recall from [Ho2, §5.3] that there is a Pontryagin–Thom collapse map
ηf ∶ 1S → f♯(1X⟨−Lf ⟩) in SH(S) (by derived invariance, we may assume
S is classical if desired). By Remark 2.14 we get an induced morphism of
the same form in D(S). By the smooth projection formula this induces a
natural transformation

ηf ∶ idD(S) → f♯f
∗⟨−Lf ⟩.

Let ε′f ∶ f∗f♯⟨−Lf ⟩ → id be the left transpose of εf ∶ f♯ → f∗⟨Lf ⟩. We claim

that ε′f and ηf are the counit and unit of an adjunction (f∗, f♯⟨−Lf ⟩); this
will in particular imply that εf is invertible as desired. To verify the triangle
identities for the adjunction, we may easily reduce to showing that the
composite

f∗
ηfÐ→ f∗f♯⟨−Lf ⟩f∗

ε′fÐ→ f∗

induces the identity when evaluated on the unit 1S (see the beginning of
the proof of [Ho2, Thm. 5.22]). Again by Remark 2.14 it will suffice to show
that the morphism

1X
f∗(ηf )ÐÐÐÐ→ f∗f♯(1X)⟨−Lf ⟩

ε′fÐ→ 1X

is the identity of 1X ∈ SH(X). This is proven in [Ho2, Thm. 6.9]. �

We can now bootstrap from Lemma 2.32 to get Theorem 2.24 for all projective
morphisms.

Proof of Theorem 2.24, projective case. Let us prove the proper base change
formula (i) for a projective morphism f ∶X → Y . By Nisnevich separation
(Lemma 2.12) and the smooth base change formula, we may assume that Y
is affine. Then f factors through a closed immersion into a projective bundle
g ∶ PY (E) → Y , for some finite locally free sheaf E on Y . By closed base
change (Lemma 2.19) we may assume f = g, in which case the result follows
from Lemmas 2.32 and 2.28.

The same argument reduces smooth-proper base change (ii) to the case of
projective bundles, which follows again from Lemmas 2.32 and 2.28.

Finally, Atiyah duality (iii) follows from (ii) and Lemma 2.30, and proper
excision (iv) follows from (i) and Lemma 2.31. �

To handle the general case, we will use the following reformulation of Chow’s
lemma. Here a projective cdh cover is a projective morphism which generates
a covering in the projective cdh topology (as in Definition 2.48, but where
proper is replaced by projective).

Theorem 2.33. Let f ∶ X → Y be a separated morphism of finite type
between qcqs derived algebraic spaces. Then there exists a projective cdh
cover π ∶ X̃ →X such that the composite f ○ π ∶ X̃ → Y is quasi-projective.
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Proof. Note that if X̃ → Xcl is such a cover for the classical truncation
fcl ∶ Xcl → Ycl, then π ∶ X̃ → Xcl → X is such a cover for f . Therefore, we
may assume without loss of generality that X and Y are classical.

By the version of Chow’s lemma given in [Lu2, Prop. 5.5.2.1], there exists a

projective morphism π ∶ X̃ →X which is an isomorphism over a nonempty
quasi-compact open U ⊆ X, such that f ○ π ∶ X̃ → X → Y is projective. In
particular, Z ⊔ X̃ → X is then a projective cdh cover, where Z is a closed
subspace complementary to U . Thus if X is noetherian, then the claim
follows by noetherian induction.

In general, f factors through a closed immersion i ∶X →X ′ and a separated
morphism g ∶X ′ → Y of finite presentation (see [CLO, Thm. 3.2.1]). Since
proper cdh covers and quasi-projective morphisms are stable under base
change, we may assume that f = g is of finite presentation. Then by
noetherian approximation (see [CLO, Thm. 1.2.2]), there exists an affine
morphism Y → Y ′ such that Y ′ is of finite presentation over Spec(Z). By
[CLO, Prop. A.3.4, Cor. A.3.5], we may assume that f descends to a separated
morphism of finite presentation f ′ ∶ X ′ → Y ′ such that X ′ ×Y ′ Y ≃ X. Now
Y ′ is noetherian, hence so is X ′, and by the above case we get a proper cdh
cover π′ ∶ X̃ ′ →X ′ such that f ′ ○ π′ is quasi-projective. The base change of
π′ along X →X ′ is then the desired π. �

Proof of Theorem 2.24. By the projective case proven above, we have proper
excision (iv) for projective morphisms. This implies (see [Kh2, Thm. 2.2.7])
that the presheaf (g ∶X → Y ) ↦ g∗g

∗(F), on the ∞-category S/Y of derived
algebraic spaces over Y , satisfies descent for projective cdh covers. This
immediately reduces proper base change (i) and smooth-proper base change
(ii) to the projective case proven above. Atiyah duality and proper excision
then follow again by Lemmas 2.30 and 2.31. �

2.4. The exceptional operations. Let D∗ be a (∗, ♯,⊗)-formalism on S
satisfying Voevodsky’s conditions. In this subsection we construction the
exceptional operations f! and f ! on D∗. The idea can be summarized as
follows. By a well-known result of Nagata, as extended to algebraic spaces in
[CLO], any separated morphism of finite type admits a compactification. A
deformation theory argument yields the same for derived algebraic spaces, cf.
[GR, Pt. II, Chap. 5, 2.1.6]. Then following Deligne [SGA4, Exp. XVII, §5],
there is a unique way to construct the functor f!, at the level of triangulated
categories for all separated morphisms of finite type, such that f! = f∗ for f
proper and f! = f♯ for f an open immersion. Using the machinery of [LZ1],
this can be done ∞-categorically. Moreover, we can then use descent as in
[LZ2] to drop the separatedness hypothesis.

Throughout this subsection, we fix a (∗, ♯,⊗)-formalism D∗ on S satisfying
Voevodsky’s conditions.
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Theorem 2.34. For any finite type morphism f ∶X → Y in S, there exists
a pair of adjoint functors

f! ∶ D(X) →D(Y ), f ! ∶ D(Y ) →D(X),

and a natural transformation αf ∶ f! → f∗, satisfying the following conditions:

(i) There are canonical isomorphisms f! ≃ f♯ and f ! ≃ f∗ if f is an open
immersion.

(ii) The natural transformation αf ∶ f! → f∗ is invertible if f is proper.

(iii) The functor f! satisfies base change. That is, for any commutative
square in S

X ′ Y ′

X Y

g

u v

f

which is cartesian on classical truncations, the canonical morphisms
of functors D(X) →D(Y ′)

Ex∗! ∶ v∗f! → g!u
∗,

Ex!
∗ ∶ u∗g! → f !v∗

are invertible.

(iv) The functor f! satisfies the projection formula. That is, f! ∶ D(X) →
D(Y ) is a morphism of D(Y )-module ∞-categories, where D(X)
is regarded as a D(Y )-module via the symmetric monoidal functor
f∗ ∶ D(Y ) →D(X). In particular, the canonical morphisms

F ⊗ f!(G) → f!(f∗(F) ⊗ G),
Hom(f∗(F), f !(F ′)) → f !(Hom(F ,F ′)),
f∗(Hom(F , f !(G))) → Hom(f!(F),G)

are invertible for all F ,F ′ ∈ D(X) and G ∈ D(Y ).

Moreover, the assignment f ↦ f! (resp. f ↦ f !) extends to a functor D! (resp.

D!), from S to the ∞-category of presentable ∞-categories and left-adjoint
functors (resp. right-adjoint functors).

Proof. Suppose first that f is separated and of finite type. Then one can
show that the ∞-category of compactifications of f is contractible, following
the proof of [GR, Pt. II, Chap. 5, 2.1.6] and using the extension of Nagata
to algebraic spaces in [CLO]. Then the machinery of multisimplicial nerves
developed in [LZ1] yields the claim, exactly as in [LZ1, Thm. 9.4.8] or [LZ2,
Eqn. (3.8)], in view of Theorem 2.24.

The extension to finite type morphisms follows then from [LZ2, Thm. 4.1.8],
since every morphism is locally (in the Nisnevich topology) separated. �
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Corollary 2.35. Suppose given a commutative square in S

X ′ Y ′

X Y

g

u v

f

which is cartesian on classical truncations, where f is finite type. Then there
is a canonical natural transformation

Ex∗! ∶ u∗f ! → g!v∗.

If u and v are smooth and f is separated of finite type, then Ex∗! is invertible.

Proof. Define Ex∗! as the composite

u∗f ! unitÐÐ→ g!g!u
∗f ! ≃ g!v∗f!f

! counitÐÐÐ→ g!v∗

where the isomorphism is the base change formula (Theorem 2.34(iii)).
Suppose v is smooth and f is separated. Choosing a compactification of f
we may assume that it is either an open immersion or proper. In the first
case, this is clear from f ! ≃ f∗ (Theorem 2.34(i)). In the second it follows by
transposition from smooth-proper base change (Theorem 2.24(ii)). �

Remark 2.36. Let f ∶X → Y be an étale morphism of finite presentation in
S. Let ∆ ∶X →X ×Y X denote the diagonal. Since ∆ is an open immersion,
we have ∆! ≃ ∆∗ (Theorem 2.34(i)). Consider the homotopy cartesian square

X ×Y X X

X Y

pr2

pr1 f

f

and take the composite

f ! = ∆∗pr∗1f
! Ex∗!ÐÐ→∆∗pr!

2f
∗ ≃ ∆!pr!

2f
∗ = f∗.

In particular, when f is separated étale, this gives a canonical isomorphism
f ! ≃ f∗.

Corollary 2.37. Suppose given a commutative square in S

X ′ Y ′

X Y

g

u v

f

which is cartesian on classical truncations, where f is finite type and u and v
are smooth. Then the natural transformation Ex∗! ∶ u∗f ! → g!v∗ is invertible.

Proof. We may choose a finite type morphism f0 ∶ U → V where U and V are
affine schemes equipped with Nisnevich coverings p ∶ U ↠X and q ∶ V ↠ Y
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fitting in the commutative square forming the bottom face of the following
commutative cube:

X ′ Y ′

U ′ V ′

X Y

U V

g

u

v

p′

g0

u′

q′

f

p

f0

v′

q

The rest of the cube is formed by taking the derived base along v ∶ Y ′ → Y .
By Lemma 2.12 it will suffice to show that the morphism

Ex∗! ∶ p′∗u∗f ! → p′∗g!v∗

is invertible. Note that p and q are separated (since U and V are affine), so
there are canonical isomorphisms p∗ ≃ p! and q∗ ≃ q! by Remark 2.36. Under
these identifications the above morphism is identified with

Ex∗! ∶ u′∗f !
0q
∗ → g!

0v
′∗q∗,

which is invertible by Corollary 2.35 applied to the front face (since f0 is
separated). �

Corollary 2.37 allows us to extend the isomorphism f ! ≃ f∗ to non-separated
étale morphisms:

Corollary 2.38. Let f ∶X → Y be an étale morphism of finite presentation
in S. Then the natural transformation f ! → f∗ of Remark 2.36 is invertible.

Corollary 2.39. Suppose given a commutative square in S

X ′ Y ′

X Y

g

u v

f

which is cartesian on classical truncations, where f is finite type. Then there
is a natural transformation

Ex!∗ ∶ f!u∗ → v∗g!

which is invertible if v is proper.

Proof. Define Ex!∗ as the composite

f!u∗
unitÐÐ→ v∗v

∗f!u∗ ≃ v∗g!u
∗u∗

counitÐÐÐ→ v∗g!,

where the isomorphiism is the base change formula (Theorem 2.34(iii)).
Assume v is proper. If f is separated of finite type, then we may choose a
compactification to reduce to the case of f proper, which follows from f∗ ≃ f!

(Theorem 2.34(ii)), and the case of f an open immersion, which follows by
transposition from smooth-proper base change (Theorem 2.24(ii)).
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For the case of f general, it will now suffice to show that the claim is local on
X. Let p ∶ U ↠X be a Nisnevich covering such that f0 = f ○ p is separated
of finite type. Let p′ ∶ V ↠ X ′ be its base change, so that g0 = g ○ p′ is
separated of finite type. Let u0 ∶ V → U be the induced map so that we have
the following diagram:

V X ′ Y ′

U X Y.

p′

u0

g

u v

p f

By Lemma 2.12 and Corollary 2.38, p∗ ≃ p! is conservative. By adjunction,
its left adjoint p! ∶ D(U) → D(X) generates D(X) under colimits. Hence
it will suffice to show that Ex!∗ ∶ f!u∗p! → v∗g!p! is invertible. Using the
isomorphism Ex!∗ ∶ p!u0,∗ ≃ u∗p′! (for the left-hand square above), we find
that this identified with Ex!∗ ∶ f0,!u0,∗ → v∗g0,! (for the composite square),
which is invertible again by the separated finite type case. �

Remark 2.40. Let f ∶ X → Y be a morphism in S. Locally on X, the
natural transformation αf ∶ f! → f∗ (ii) can be described as follows. Let
∆ ∶X →X ×Y X be the diagonal and consider the homotopy cartesian square

X ×Y X X

X Y.

pr2

pr1 f

f

If f is separated, so that ∆ is a closed immersion, then Corollary 2.39 gives
rise to a canonical natural transformation

f! = f!pr1,∗∆∗
Ex!∗ÐÐ→ f∗pr2,!∆∗ ≃ f∗pr2,!∆! = f!.

We can formulate an analogue of Proposition 2.11 using exceptional inverse
image:

Proposition 2.41 (Constructible separation). For any S ∈ S and any con-
structible covering family (jα ∶ Sα → S)α, the family of inverse image functors

j!
α ∶ D(S) →D(Sα)

is jointly conservative as α varies.

Proof. We reduce to the case of a closed/open pair (i, j) and use the exact
triangle

i!i
! counitÐÐÐ→ id

unitÐÐ→ j∗j
∗

from Remark 2.9 (recall that j∗ ≃ j!). �

Remark 2.42. Let S ∈ S. For every perfect complex E on S, the Thom
twist ⟨E⟩ commutes with each of the six operations. Therefore, we will often
abuse notation by writing e.g. f∗⟨E⟩ instead of ⟨f∗E⟩ ○ f∗ when E lives on
the target. (Using Lemma 2.12 one can reduce to the case of finite locally
free sheaves, and then the claim is a straightforward exercise using various
base change and projection formulas.)
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2.5. Purity.

Theorem 2.43. Let D∗ be a (∗, ♯,⊗)-formalism on S satisfying Voevodsky’s
conditions. Let S ∈ S, let X,Y ∈ Sm/S with structural morphisms p ∶X → S

and q ∶ Y → S, and let f ∶X → Y be an unramified6 morphism over S. Then
there is a canonical isomorphism

f !q∗ ≃ p∗⟨LX/Y ⟩,
where LX/Y is the relative cotangent complex of f .

Proof. If f is a closed immersion, then this follows from Theorem 2.26 by
transposition. In general, there exists by the main result of [Ry] a canonical
global factorization of f through a closed immersion i and an étale morphism
of finite presentation g:

X
iÐ→X ′ gÐ→ Y.

Combining the closed immersion case and Corollary 2.38, we get a canonical
isomorphism

f !q∗ = i!g!q∗ ≃ i!g∗q∗ = i!(p′)∗ ≃ p∗⟨−NX/X′⟩ ≃ p∗⟨LX/Y ⟩,
where p′ ∶X ′ → S is the structural morphism and the identification −NX/X′ ≃
LX/Y in K(X) is induced by the isomorphism of perfect complexesNX/X′[1] =
LX/X′ ≃ LX/Y induced by the étale morphism g. �

We can extend Corollary 2.38 to smooth morphisms:

Theorem 2.44 (Purity). Let D∗ be a (∗, ♯,⊗)-formalism on S satisfying
Voevodsky’s conditions. For any smooth morphism f ∶X → Y in S, there is
a canonical isomorphism

purf ∶ f ! → f∗⟨Lf ⟩
of functors D(Y ) →D(X).

Proof. Applying Corollary 2.37 to the homotopy cartesian square

X ×Y X X

X Y

pr1

pr2 f

f

yields a canonical isomorphism Ex∗! ∶ pr∗1f
! ≃ pr!

2f
∗. Since f is smooth,

the diagonal ∆ ∶ X → X ×Y X is unramified with cotangent complex L∆ ≃
Lf [1]. Applying ∆! and using the relative purity isomorphism ∆!pr∗1 ≃ ⟨−Lf ⟩
(Theorem 2.43), we get the canonical isomorphism

f !⟨−Lf ⟩ ≃ ∆!pr∗1f
! Ex∗!ÐÐ→∆!pr!

2f
∗ ≃ f∗.

The purity isomorphism purf ∶ f ! ≃ f∗⟨Lf ⟩ is obtained by Thom twisting by
Lf . �

6Equivalently, the shifted cotangent complex LX/Y [−1] is locally free of finite rank; see

[KhRy, Prop. 5.2.4].
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Remark 2.45. The natural transformation

trf ∶ f!f
∗⟨Lf ⟩ → id,

obtained by transposition from the purity isomorphism purf ∶ f ! ≃ f∗⟨Lf ⟩, is
called the trace of f .

2.6. Étale and proper excision.

Theorem 2.46 (Étale excision). Let D∗ be a (∗, ♯,⊗)-formalism on S satis-
fying Voevodsky’s conditions. Let f ∶X ′ →X be an étale morphism of finite
presentation in S which induces an isomorphism away from a quasi-compact
open immersion j ∶ U →X in S. Then the commutative squares

id j∗j
∗

f∗f
∗ g∗g

∗,

id j!j
!

f!f
! g!g

!

are cartesian in D(X), where g ∶ f−1(U) →X.

Proof. Consider the left-hand square. By Proposition 2.11 it will suffice to
show it is cartesian after applying either i∗ or j∗. Both claims follow easily
from the smooth base change formula.

For the right-hand square, note that there is a canonical isomorphism f!f
! ≃

f♯f
∗ by purity (Theorem 2.44), and similarly for each of the terms. Up to

these isomorphisms, the square is obtained by right transposition from the
left-hand one. �

Theorem 2.47 (Proper excision). Let D∗ be a (∗, ♯,⊗)-formalism on S
satisfying Voevodsky’s conditions. Let f ∶X ′ →X be a proper morphism in
S which is an isomorphism away from a closed immersion i ∶ Z → X in S.
Then the commutative squares

id i∗i
∗

f∗f
∗ g∗g

∗,

id i!i
!

f!f
! g!g

!

are cartesian in D(X), where g ∶ f−1(Z) →X.

Proof. We already showed the claim for the left-hand square (Theorem 2.24(iv)).
For the right-hand square, it will again suffice to apply either i∗ or j∗ (Propo-
sition 2.11). The i∗ case follows from localization and proper base change,
while the j∗ case follows by smooth base change. �

2.7. Descent. The following definitions come from [Vo3].

Definition 2.48.
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(i) A proper cdh square in S is a commutative square

Z ′ X ′

Z X

f

i

(2.49)

which is cartesian on classical truncations, where i is a cocompact
closed immersion and f is a proper morphism inducing an isomor-
phism X ′ ∖Z ′ ≃X ∖Z.

(ii) The proper cdh topology on S is the Grothendieck topology associated
to the pretopology generated by the following covering families:
(a) the empty family, covering the empty space ∅; (b) for every
X ∈ S and every proper cdh square over X of the form (2.49), the
family {i, f} covering X.

(iii) The cdh topology on S is the union of the Nisnevich and proper cdh
topologies.

Corollary 2.50. Let D∗ be a (∗, ♯,⊗)-formalism on S satisfying Voevodsky’s
conditions. Let S ∈ S and F ∈ D(S). Then we have:

(i) The assignment (f ∶X → S) ↦ f∗f
∗(F), regarded as a D(S)-valued

presheaf on the ∞-category of derived algebraic spaces over S, satisfies
cdh descent.

(ii) The assignment (f ∶X → S) ↦ f!f
!(F), regarded as a D(S)-valued

presheaf on the ∞-category of derived algebraic spaces of finite type
over S, satisfies cdh co-descent.

Proof. By a theorem of Voevodsky [Kh2, Thm. 2.2.7] (which immediately
generalizes to presheaves with values in an arbitrary ∞-category), the claim
is equivalent to Theorems 2.46 and 2.47. �

Theorem 2.51. Let D∗ be a (∗, ♯,⊗)-formalism on S satisfying Voevodsky’s

conditions. Then the presheaves of ∞-categories D∗ and D! satisfy cdh
descent (on the S, resp. on the full subcategory of S spanned by finite
type spaces). Moreover, D! satisfies cdh co-descent, when regarded as a
co-presheaf with values in the ∞-category of presentable ∞-categories and
left-adjoint functors.

Proof. It will again suffice to show that D∗ and D! satisfy étale and proper
excision (as presheaves of ∞-categories).

(i) Case of D∗. We prove étale excision; the proper version is proven
by the same type of argument. Suppose given an étale morphism of
finite presentation f ∶ X ′ → X in S which induces an isomorphism
away from a quasi-compact open immersion j ∶ U → X in S. Let
U ′ = U ×X X ′ and g ∶ U ′ → X. The claim is that j∗, f∗, and g∗
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induce an equivalence

D(X) →D(U) ×
D(U ′)

D(X ′).

Note that this functor admits a right adjoint which sends an object
of D(U)×D(U ′)D(X ′), given by FU ∈ D(U), FX′ ∈ D(X ′), FU ′ ∈
D(U ′), and isomorphisms FU ∣U ′ ≃ FU ′ ≃ FX′ ∣U ′ in D(U ′), to the
object

j∗(FU) ×
g∗(FU ′)

f∗(FX′) ∈ D(X).

Note that the unit of this adjunction is invertible by Theorem 2.46.
To show that the counit is invertible it will suffice to show that the
canonical morphisms

j∗(j∗(FU) ×
g∗(FU ′)

f∗(FX′)) → FU

f∗(j∗(FU) ×
g∗(FU ′)

f∗(FX′)) → FX′

are invertible. These are both easy exercises using Proposition 2.11
and the smooth base change formula.

(ii) Case of D!. We prove proper excision; the étale version is proven
by the same type of argument. Suppose given a proper morphism
f ∶ X ′ → X in S which is an isomorphism away from a closed
immersion i ∶ Z → X in S. Let Z ′ = Z ×X X ′ and g ∶ Z ′ → X. The
claim is that i!, f !, and g! induce an equivalence

D(X) →D(Z) ×
D(Z′)

D(X ′).

Note that this functor admits a left adjoint which sends an object
of D(Z)×D(Z′)D(X ′), given by FZ ∈ D(Z), FX′ ∈ D(X ′), FZ′ ∈
D(Z ′), and isomorphisms FZ ∣Z ′ ≃ FZ′ ≃ FX′ ∣Z ′ in D(Z ′), to the
object

i!(FZ) ×
g!(FZ′)

f!(FX′) ∈ D(X).

Note that the counit of this adjunction is invertible by Theorem 2.47.
To show that the unit is invertible it will suffice to show that the
canonical morphisms

FZ → i!(i!(FZ) ×
g!(FZ′)

f!(FX′))

FX′ → f !(i!(FZ) ×
g!(FZ′)

f!(FX′))

are invertible. For the first, this follows from the localization property
and base change formula (Theorem 2.34(iii)). For the second, one
uses Proposition 2.41 along with localization and base change again.

(iii) Case of D!. By [Lu1, Thm. 5.5.3.18], this assertion is equivalent

to cdh descent for D!, regarded as a presheaf with values in the
∞-category of presentable ∞-categories and right-adjoint functors.
By [Lu1, Cor. 5.5.3.4], the latter assertion is equivalent to cdh descent

of D! as a presheaf of ∞-categories, which was just proven above.
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�

2.8. Objects of geometric origin. In this subsection we study a finiteness
condition on objects of D(X), which is a relative and axiomatic version of
Voevodsky’s notion of geometric motives [MVW, Lect. 14]. In [Ay, §2.2] and
[CD, §4.2], this property is studied under the name constructible. We instead
use the term of geometric origin to be compatible with the case of `-adic
étale sheaves and with Voevodsky’s terminology.7

Throughout the subsection, fix a (∗, ♯,⊗)-formalism D∗ on S satisfying
Voevodsky’s conditions.

Lemma 2.52. Given any S ∈ S and any F ∈ D(S), the following conditions
are equivalent:

(i) The object F lies in the thick subcategory generated by objects of
the form p!p

!(1S)⟨−n⟩ ≃ p♯p∗(1S)⟨−n⟩, where p ∶X → S is a smooth
morphism of finite presentation in S and n ⩾ 0 is an integer.

(ii) The object F lies in the thick subcategory generated by objects of
the form p!p

!(1S)⟨−n⟩ ≃ p♯p∗(1S)⟨−n⟩, where p ∶X → S is a smooth
morphism of finite presentation in S with X affine, and n ⩾ 0 is an
integer.

Proof. Let p ∶ X → S be a smooth morphism of finite presentation with
X ∈ S not necessarily affine. Let us show that p!p

!(1S) ∈ D(S) belongs to
the thick subcategory described in (ii). By [Lu2, Thm. 3.4.2.1] there exists a
stratification of U by open subspaces

∅ = U0 ⊆ U1 ⊆ ⋯ ⊆ Un =X
and, for each 0 < i ⩽ n, an affine derived scheme Vi and an étale morphism
Vi → Ui inducing an isomorphism away from Ui−1. Now by étale excision
(Theorem 2.46) the claim follows by a simple induction. �

Definition 2.53. Let S ∈ S. An object F ∈ D(S) is called of geometric origin
(or simply geometric) if it satisfies the equivalent conditions of Lemma 2.52.
We write Dgm(S) ⊆ D(S) for the full subcategory spanned by objects of
geometric origin.

Definition 2.54 (Geometric generation). We say that D∗ is geometrically
generated if it is compactly generated and every object of geometric origin is
compact. In this case it follows that the compact objects are precisely those
of geometric origin (see e.g. [Ne, Lem. 2.2]). See [DFJK, Def. A.7].

Example 2.55. The (∗, ♯,⊗)-formalism SH∗ is geometrically generated by
Remark 1.19.

Proposition 2.56. Let S ∈ S. For an object F ∈ D(S), the property of
geometricity is stable under the following operations:

7Previous versions of this note used the term “constructible”; citations that refer to
“constructible objects” and “constructible generation” should be adjusted accordingly.
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(i) Tensor product with any object of geometric origin G ∈ Dgm(S).
(ii) Inverse image along any morphism f ∶ S′ → S in S.

(iii) ♯-direct image along any smooth morphism of finite presentation
g ∶ S → T in S.

Proof. Follows easily from the definitions, see e.g. [CD, Props. 4.2.3 and
4.2.4]. �

Lemma 2.57. Let S ∈ S. For an object F ∈ D(S), the property of geometric-
ity is stable under the operation i∗i

∗ for any closed immersion i ∶ Z → S in
S.

Proof. If j is the complementary open immersion, this follows from the
localization triangle (Remark 2.9) since j♯j

∗ preserves geometricity by Propo-
sition 2.56. �

From Proposition 2.56 it follows that D∗ induces a presheaf of symmetric
monoidal small ∞-categories D∗

gm on S.

Proposition 2.58. The presheaf D∗
gm satisfies Nisnevich descent.

Proof. In view of Nisnevich descent for D∗ (Corollary 2.51) it will suffice to
show that geometricity can be detected by Nisnevich covering families. It
is enough to restrict our attention to covering families {j, f} arising from
Nisnevich squares, i.e., f ∶ S′ → S is an étale morphism in S inducing an
isomorphism outside a quasi-compact open immersion j ∶ U ↪ S. In this
situation we have by Theorem 2.46 (and purity) a cartesian square

F j♯j
∗(F)

f♯f
∗(F) g♯g

∗(F).

Thus for any F ∈ D(S) such that f∗(F) and j∗(F) are of geometric origin,
it follows by Proposition 2.56 that F is a finite homotopy limit of objects of
geometric origin, hence is of geometric origin. �

Proposition 2.59. Let S ∈ S. For an object F ∈ D(S), the property of
geometricity is stable under the operation of Thom twist by any perfect
complex E on S.

Proof. By Proposition 2.58 we may localize on S so that ⟨E⟩ ≃ ⟨n⟩ for some
integer n ∈ Z (the virtual rank of E). In that case, the claim follows by
definition of geometricity. �

Theorem 2.60. Let S ∈ S. For an object F ∈ D(S), the property of
geometricity is stable under the operation of exceptional direct image g!

along any morphism of finite type g ∶ S → T .
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Proof. If g is smooth, then by purity g! ≃ g♯⟨−Lg⟩ (Theorem 2.44) so this
follows from Propositions 2.56 and 2.59.

For the general case, note that the claim is local on T by Proposition 2.58
(and the base change formula) so that we may assume T is affine. By
Lemma 2.52 it will suffice to show that for any smooth morphism p ∶X → S
with X affine, the object

g!p!p
!(1S) ≃ (g ○ p)!(1S)⟨Lp⟩ ∈ D(T )

is of geometric origin (since g! is exact and commutes with Thom twists by
Remark 2.42). Since ⟨Lp⟩ preserves objects of geometric origin (Proposi-
tion 2.59), we may replace g by g○p and reduce to showing that g!(1S) ∈ D(T )
is of geometric origin for any g ∶ S → T in S of finite type and S and T both
affine. By derived invariance (Lemma 2.13) we may moreover assume S and
T are classical. Then since g is of finite type, it factors through a closed
immersion i ∶X →An

Y and the projection π ∶ An
Y → Y . We know that π! pre-

serves geometricity by the smooth case and we know that i!(1X) ≃ i∗i∗(1An
Y
)

is of geometric origin by Lemma 2.57. �

Corollary 2.61. If D∗ is geometrically generated, then for any morphism
of finite type f ∶ S → T in S, the functor f! is compact, i.e., its right adjoint
f ! commutes with colimits.

Proof. Since D∗ is compactly generated this is equivalent to the assertion that
f! preserves compact objects. Since D∗ is geometrically generated, these are
the same as objects of geometric origin. Thus the claim is Theorem 2.60. �
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