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Abstract. We extend the stable motivic homotopy category of Voevod-
sky to the class of scalloped algebraic stacks, and show that it admits the
formalism of Grothendieck’s six operations. Objects in this category rep-
resent generalized cohomology theories for stacks like algebraic K-theory,
as well as new examples like genuine motivic cohomology and algebraic
cobordism. These cohomology theories admit Gysin maps and satisfy
homotopy invariance, localization, and Mayer–Vietoris. For example, we
deduce that homotopy K-theory satisfies cdh descent on scalloped stacks.
We also prove a fixed point localization formula for torus actions.

Finally, the construction is contrasted with a “lisse-extended” stable
motivic homotopy category, defined for arbitrary stacks: we show for
example that lisse-extended motivic cohomology of quotient stacks is
computed by the equivariant higher Chow groups of Edidin–Graham, and
we also get a good new theory of Borel-equivariant algebraic cobordism.
Moreover, the lisse-extended motivic homotopy type is shown to recover
all previous constructions of motives of stacks.
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1. Introduction

1.1. Motivic homotopy theory of stacks. Motivic homotopy theory
provides a framework for the study of generalized or extraordinary cohomol-
ogy theories in algebraic geometry, such as motivic cohomology, algebraic
K-theory, and algebraic cobordism. Objects of the motivic stable homotopy
category SH(X), over a scheme X, are “generalized sheaves” that can be
taken as coefficients for cohomology.

In this paper we are interested in generalized cohomology theories on algebraic
stacks. To that end, we introduce an extension of the motivic stable homotopy
category to a large class of algebraic stacks, called scalloped stacks (see
Subsect. 1.7 below), which includes for instance tame Deligne–Mumford or
Artin stacks with separated diagonal as well as quotients of qcqs algebraic
spaces by nice linear algebraic groups. Our first main result is as follows (see
Theorem 7.1 and Example 5.12):

Theorem A. The assignment X ↦ SH(X ), together with the formalism of
six operations, extends from qcqs1 algebraic spaces to scalloped algebraic
stacks. More precisely, we have the following operations:

(i) For every scalloped stack X , a pair of adjoint bifunctors (⊗,Hom).
(ii) For every morphism of scalloped stacks f ∶ X → Y, an adjoint pair

f∗ ∶ SH(Y)→ SH(X ), f∗ ∶ SH(X )→ SH(Y).
(iii) For every representable morphism of finite type f ∶ X → Y between

scalloped stacks X and Y, an adjoint pair

f! ∶ SH(X )→ SH(Y), f ! ∶ SH(Y)→ SH(X ).

1quasi-compact and quasi-separated
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Moreover, these satisfy various identities including the base change and pro-
jection formulas, homotopy invariance, purity isomorphism, and localization
triangle.

In the case of noetherian schemes, the six functor formalism on SH was
constructed in the work of Voevodsky, Ayoub, and Cisinski–Déglise (see
[Vo2, Ay, CD]). For a self-contained account in the generality of qcqs
algebraic spaces, see [Kh5]. Our proof of Theorem A is logically independent
of these earlier works.

1.2. Genuine cohomology theories. Given a motivic spectrum F ∈
SH(X ) over a scalloped stack X , we define the cohomology spectra of
X with coefficients in F as the mapping spectra

C●(X ,F) = MapsSH(X ) (1X ,F).

Given any K-theory class α ∈ K(X ), we write F⟨α⟩ for the Thom twist2 by
α. Theorem A yields (see Subsect. 9.2):

Corollary B. Cohomology with coefficients in F ∈ SH(X ) has the following
properties:

(i) Functoriality. For every representable morphism f ∶ X ′ → X , there
are inverse image maps

f∗ ∶ C●(X ,F)→ C●(X ′,F).
If f is smooth and proper, then there is also a Gysin map

f! ∶ C●(X ′,F)→ C●(X ,F)⟨−ΩX ′/X ⟩
where ΩX ′/X denotes the relative cotangent sheaf. These are functo-
rial and satisfy base change and projection formulas.

(ii) Homotopy invariance. For every scalloped stack X and every vector
bundle p ∶ E → X , the inverse image map

p∗ ∶ C●(X ,F)→ C●(E ,F)
is invertible.

(iii) Localization. For every scalloped stack X and every closed immersion
i ∶ Z → X with quasi-compact open complement j ∶ U → X , there is
an exact triangle

C●
Z(X ,F)→ C●(X ,F) j∗Ð→ C●(U ,F),

where

C●
Z(X ,F) = MapsSH(X ) (i∗(1Z),F)

is cohomology with support in Z.

2For oriented examples (such as motivic cohomology, algebraic K-theory, and algebraic
cobordism), a choice of orientation determines isomorphisms F⟨α⟩ ≃ F⟨r⟩ ≃ F(r)[2r], where
r is the virtual rank of α (when viewed as a K-theory class, r = [OX ] +⋯ + [OX ] = [O

r
X
]).
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(iv) Mayer–Vietoris/cdh descent. Let f ∶ X ′ → X be a representable
étale morphism (resp. a representable proper morphism) of scalloped
stacks which induces an isomorphism away from a quasi-compact
open substack Y ⊆ X (resp. a closed substack Y ⊆ X ). Then there is
a homotopy cartesian square

C●(X ,F) C●(Y,F)

C●(X ′,F) C●(f−1(Y),F).

f∗

For a quotient stack X = [X/G], where G is a nice linear algebraic group
acting on a qcqs algebraic space X, the genuine cohomology of X in particular
defines a notion of genuine G-equivariant cohomology of X. Moreover, X
can itself be a scalloped stack (e.g. a tame Deligne–Mumford stack with
separated diagonal) so that we can also make sense of genuine equivariant
cohomology of scalloped stacks.

We are primarily interested in the cohomology theories arising from three
examples of motivic spectra over X : the algebraic K-theory spectrum KGLX ,
the (integral) motivic cohomology spectrum ZX , and the algebraic cobordism
spectrum MGLX .

Cohomology with coefficients in KGLX recovers (the A1-invariant version
of) the well-known algebraic K-theory of stacks: for every scalloped stack X ,
there is a canonical isomorphism

C●(X ,KGL) ≃ KH(X ), (1.1)

where the right-hand side is the homotopy invariant K-theory spectrum
KH(X ) as studied in [KrRa, HK] (and in [We] for schemes). In particular,
if X is nonsingular, then we have

C●(X ,KGL) ≃ K(X ) ≃ G(X )

where K(X ) is the Thomason–Trobaugh K-theory spectrum of perfect com-
plexes on X and G(X ) is the Quillen K-theory spectrum of coherent sheaves
on X . See Subsect. 10.1.

In the case of ZX and MGLX , we get new extensions of motivic cohomology
and cobordism to stacks, which are “genuine” refinements of previously
known cohomology theories even in the case of quotient stacks. The word
“genuine” here is used in the sense of genuine equivariant homotopy theory
(see [Se2, HHR, NS]), as opposed to Borel -equivariant homotopy theory;
compare Subsect. 1.4 below and see also the discussion in Subsect. 1.10.

There are also “quadratic”, SL-oriented, refinements of these three theories:
hermitian K-theory KQX (Remark 10.8), Milnor–Witt motivic cohomology

Z̃X (Remark 10.19), and special linear algebraic cobordism MSLX (Re-
mark 10.12).



6 A. A. KHAN AND C. RAVI

1.3. Fixed point localization. Let k be a field and let T = Gm,k be the
multiplicative group over Spec(k). Given a motivic spectrum F ∈ SH(BT ),
we can define T -equivariant Borel–Moore homology with coefficients in F by
the formula:

CBM
● ([X/T ]/BT ,F) ∶= MapsSH([X/T ]) (1, f !(F)),

where X is a qcqs algebraic space with T -action and f ∶ [X/T ]→ BT is the
projection. We prove an analogue of Thomason’s concentration theorem
(see [Th2, Thm. 2.1]) in this setting. It relates the equivariant Borel–Moore
homology of an algebraic space with that of its fixed locus:

Theorem C (Concentration). Let X be a T -equivariant algebraic space of
finite type over k and denote by i ∶ XT → X the inclusion of the locus of
fixed points. Then for every motivic spectrum F ∈ SH(BT ), the map

i∗ ∶ CBM
● ((XT ×BT )/BT ,F)⟨∗⟩→ CBM

● ([X/T ]/BT ,F)⟨∗⟩

becomes invertible after inverting the Euler classes of powers of the tautolog-
ical line bundle [A1/Gm].

See Corollary 11.3. The notation C⟨∗⟩ denotes the direct sum of C⟨α⟩ over
all K-theory classes α (see Remark 9.9).

As an application of Theorem C, one can prove (virtual) Atiyah–Bott local-
ization and wall-crossing formulas in this context, following the arguments of
[AKLPR]. This suggests that there are genuine-equivariant counterparts to
Joyce’s machine producing enumerative invariants out of abelian categories
[Joy] (compare [Li]), which we plan to investigate in the future.

1.4. Lisse-extended cohomology theories. A different way to extend
SH and generalized cohomology theories to stacks is via the following formal
procedure.

Given any qcqs algebraic stack X (not necessarily scalloped), denote by LisX
the ∞-category of pairs (U,u ∶ U → X ), where U is a qcqs algebraic space
and u ∶ U → X is a smooth morphism. The lisse extension SH◁(X ) is the
homotopy limit of ∞-categories

SH◁(X ) = lim←Ð
(U,u)∈LisX

SH(U),

over the ∗-inverse image functors. The motivic cohomology, algebraic
K-theory, and algebraic cobordism spectra immediately give rise to lisse-
extended motivic spectra

Z◁
X
, KGL◁

X
, MGL◁

X
∈ SH◁(X )

over X , simply by virtue of stability under ∗-inverse image. If X is scalloped,
then these are moreover the images of their genuine counterparts by a
canonical functor (which commutes with colimits and ∗-inverse image)

SH(X )→ SH◁(X ).
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However, this functor is far from being an equivalence, so that the corre-
sponding cohomology theories are very different (as the example below of
K-theory shows).

In fact, we show that for quotient stacks, cohomology with coefficients in any
of the lisse-extended cohomology theories above can be computed via Totaro
and Morel–Voevodsky’s algebraic approximation of the Borel construction
(see Theorem 12.9). For example, in the case of motivic cohomology we have:

Theorem D. Let G be a linear algebraic group over a field k of characteristic
zero. Let X be a smooth G-quasi-projective k-scheme. Then for every n, s ∈ Z
there are canonical isomorphisms

πsC
●
◁([X/G],Z)⟨n⟩ ≃ An

G(X,s)
where on the right-hand side are the Edidin–Graham equivariant higher
Chow groups [EG].

See Example 12.16. The result also holds for fields of characteristic p > 0, up
to inverting p.

Example 1.2. In the case of KGL◁
[X/G]

, the canonical map

π0 K([X/G])→ π0 C●
◁([X/G],KGL),

induced by the functor SH([X/G]) → SH◁([X/G]) (for G nice), is not
bijective if G is nontrivial. In fact, it exhibits the target as a completion of
the source. See Example 12.21.

Remark 1.3. For general coefficients F , Theorem 12.9 gives isomorphisms

C●
◁([X/G],F)⟨n⟩ ≃ lim←Ð

i

C●([X/G] ×
BG

Ui,F)⟨n⟩

where (Ui)i is a sequence of algebraic approximations to the Borel construc-
tion. On π0 we have surjections (see (12.7) for notation)

An
◁([X/G],F)↠ lim←Ð

i

An([X/G] ×
BG

Ui,F)

which however we do not know to be injective for general F .3 For example,
our proof that this holds in the case of motivic cohomology relies on a
vanishing property which does not hold e.g. in algebraic cobordism.

In particular, although the right-hand side has been considered in the case
of algebraic cobordism in [HML, Kri] (and in an abstract setting in [KP,
Cor. 3.8]), it is not known to admit right-exact localization sequences (see
Footnote 24). In contrast, lisse-extended cobordism does have right-exact
localization sequences which in fact even extend to long-exact sequences
using the higher groups (see Proposition 12.19).4 In general, we regard the

3Note added in final revision: In the subsequent paper [KhRa] we show that this holds
when (a) F is eventually coconnective with respect to the cohomological t-structure, or
(b) F is the rationalized algebraic cobordism or algebraic K-theory spectrum.

4Note added in final revision: In the subsequent paper [KhRa] we show that lisse-
extended bordism (of possibly singular schemes) agrees with the bordism theory of [HML]
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lisse extension as a good way to define “Borel-type” extensions of arbitrary
generalized cohomology theories.

Remark 1.4. Theorem 12.9 is deduced from a stronger comparison of
motivic stable homotopy types. For example, the lisse-extended motivic
stable homotopy type of a classifying stack BG is compared with the Morel–
Voevodsky construction (see Theorem 12.15). Moreover, we show that the
lisse-extended motivic homotopy type recovers (and generalizes) all previous
constructions of motives of stacks found in the literature [Toë2, Chou, HPL,
RS, CDH] (see Remarks 12.32, 12.33 and 12.36).

1.5. Derived stacks and virtual functoriality. Throughout the paper, we
work in the setting of derived algebraic geometry. In particular, Theorem A
and Corollary B remain valid for scalloped derived stacks. Working in this
generality allows us to construct an enhanced functoriality for our cohomology
theories (see Theorem 8.4):

Theorem E. Let f ∶ X → Y be a quasi-smooth, representably smoothable5

morphism of scalloped derived stacks with affine diagonal. Then there exists
a natural transformation

gysX /Y ∶ f∗⟨LX /Y⟩→ f !

of functors SH(Y)→ SH(X ), where LX /Y is the relative cotangent complex.
If f is smooth, then gysX /Y is the purity isomorphism (Theorem 7.10).

Moreover, for every motivic spectrum F ∈ SH(Y), for f ∶ X → Y proper
quasi-smooth and representably smoothable, the Gysin transformation yields
Gysin maps

f! ∶ C●(X ,F)→ C●(Y,F)⟨−LX /Y⟩
extending those of Corollary B.

Quasi-smoothness is a derived version of the notion of local complete inter-
section morphism, which in particular gives rise on classical truncations to a
relative perfect obstruction theory in the sense of [BF]. For every scalloped
derived stack X , the inclusion of the classical truncation i ∶ Xcl → X induces
canonical isomorphisms

i∗ ∶ C●(X ,F) ≃ C●(Xcl,F), (1.5)

under which the Gysin functoriality for quasi-smooth morphisms can be
interpreted as “virtual” functoriality at the level of classical truncations (cf.
[Ma]).

Note that the Gysin transformation gysX /Y for any quasi-smooth, repre-
sentably smoothable, morphism f ∶ X → Y, gives rise to a canonical “bi-
variant” virtual fundamental class which lives in the relative Borel–Moore

with rational coefficients. In particular, the latter also admits right-exact localization
sequences.

5Here representably smoothable means that f admits a global factorization through
an unramified representable morphism followed by a smooth representable morphism (see
Definition 8.3).
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homology

C●(X , f !(F))⟨−LX /Y⟩
for any motivic ring spectrum F ∈ SH(Y). These groups define a bivariant
theory in the sense of Fulton–MacPherson [FM], and the relative virtual
fundamental class can be viewed as an “orientation” for f in the sense of op.
cit.

1.6. Homotopy invariant K-theory. When applied to cohomology with
coefficients in KGL (1.1), the isomorphisms (1.5) yield the following corollary
(see also Remark 10.5), which was obtained in 2018 in the early stages of this
project. Since then, it has also been independently reproven6 via categorical
methods by Elmanto and Sosnilo [ES].

Corollary F. For every scalloped derived stack X with classical truncation
Xcl, there is a canonical isomorphism of spectra

KH(X ) ≃ KH(Xcl).

The original modest motivation for this work was to give a proof of the
following theorem, a slight generalization of a result of Hoyois–Krishna (see
[Ho4, HK], and [Ci] for the case of schemes).

Corollary G. The presheaf of spectra X ↦ KH(X ) satisfies cdh descent on
the site of scalloped stacks.

This result is an immediate consequence of the formula (1.1) and Corol-
lary B(iv). We also give a more direct argument, which only requires the
unstable theory developed in Sect. 3, by using the cdh descent criterion in
[Kh2] (see Remark 10.6).

1.7. Outline of Part I. The first part of the paper begins in Sect. 2 by
introducing the class of scalloped (derived) stacks. As a first approximation,
scalloped stacks are those that are built, locally in some sense, out of quotient
stacks of the form [X/G] where G is a nice embeddable group scheme over
an affine scheme S and X is a quasi-affine S-scheme with G-action. We
recall (see Subsect. 2.1):

● Nice groups are a certain class of affine fppf group schemes which are
linearly reductive (meaning that the functor of G-invariants is exact)
which is stable under passage to closed subgroups and extensions.
For example, algebraic tori are nice, as are finite étale groups of order
invertible on S.

● Embeddability means that G is a closed subgroup of the general
linear group of some vector bundle on S. For G nice, this always

6Although the result in op. cit. is not stated in this generality, the same proof applies to
scalloped derived stacks. In fact, [ES, Thm. 5.2.2] generalizes to show that any “truncating”
invariant of stable ∞-categories satisfies derived nilpotent invariance for scalloped derived
stacks.
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holds Nisnevich-locally on S (see [AHR, Cor. 13.2]), and globally if
S is the spectrum of a field.

Such quotients will be called quasi-fundamental. The class of scalloped
stacks is then built as the closure of the class of quasi-fundamental stacks
under the following property: given a quasi-compact algebraic stack X with
separated diagonal, and a representable étale neighbourhood p ∶ V → X of a
closed substack Z ⊆ X with V quasi-fundamental, we require that if X ∖Z is
scalloped, then so is X . For example, this class includes quotients [X/G] as
above where now X is a qcqs algebraic space. It also includes tame Deligne–
Mumford stacks, as well as tame Artin stacks in the sense of [AOV], with
separated diagonal. In fact, the main result of [AHHLR] implies that the
class of scalloped stacks is precisely the class of qcqs stacks with separated
diagonal and nice stabilizers. See Sects. 2.3 and 2.5. In Appendix A we
also define linearly scalloped stacks, which roughly speaking is a variant of
the above definitions where arbitrary linearly reductive groups are allowed
instead of only nice ones, and we explain how the theory developed in this
paper can be extended to that setting.

We conclude Sect. 2 by extending compact generation results for the derived
category of quasi-coherent complexes on a qcqs scheme [TT, BVdB] to the
class of scalloped derived stacks (see Theorem 2.24). This was previously
known in the cases of tame quasi-Deligne–Mumford classical stacks (see
[HR, Thm. A]) and quasi-compact derived stacks with affine diagonal and
nice stabilizers (see [BKRS, Thm. A.3.2]).7 These proofs use the étale-local
compact generation criterion of [HR, Thm. C], which does not apply to
general scalloped stacks. Our proof is in fact much more elementary and
follows the same lines as the case of schemes or algebraic spaces (as in e.g.
[BVdB, Thm. 3.1.1] and [Lu3, Thm. 9.6.1.1]), using étale neighbourhoods
inductively to reduce to the case of quasi-fundamental stacks.

In the rest of Part I, which consists of Sects. 3 and 4, we begin working
towards the proof of Theorem A (which will be completed in Part II) by giving
the construction of the unstable and stable motivic homotopy categories
over a scalloped derived stack. Recall that if X is a qcqs algebraic space,
the motivic homotopy category H(X) is the ∞-category of A1-homotopy
invariant Nisnevich sheaves on the site Sm/X of smooth algebraic spaces of
finite presentation over X. The stabilization SH(X) is defined by adjoining
a ⊗-inverse of the Thom space ThX(OX) ≃ X × (P1,∞) of the trivial line
bundle. See [Kh5].

Over a scalloped stack X , the unstable category H(X ) is defined similarly
as the ∞-category of A1-invariant Nisnevich sheaves on Sm/X , where Sm/X

is the site of smooth representable morphisms of finite presentation over X
(see Subsect. 3.1). However, the correct definition of SH(X ) is considerably
more involved due to the fact that vector bundles on a stack need not be

7It was also known by [DG, Thm. 0.3.4] that the derived ∞-category of quasi-coherent
complexes on a scalloped stack is dualizable, i.e., a retract of a compactly generated stable
∞-category (see [Lu3, Prop. D.7.3.1]).
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Nisnevich-locally trivial. When X is the quotient of a qcqs algebraic space
by a nice embeddable group, SH(X ) is defined by adjoining ⊗-inverses of
the Thom spaces of all vector bundles on X (Remark 4.8). For general X ,
the construction is less explicit, but is determined by the requirement that
the assignment X ↦ SH(X ) satisfies Nisnevich descent. See Theorem 4.5.

For the quotient of a G-quasi-projective scheme X by a nice group G,
SH([X/G]) recovers Hoyois’s equivariant stable motivic homotopy category
SHG(X) (Remark 4.9). Thus in this case, our construction in particular
removes the quasi-projectivity hypotheses in [Ho3]. (Using the alternative
theory in Appendix A we can also allow G to be linearly reductive, just as in
op. cit., but in that case the quasi-projectivity hypotheses are necessary for
us as well.) Due to the more involved construction of SH(X ) for general X ,
the standard functoriality results such as the smooth base change formula
(see Theorem 4.10) require more work than in the quotient stack case.

1.8. Outline of Part II. In Part II we complete the proof of Theorem A
by constructing the formalism of Grothendieck’s six operations on the stable
motivic homotopy category.

We begin in Sect. 5 with an axiomatization of the system of categories
SH(X ) with its basic operations, via a structure called a (∗, ♯,⊗)-formalism.
We impose a basic set of axioms on such a structure, adapting Voevodsky’s
original conditions in the case of schemes [Vo2]. The construction SH(−) is,
by design, the universal one satisfying these axioms (see Proposition 5.13).

In Sect. 6 we prove the base change formula for proper representable mor-
phisms (see Theorem 6.1). The general proof roughly follows [CD, §2.4] in
the case of schemes. A key new input necessary to reduce the case of a proper
representable morphism f ∶ X → Y to the projective case is Theorem 6.11,
which asserts that we can always find a covering X̃ → X in the proper cdh
topology such that the composite X̃ → Y becomes projective. This relies on
a variant of Chow’s lemma for stacks proven by Rydh.

With proper base change in hand, we proceed in Sect. 7 to the construction
of the !-operations. Following Deligne, the construction for compactifiable
morphisms is relatively straightforward. Using the ∞-categorical machinery
of [LZ], we further extend this to morphisms that are only Nisnevich-locally
compactifiable, such as arbitrary representable morphisms of finite type
between scalloped stacks. We also prove purity for smooth representable
morphisms between scalloped stacks with affine diagonal (Theorem 7.10).

Finally in Sect. 8 we adapt the constructions of [DJK] and [Kh3] to construct
Euler and Gysin transformations in our setting. These will give rise in
Part III to Euler classes and Gysin maps in cohomology.

1.9. Outline of Part III. In Part III we finally turn our attention towards
generalized cohomology theories represented by motivic spectra.
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In Sect. 9 we give the definitions and record the various operations and
properties asserted in Corollary B. We also define relative Borel–Moore
homology, for a representable morphism of finite type f ∶ X → Y, via
cohomology with coefficients in f !(F). When f is smooth, this is related to
cohomology via a Poincaré duality statement (Proposition 9.14).

Sect. 10 contains the constructions of our main examples of motivic spectra
mentioned in Subsect. 1.2. For the construction of the algebraic K-theory
spectrum KGL (Subsect. 10.1), we first use our compact generation result
(Theorem 2.24) to show that algebraic K-theory satisfies Nisnevich descent
on scalloped derived stacks (Theorem 10.2). This already yields unstable
representability of KH (see Construction 10.3), which is enough to deduce
Corollaries F and G (see Remarks 10.5 and 10.6). The stable representability
(Theorem 10.7) is not much more difficult than in the case of schemes or
algebraic spaces [Ci, Kh2] and quotient stacks [Ho4].

The construction of the algebraic cobordism spectrum MGL is more subtle
because the original definition of Voevodsky [Vo, §6.3] in the case of schemes
is reasonable for quotient stacks but not in general (see Remark 10.11).
Instead, in Subsect. 10.2 we give a different definition following [BH, §16].

The definition of the motivic cohomology spectrum is even less obvious.
Indeed, even for schemes the construction is highly nontrivial as Voevodsky’s
theory of finite correspondences, for example, hinges on the intersection theory
of relative cycles, which is delicate over general bases [CD]. Recently, Hoyois
[Ho5] has given a definition of the Spitzweck motivic cohomology spectrum
[Sp] that relies on the much more robust theory of framed correspondences
introduced in [EHKSY]. In Subsect. 10.3, we sketch an extension of this
construction to stacks, although we do not undertake a full investigation of
the theory of framed correspondences between stacks here.

In Sect. 11 we prove Theorem C. In fact, we prove the statement more
generally for T any split torus over a connected noetherian affine base.
Although our formulation (and proof) of this result is closest to [Th2], such
localization theorems are ubiquitous in the setting of equivariant cohomology:
see also [EG2, Bo, Se].

Sect. 12 deals with the lisse-extended variant of the stable motivic homotopy
category, and explains how this recovers many previous constructions in the
literature. We first show in Subsect. 12.3 that lisse-extended cohomology
theories of quotient stacks can be computed by the Borel construction.8 The
comparison of Theorem D is then deduced in Subsect. 12.6. In Subsect. 12.7
we show that in many cases the lisse-extended stable motivic homotopy
category can be computed by a Kan extension (Corollary 12.27). Finally in
Subsect. 12.8 and 12.9 we show that the lisse-extended motivic homotopy
type recovers previous constructions of motives of stacks due to Toën [Toë2],
Choudhury [Chou], Richarz–Scholbach [RS], Hoskins–Pepin Lehalleur [HPL],
and Choudhury–Deshmukh–Hogadi [CDH], whenever the latter are defined.

8Note added in final revision: A much more thorough version of this comparison is
carried out in our subsequent paper [KhRa].
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1.10. Related work. Traditionally, equivariant cohomology theories in
algebraic geometry are defined via algebraic versions of the Borel construc-
tion. For example, equivariant Chow groups [EG] and equivariant algebraic
cobordism [Kri, HML] are all defined this way. Kresch [Kre] has defined ex-
tensions of the Chow groups for algebraic stacks with affine stabilizers, which
agree with the Edidin–Graham Chow groups for quotient stacks. We expect
Kresch’s Chow groups to agree with lisse-extended motivic Borel–Moore
homology over a field.9

The primary example of a non-Borel-type cohomology theory in algebraic
geometry is algebraic K-theory, which is “genuine” by nature. Candidates
for genuine (or “Bredon-type”) equivariant Chow or motivic cohomology
theories, for finite discrete group actions, have been given by Levine–Serpé
[LS] and Heller–Voineagu–Østvær [HVØ]. In the forthcoming work [HØ] it is
claimed that the latter theory is equivalent to the zero slice of the equivariant
motivic sphere spectrum, in the case of actions by the cyclic group of order
two. On the other hand, while one would hope that the equivariant homotopy
coniveau filtration of [LS] also computes the slice filtration on the equivariant
motivic stable homotopy category (as in [Le], non-equivariantly), this cannot
be true because the Levine–Serpé theory fails to be homotopy invariant for
nontrivial vector bundles (see [LS, Cor. 5.6]). In particular, the Levine–Serpé
theory cannot be representable by a genuine motivic spectrum. Some other
Bredon-type cohomology theories for stacks have been constructed by Joshua
[Jos].

A well-known heuristic is that in the presence of étale descent, there is no
difference between genuine and Borel-type cohomology. For example, in étale
cohomology, the “genuine” theory already satisfies étale descent, hence is
Kan-extended from schemes, and is Borel-type (see [LZ2, IZ]). Étale motives
of stacks have also been compared with the Borel construction previously
in [RS, Thm. 2.2.10] and [HPL, App. A]. However, Theorem D (or rather
Theorem 12.15) shows that in general it is lisse extension, rather than étale
sheafification, that computes the Borel construction. In the étale-local case
the lisse extension already appeared in [Kh3] (cf. Example 12.2), where
it was used to define Borel-type variants of rational motivic cohomology,
K-theory, and cobordism.

The recent thesis of Chirantan Chowdhury [Chow1] contains another con-
struction of a stable motivic homotopy category over a certain class of
algebraic stacks. This is a Borel-type construction and we show that it agrees
with the lisse extension (see Subsect. 12.7).

9One can define a cycle class map from the former to the latter, which induces an
isomorphism on quotient stacks (at least assuming resolution of singularities). The claim
should then follow by stratifying the stack by quotient stacks and using the localization
sequence. However, we have not checked that the (explicitly defined) boundary map in
Kresch’s localization sequence agrees with the one in motivic Borel–Moore homology. Note
added in revision: We have been informed that this will appear in forthcoming work of
Younghan Bae and Hyeonjun Park.
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There are several constructions of motives of stacks in the literature [Toë2,
Chou, RS, HPL, CDH]. These are also all Borel-type and can be recovered as
the image of the lisse-extended motivic stable homotopy type (Notation 12.14)
by the “linearization” functor

SH(k)→DM(k)

to Voevodsky motives. See Remarks 12.32, 12.33 and 12.36.

The two primary inspirations for our work are the genuine equivariant theories
of cohomology and stable homotopy theory in algebraic topology (see e.g.
[HHR] or [HHR2, §§2-4]), and the genuine equivariant motivic homotopy
theory of quasi-projective schemes constructed by Hoyois [Ho3]. In the
topological setting, the distinction between Borel and genuine cohomology
theories, and in particular the advantages of the latter, have long been well-
understood: see for instance [LMM] and [CW] (as well as [NS, Thm. II.2.7]).
Moreover, the Atiyah–Segal completion theorem [AS] and related results like
the Segal conjecture (proven by Carlsson [Ca]) explain the precise manner
in which the genuine theory is a refinement of the Borel one.

In the algebraic setting, an analogue of the Atiyah–Segal theorem, describing
Borel-equivariant K-theory as a completion of (genuine) equivariant K-theory,
has been proven by Krishna [Kri2]. Conversely, in the case of actions with
finite stabilizers, (genuine) equivariant K-theory can be described as the
Borel-equivariant K-theory of the inertia (a.k.a. “twisted sectors”), up to
rationalizing both sides and tensoring further with the maximal abelian
extension Q(µ∞) (see [BC, AS2, Vi, Toë]). It would be interesting to know if
these results have analogues in other genuine theories like motivic cohomology
and algebraic cobordism.

The six operations have been constructed in genuine equivariant motivic
homotopy theory for quasi-projective G-schemes by Hoyois [Ho3]. When G
is nice, our Theorem A extends his formalism in two orthogonal directions:
we can take qcqs algebraic spaces with G-action (and arbitrary G-equivariant
morphisms between them), and we also allow them to be derived. Note that
some of our results, namely localization and Atiyah duality (Theorems 3.23
and 6.1(iv)), are proven by dévissage arguments that eventually allow us to
reduce to cases already considered by Hoyois. Further aspects of genuine
equivariant motivic theory have been developed by Gepner–Heller [GH] and
Bachmann [Bac].

The six operational viewpoint on Euler classes and Gysin maps that we
follow was introduced in [DJK], and extended to derived algebraic spaces in
[Kh3]. In Appendix A of loc. cit., the author also extended this construction
to stacks by working in the lisse extension of the étale-local stable motivic
homotopy category SHét. Working in the lisse extension of SH itself, one
can use the same approach to define virtual fundamental classes in gener-
alized cohomology theories not satisfying étale descent (details will appear
elsewhere). In [Le3], Levine has used Hoyois’s equivariant motivic homotopy
category to define virtual fundamental classes for quasi-projective G-schemes
equipped with an equivariant perfect obstruction theory. When the latter
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arises from the cotangent complex of an equivariant quasi-smooth structure
on the scheme, one can adapt the argument of [Kh3, §3.3] to show that his
construction agrees with Definition 9.13.

1.11. Conventions.

● We freely use the language of ∞-categories as in [Lu].
● We use the term animum (plural: anima) as an abbreviation for

animated sets in the sense of [ÇS, §5.1.4].10 The ∞-category of anima
is equivalent to the ∞-category of ∞-groupoids, and can be modelled
by the homotopy theory of Kan complexes.

● We adopt the convention that a symmetric monoidal presentable
∞-category is a presentable ∞-category with a symmetric monoidal
structure for which the monoidal product ⊗ commutes with colimits
in both arguments.

● A colimit-preserving functor between presentable ∞-categories is
called compact if its right adjoint preserves filtered colimits (see e.g.
[Lu3, Defn. C.3.4.2]).

● A derived algebraic stack is a derived 1-Artin stack as in [GR, Chap. 2,
4.1].

● We often use the abbreviation “qcqs” for a (derived) algebraic space
or stack to mean quasi-compact and quasi-separated.

● Given a derived algebraic stack X , we write K(X ) for the K-theory
animum of X , defined by the Waldhausen S●-construction on the
stable ∞-category of perfect complexes on X . See e.g. [Bar] or [Kh4,
§2.1]. By abuse of language, we will refer to points in K(X ), rather
than elements of π0K(X ), as “K-theory classes”.

1.12. Acknowledgments. We thank Tom Bachmann, Marc Hoyois, Marc
Levine, and David Rydh for their interest in this work, for many helpful
discussions, and for their valuable comments on previous drafts. We are
especially grateful to David Rydh for explaining to us his stacky generalization
of Chow’s lemma, which is used in the proof of Theorem 6.11. We also thank
Martin Gallauer for a comment on a previous version.

The authors acknowledge partial support from SFB 1085 Higher Invariants,
Universität Regensburg. The first-named author was also supported by the
Simons Collaboration on Homological Mirror Symmetry, Academia Sinica
Grant AS-CDA-112-M01, and NSTC Grant 112-2628-M-001-0062030.

2. Scalloped algebraic stacks

2.1. Nice group schemes. We recall the definition of nice and embeddable
group schemes. We refer to [AHR] for more details. Fix an affine scheme S.

Definition 2.1. Let G be an fppf affine group scheme over S.

10This is a minor modification of the terminology introduced in loc. cit., where “anima”
is both the singular and plural form. Our proposal of “animum/anima” is intended to
match “spectrum/spectra”.
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(i) We say G is nice if it is an extension of a finite étale group scheme,
of order prime to the residue characteristics of S, by a group scheme
of multiplicative type.

(ii) We say G is embeddable if it is a closed subgroup of GLS(E) for some
locally free sheaf E on S.

Example 2.2. Any torus is nice and embeddable. If S is the spectrum of a
field k, then every finite étale group scheme over S of order invertible in k is
nice and embeddable.

Remark 2.3. Any nice group scheme G over S is linearly reductive (see
[AHR, Rem. 2.2]), i.e., formation of derived global sections on BG is t-exact.

2.2. The Nisnevich topology. For a qcqs derived algebraic stack X , denote
by Rep/X the ∞-category of derived stacks X ′ over X for which the structural

morphism f ∶ X ′ → X is representable and of finite presentation.

Definition 2.4. A Nisnevich square over X is a cartesian square in Rep/X

W V

U X ′

p

j

where j is an open immersion and p is an étale morphism11 which induces
an isomorphism away from U . The Nisnevich topology is the Grothendieck
topology on Rep/X generated by the following covering families: (a) the

empty family, covering the empty stack ∅; (b) for every Nisnevich square as
above, the family {j, p} covering X .

Proposition 2.5. Let F be a presheaf on the site Rep/X , with values in

an ∞-category C that admits limits. Then F satisfies Čech descent for the
Nisnevich topology if and only if the following two conditions hold:

(i) The object RΓ(∅,F) ∈ C is terminal.

(ii) For every Nisnevich square in Rep/X as in Definition 2.4, the induced
square in C

RΓ(X ′,F) RΓ(U ,F)

RΓ(V,F) RΓ(W,F)

j∗

p∗

is cartesian.

Proof. Follows from [Kh, Thm. 2.2.7]. �

11necessarily representable
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Remark 2.6. It follows from Proposition 2.5 that the Nisnevich topology
on Rep/X (as defined in Definition 2.4) coincides with the topology defined

in [HK, §2C], and the one in [KØ] in the case of Deligne–Mumford stacks.

2.3. Scalloped stacks.

Definition 2.7. Let X be a derived algebraic stack. A scallop decomposition
(Ui,Vi, ui)i of X is a finite filtration by quasi-compact open substacks

∅ = U0 ↪ U1 ↪ ⋯↪ Un = X ,
together with Nisnevich squares

Wi Vi

Ui−1 Ui

ui

where ui are representable étale morphisms of finite presentation.

Remark 2.8. Definition 2.7 is a variant of a notion introduced by Lurie (see
[Lu3, Def. 2.5.3.1]). In the terminology of loc. cit., a scallop decomposition
is as above but where the Vi are required to be affine schemes. Thus if
X admits a scallop decomposition in Lurie’s sense, then it must be a qcqs
algebraic space (moreover, this turns out to be a sufficient condition, see
[Lu3, Thm. 3.4.2.1], [RG, I, Prop. 5.7.6]). For our purposes, namely in
Definition 2.9 below, it is important to allow Vi to be a stack.

Definition 2.9. Let X be a quasi-compact quasi-separated derived algebraic
stack.

(i) We say that X is nicely fundamental if it admits an affine morphism
X → BG for some nice embeddable group scheme G over an affine
scheme S. That is, X is the quotient [X/G] of an affine derived
scheme X over S with G-action.

(ii) We say that X is nicely quasi-fundamental if it admits a quasi-affine
morphism X → BG for some nice embeddable group scheme G over
an affine scheme S. That is, X is the quotient [X/G] of a quasi-affine
derived scheme X over S with G-action.

(iii) We say that X is nicely scalloped if it has separated diagonal and ad-
mits a scallop decomposition (Ui,Vi, ui)i where Vi are quasi-fundamental.

Remark 2.10. In Appendix A we consider a notion of linearly scalloped
stack, which is roughly a variant of the above definition where nice groups
are replaced by arbitrary linearly reductive groups. Throughout the main
text, we will just drop the word “nicely” from Definition 2.9.

Remark 2.11. Although we restrict ourselves to derived 1-Artin stacks in
this paper for simplicity12, we note that the above definition admits a natural

12Interested readers will find that many of our arguments, which proceed inductively to
reduce to the quasi-fundamental case, would extend without modification.
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extension to the world of higher derived stacks. Namely, if 0-scalloped stacks
are the class defined above, then a higher derived Artin stack X is n-scalloped
if it has a scallop decomposition (Ui,Vi, ui)i where Vi are (n − 1)-scalloped
and ui are only required to be n-representable morphisms.

2.4. Properties of scalloped stacks. The next few results collect some of
the main properties enjoyed by the class of scalloped stacks.

Theorem 2.12.

(i) The classes of fundamental, quasi-fundamental, and scalloped derived
stacks are each stable under finite disjoint unions.

(ii) Let X be a qcqs derived algebraic stack. If X has separated diagonal,
then the following conditions are equivalent:

(a) X admits a Nisnevich cover u ∶ U ↠ X where U is fundamental.

(b) X is scalloped.

(c) X admits a scallop decomposition (Ui,Vi, ui)i where the Vi are
scalloped.

(d) X has nice stabilizers.

(iii) Let X be a qcqs derived algebraic stack. If X has affine diagonal,
then the following conditions are equivalent:

(a) X is scalloped.

(b) X admits an affine Nisnevich cover u ∶ U ↠ X where U is
fundamental.

(c) X admits a scallop decomposition (Ui,Vi, ui)i where the Vi are
quasi-fundamental and ui are quasi-affine.

Corollary 2.13. Let f ∶ X ′ → X be a morphism of qcqs derived algebraic
stacks.

(i) If X is quasi-fundamental and f is quasi-affine, then X ′ is quasi-
fundamental.

(ii) If X is scalloped and f is representable, then X ′ is scalloped.

Proof. The first claim is obvious from the definition. The second follows
immediately from the characterization in terms of nice stabilizers (Theo-
rem 2.12), since the stabilizers of X ′ will be subgroups of those of X , and
the class of nice groups is stable under closed subgroups. �

The following can be regarded as a generalized version of Sumihiro’s theorem
[Su].
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Theorem 2.14. Let X = [X/G] be the quotient of a qcqs derived algebraic
space X with G-action, where G is a nice group scheme over an affine scheme
S. Then we have:

(i) X admits a Nisnevich cover u ∶ U ↠ X where U is of the form [U/G]
with U an affine derived scheme over S with G-action. Moreover, if
X has affine diagonal, then u is affine.

(ii) X admits a scallop decomposition (Ui,Vi, ui)i where the Vi are of the
form [Vi/G], for some quasi-affine derived schemes Vi over S with
G-action; in particular, X is scalloped.

Theorems 2.12 and 2.14 will be proven in 2.6 below.

2.5. Tame stacks. Let us recall a few classes of examples of scalloped stacks:

Example 2.15 (Tame DM stacks). If X is a tame derived Deligne–Mumford
stack with separated diagonal, then its stabilizers are linearly reductive finite
étale group schemes (in particular, they are nice). Hence X is scalloped by
Theorem 2.12(ii).

Example 2.16 (Tame Artin stacks). If X is an algebraic stack with separated
diagonal which is tame in the sense of [AOV], then it has nice stabilizers.
Hence it is scalloped by Theorem 2.12(ii).

2.6. Proof of Theorem 2.12 and Theorem 2.14. The proof of Theo-
rem 2.12 will make use of the following result of Alper–Hall–Rydh.

Theorem 2.17. Let f ∶ X → Y be a representable morphism of derived
algebraic stacks such that X is fundamental and Y has affine diagonal. Then
there exists a Zariski cover u ∶ U ↠ X such that U is fundamental and the
composite f0 = f ○ u ∶ U → Y is affine.

Proof. Applying [AHR, Prop. 12.15], we get around every closed point x ∈ ∣X ∣
a Zariski open neighbourhood Ux ⊆ X such that Ux is fundamental and the
restriction f ∣Ux ∶ Ux → Y is affine. Since X is quasi-compact, the induced
Zariski cover ∐x Ux ↠ X admits a finite subcover, which we take to be
u ∶ U ↠ X . �

Proof of Theorem 2.14. Since X has nice stabilizers, Theorem 2.12(ii) implies
that there exists a Nisnevich cover u ∶ U ↠ X with U fundamental. By
Theorem 2.17, we can refine the cover u such that U is affine over BG, i.e.,
of the form [U/G] where U is an affine derived scheme over S with G-action.
If X has affine diagonal, then U → X is automatically affine, hence so is
u ∶ U → X . This shows (i), and (ii) now follows from [HK, Prop. 2.9]. �

Proof of Theorem 2.12.

Claim (i): Follows immediately from the definitions.
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Claim (ii), (a) ⇒ (b): Follows from [HK, Prop. 2.9] and the fact that open
substacks of fundamental stacks are quasi-fundamental.

Claim (ii), (b) ⇒ (c): Obvious.

Claim (ii), (c) ⇒ (d): Follows from the fact that fundamental stacks have
nice stabilizers (as subgroups of nice groups are nice).

Claim (ii), (d)⇒ (a): This is [AHHLR, Thm. 1.9] (see also [BKRS, Thm. A.1.8]).

Claim (iii), (a) ⇒ (b): By claim (ii) we get a Nisnevich cover u ∶ U ↠ X with
U fundamental. Since X has affine diagonal, we may apply Theorem 2.17 to
u to get a Nisnevich cover U ′↠ U with the composite U ′↠ X affine and U ′
fundamental.

Claim (iii), (b) ⇒ (c): Apply [HK, Prop. 2.9].

Claim (iii), (c) ⇒ (a): Obvious. �

2.7. The resolution property. For a derived algebraic stack X , we write
Dqc(X ) for the stable ∞-category of quasi-coherent complexes on X (see
e.g. [GR, Chap. 3, 1.1.4]). When X is classical, this is equivalent to the
derived ∞-category of OX -modules with quasi-coherent cohomology (see
[HR, Prop. 1.3]). We write Qcoh(X ) ≃ Dqc(X )♡ for the full subcategory of
discrete quasi-coherent sheaves, i.e., the heart of the t-structure.

Definition 2.18. Let X be a derived algebraic stack.

(i) We say that X has the resolution property if, for every quasi-coherent
sheaf F ∈ Qcoh(X ), there exists a small collection {Eα}α of finite
locally free sheaves and a surjective (on π0) morphism

⊕
α
Eα↠ F

in Dqc(X ).
(ii) We say that X has the derived resolution property if the above holds

moreover for every connective quasi-coherent complex F ∈ Dqc(X )⩾0.

Example 2.19. Let G be an embeddable linearly reductive group scheme
over an affine scheme S. Then the classifying stack BG has the derived
resolution property. In fact, a resolving set is given by finite locally free
G-modules on S. See [Kh4, Ex. 1.35].

Proposition 2.20. Let X be a quasi-fundamental derived stack. Then X
satisfies the derived resolution property.

Proposition 2.20 follows from Example 2.19 and the following lemmas.

Lemma 2.21. Let f ∶X ′ →X be a quasi-affine morphism of derived algebraic
stacks. Then for every connective quasi-coherent complex F ∈ Dqc(X ′)⩾0,
the canonical morphism

f∗(f∗(F)⩾0)→ f∗f∗(F) counitÐÐÐ→ F
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is surjective on π0.

Proof. First note that if f is affine, then the induced map on π0 is the
surjection

π0f
∗(f∗(F)⩾0) ≃ f∗♡f♡∗ (π0F)→ π0F

since π0f
∗ = f∗♡π0 on connective objects, where ♡ denotes the corresponding

functors on the hearts of the t-structures (i.e. on abelian categories of
quasi-coherent sheaves).

In general, write f = g○j where j ∶X ′ → Y is a quasi-compact open immersion
and g ∶ Y → X is affine. Since g∗ is t-exact, it commutes with connective
covers and thus the morphism in question factors as

j∗g∗(g∗j∗(F)⩾0) ≃ j∗g∗g∗(j∗(F)⩾0)
counitÐÐÐ→ j∗(j∗(F)⩾0)→ j∗j∗(F) counitÐÐÐ→ F .

The first arrow is surjective on π0 (since g is affine), the second arrow is
bijective on π0 (since j∗ is t-exact), and the last arrow is invertible (by the
base change formula). �

Lemma 2.22. Let f ∶ X → Y be a quasi-affine morphism of derived algebraic
stacks. If Y has the derived resolution property, then so does X . In fact, if
{Eα}α is a resolving set for Y, then {f∗(Eα)}α is a resolving set for X .

Proof. For any connective complex F ∈ Dqc(X )⩾0, the derived resolution
property for Y implies that there exists a surjection φ ∶ ⊕α Eα ↠ f∗(F)⩾0,
where (−)⩾0 denotes the connective cover. This induces a surjection

f∗(φ) ∶⊕
α
f∗(Eα)↠ f∗(f∗(F)⩾0)

Now consider the composite

⊕
α
f∗(Eα)↠ f∗(f∗(F)⩾0)↠ F ,

where the second arrow is the surjection of Lemma 2.21. �

2.8. Compact generation of the derived category. Given a derived
algebraic stack X , let Dqc(X ) be the stable ∞-category of quasi-coherent
complexes on X as in Subsect. 2.7.

Definition 2.23. A derived algebraic stack X is perfect if Dqc(X ) is com-
pactly generated by the full subcategory Dperf(X ) of perfect complexes.

In this subsection we prove:

Theorem 2.24. Every scalloped derived stack is perfect.

Remark 2.25. In case X has affine diagonal, Theorem 2.24 can be proven
using the criterion of [HR, Thm. C]. See [BKRS, Thm. A.3.2].

Lemma 2.26. Let X be a quasi-fundamental derived stack. Then for every
cocompact closed subset Z ⊆ ∣X ∣, the stable ∞-category Dqc(X on Z), of
quasi-coherent complexes supported on Z, is compactly generated by the full
subcategory Dperf(X on Z) of perfect complexes supported on Z.
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Proof. By [Kh4, Cor. 1.44, Prop. 1.47], it suffices to check that X is univer-
sally of finite cohomological dimension (as in [Kh4, Def. 1.18]) and has the
derived resolution property. The former holds because X is representable
over BG, for some linearly reductive G (see [Kh4, Ex. 1.23, 1.24]), and the
latter holds by Proposition 2.20. �

Lemma 2.27. Let X be a quasi-separated derived algebraic stack. Then
every compact object F ∈ Dqc(X ) is perfect. Conversely, if X is scalloped,
then every perfect complex on X is compact.

Proof. For the first claim, let F ∈ Dqc(X ) be a compact object. It is enough to
show that u∗(F) ∈ Dqc(X) is compact for every smooth morphism u ∶X → X
with X affine. Since X is quasi-separated, u is qcqs and representable, so
u∗ is a compact functor (see e.g. [Kh4, Thm. 1.20, Ex. 1.23]). In particular,
u∗(F) is compact and hence also perfect, since X is perfect.

Now suppose X is scalloped. Let us first note that, given any Nisnevich
square

W V

U X ,

p

j

we have that F ∈ Dqc(X ) is compact if and only if j∗(F) ∈ Dqc(U) and
p∗(F) ∈ Dqc(V) are compact. The condition is necessary since j∗ and p∗ are
compact functors, and sufficiency follows immediately from the fact that the
square of stable ∞-categories

Dqc(X ) Dqc(U)

Dqc(V) Dqc(W)

j∗

p∗

is cartesian (see e.g. [BKRS, Thm. 2.2.3]), in view of the definition of compact
objects, the fact that filtered colimits of spectra are exact (i.e., commute with
finite limits), and that formation of mapping spectra in a stable ∞-category
commutes with limits.

Now by induction on the length of a scallop decomposition of X , we may
assume that X is quasi-fundamental. In that case, the claim follows from
Lemma 2.26. �

Proof of Theorem 2.24. Let X be a scalloped derived stack. By induction,
it will suffice to show the following: suppose given a Nisnevich square

W V

U X ,

j′

p′ p

j
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where j is a quasi-compact open immersion and p is a representable étale
morphism of finite presentation inducing an isomorphism away from U . We
claim that if U is perfect and V is quasi-fundamental, then X is perfect.

Let {Fα}α be a small set of compact perfect complexes on U which generate
Dqc(U). By Lemma 2.26 applied to V and Z = ∣V ∣∖ ∣W ∣ ⊆ ∣V ∣, there also exists
a small set of compact perfect complexes {Gβ}β on V which are supported
on Z and which generate Dqc(V on Z). By Lemma 2.26 and the Thomason–
Neeman localization theorem (see e.g. [CDH+, Thm. A.3.11]), the restriction
functor

Dperf(V)→Dperf(W)
is a Karoubi projection in the sense of [CDH+, Def. A.3.5]. Therefore, by
replacing every Fα by Fα ⊕ Fα[1] if necessary, we can assume that each
Fα∣W lifts to a perfect complex FV,α ∈ Dperf(V). Using the cartesian square
of stable ∞-categories (see e.g. [BKRS, Thm. 2.2.3])

Dperf(X ) Dperf(U)

Dperf(V) Dperf(W),

j∗

p∗ (2.28)

we construct objects FX ,α ∈ Dperf(X ) by gluing

Fα ∈ Dperf(U), FV,α ∈ Dperf(V)

along some choice of isomorphisms FV,α∣W ≃ Fα∣W . Similarly, we construct
objects GX ,β ∈ Dperf(X ) by gluing

0 ∈ Dperf(U), Gβ ∈ Dperf(V)

along the (unique) isomorphism Gβ ∣W ≃ 0. By Lemma 2.27, FX ,α and GX ,β
are all compact objects of Dqc(X ).

It remains to show that the union of the sets {FX ,α}α and {GX ,β}β generate
Dqc(X ). That is, for every object R ∈ Dqc(X ) which is right orthogonal
to the FX ,α and GX ,β’s, we have R ≃ 0, or equivalently that R∣U ≃ 0 and
R∣V ≃ 0.

We begin with the following preliminary observation:

(∗) If R ∈ Dqc(X ) is right orthogonal to GX ,β for every β, then its restric-
tion R∣V ∈ Dqc(V) belongs to the essential image of j′∗ ∶ Dqc(W) →
Dqc(V).

Indeed, it follows from the cartesian square (2.28) and the fact that GX ,β ∣U ≃ 0
that there is an isomorphism of mapping spectra

MapsDqc(V)
(Gβ,R∣V) ≃ MapsDqc(X )(GX ,β,R) ≃ 0.

Therefore, R∣V is right orthogonal to Dqc(V on Z). Since the right orthogonal
subcategory to the latter is precisely the essential image of j′∗ ∶ Dqc(W) →
Dqc(V), (∗) follows.



24 A. A. KHAN AND C. RAVI

Let us now show that R∣U ≃ 0. We use the cartesian square (2.28) again to
compute Maps(FX ,α,R). Since R∣V ≃ j′∗(R∣W) by claim (∗), it follows that
the restriction map

MapsDqc(V)
(FV,β,R∣V)

≃ MapsDqc(V)
(FV,β, j′∗(R∣W)) j′∗Ð→MapsDqc(W)(Fβ ∣W ,R∣W)

is invertible (by adjunction). Thus we get for every α an isomorphism of
mapping spectra

MapsDqc(U)
(Fα,R∣U) ≃ MapsDqc(X )(FX ,α,R) ≃ 0.

Since {Fα}α generate Dqc(U), it follows that R∣U ≃ 0.

Finally, we deduce R∣V ≃ j′∗(R∣W) ≃ j′∗(R∣U ∣W) ≃ 0 by claim (∗). This
concludes the proof that R ≃ 0. �

3. The unstable homotopy category

3.1. Construction. Let X be a scalloped derived stack. Write Sm/X for

the full subcategory of Rep/X spanned by X ′ ∈ Rep/X for which f ∶ X ′ → X
is smooth representable of finite presentation.

Remark 3.1. If X is classical, then every derived stack X ′ ∈ Sm/X is also
automatically classical. The reader only interested in classical stacks may
therefore ignore the word “derived” throughout the text, for the most part.

Definition 3.2. Let X be a scalloped derived stack. A Sm-fibred animum
over X is a presheaf of anima on Sm/X . A motivic Sm-fibred animum over X
is a Sm-fibred animum satisfying Nisnevich descent and homotopy invariance.
The latter condition means that for every X ′ ∈ Sm/X and every vector bundle

π ∶ V → X ′, the map of anima

π∗ ∶ RΓ(X ′,F)→ RΓ(V,F)

is invertible. We write H(X ) for the ∞-category of motivic Sm-fibred anima
over X .

Lemma 3.3. Let F be a Sm-fibred animum over X . If the canonical map

RΓ(X ′,F)→ RΓ(X ′ ×A1,F)

is invertible for all X ′ ∈ Sm/X , then F satisfies homotopy invariance. In
particular, F is motivic.

Proof. Recall that there is a canonical strict A1-homotopy contracting any
vector bundle V → X to the zero section, hence LA1(hX (V)) ≃ pt. Alterna-
tively, see the argument in the proof of [KrRa, Thm. 5.2]. �

Remark 3.4. The ∞-category H(X ) is an accessible left Bousfield localiza-
tion of the ∞-category of Sm-fibred anima and in particular is presentable.
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The localization functor can be computed as the transfinite composite

L(F) ≃ limÐ→
n⩾0

(LA1 ○LNis)○n(F), (3.5)

where LNis and LA1 are the Nisnevich and A1-localization functors, respec-
tively. Recall that LA1 can be computed by the formula

RΓ(X ′,LA1(F)) = limÐ→
[n]∈∆op

RΓ(X ′ ×An,F)

for every X ′ ∈ Sm/X , where A● is the cosimplicial affine scheme defined e.g.
as in [MV, p. 45].

Example 3.6. Any X ′ ∈ Sm/X represents a motivic Sm-fibred animum

LhX (X ′) ∈ H(X )

where X ′ ↦ hX (X ′) is the Yoneda embedding. When there is no risk of
confusion, we will sometimes write simply X ′ instead of LhX (X ′). These
objects are compact, since the conditions of Nisnevich descent and homotopy
invariance are stable under filtered colimits.

3.2. Generation.

Proposition 3.7. Let X be a scalloped derived stack.

(i) The ∞-category H(X ) is generated under sifted colimits by objects
of the form LhX (X ′), where X ′ ∈ Sm/X is quasi-fundamental.

(ii) Suppose X = [X/G], where G is a nice group scheme over an affine
scheme S and X is a quasi-compact derived algebraic space over S
with G-action. Then H(X ) is generated under sifted colimits by
objects of the form LhX ([U/G]), where U is a quasi-affine derived
G-scheme, smooth over X.

(iii) For every X ′ ∈ Sm/X , the object LhX (X ′) ∈ H(X ) is compact.

Remark 3.8. Let G be a nice group scheme over an affine scheme S and
let X be a G-quasi-projective scheme over S. Then it follows from Proposi-
tion 3.7(ii) that there is a canonical equivalence

H([X/G]) ≃ HG(X),

where the right-hand side is the G-equivariant motivic homotopy category of
[Ho3]. Note that homotopy invariance for affine bundles is automatic in our
setting by [Ho3, Rem. 3.13].

Proof of Proposition 3.7. Let C be the full subcategory of H(X ) generated
under sifted colimits by objects of the form LhX (X ′), where X ′ ∈ Sm/X is
quasi-fundamental.
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Suppose we are given a Nisnevich square in SmX

W V

U X ′

p

j

where j is an open immersion and p is an étale morphism inducing an
isomorphism away from U . Then by definition, the canonical map

hX (U) ⊔
hX (W)

hX (V)→ hX (X ′)

is a Nisnevich-local equivalence. Thus if LhX (U) ∈ C and V (and hence
W) is quasi-fundamental, then also LhX (X ′) ∈ C. By induction and The-
orem 2.12(ii), it follows that for every X ′ ∈ SmX , we have LhX (X ′) ∈ C.
Finally, it now follows from [Lu, Lem. 5.5.8.14] that C = H(X ).

The second statement follows similarly by Theorem 2.14. For the last one,
note that L preserves compact objects because the full subcategory of motivic
Sm-fibred anima is closed under filtered colimits. �

3.3. Functoriality. We record the basic functorialities.

Proposition 3.9. Let f ∶ X → Y be a morphism of scalloped derived stacks.
Then there exists a canonical functor

f∗ ∶ H(Y)→H(X )
satisfying the following properties.

(i) f∗ commutes with colimits, hence in particular admits a right adjoint

f∗ ∶ H(X )→H(Y).
(ii) For any V ∈ Sm/Y and n ⩾ 0, there is a canonical isomorphism

f∗(LhY(V)) ≃ LhX (V ×
Y
X ).

(iii) f∗ is compact, i.e., its right adjoint f∗ preserves filtered colimits.

(iv) f∗ is symmetric monoidal.

Proof. Compare [Kh5, Prop. 1.22]. �

Proposition 3.10. Let f ∶ X → Y be a smooth representable morphism of
scalloped derived stacks. Then the inverse image functor f∗ admits a left
adjoint

f♯ ∶ H(X )→H(Y).
This functor is characterized uniquely by commutativity with colimits and
the formula

f♯(LhX (U)) ≃ LhY(U)
for any U ∈ Sm/X . Moreover, it is H(Y)-linear; in particular, we have the
projection formula

f♯(F) × G ≃ f♯(F × f∗(G))
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for every F ∈ H(X ) and G ∈ H(Y).

Proof. Compare [Kh5, Prop. 1.23]. �

Proposition 3.11 (Smooth base change). Suppose given a cartesian square
of scalloped derived stacks

X ′ Y ′

X Y

q

f g

p

where p and q are smooth representable. Then there are canonical isomor-
phisms

q♯f
∗ → g∗p♯,

p∗g∗ → f∗q
∗.

Proof. Compare [Kh5, Prop. 1.26]. �

Proposition 3.12. Let (uα ∶ Xα → X )α be a Nisnevich covering family of a
scalloped derived stack X . Then the family of functors

u∗α ∶ H(X )→H(Xα)
is jointly conservative as α varies.

Proof. Compare e.g. [Kh, Prop. 2.5.7]. �

3.4. Exactness of i∗. Recall from Proposition 3.9 that the direct image
functor commutes with filtered colimits. For closed immersions, it commutes
with almost all colimits:

Proposition 3.13. Let i ∶ X → Y be a closed immersion of scalloped derived
stacks. Then the direct image functor

i∗ ∶ H(X )→H(Y)
commutes with contractible13 colimits.

Proposition 3.13 follows from the following result of Alper–Hall–Halpern-
Leistner–Rydh:

Theorem 3.14. Let i ∶ Z ↪ X be a closed immersion of scalloped derived
stacks. Let f0 ∶ Z ′ → Z be a smooth (resp. étale) representable morphism.
Then, up to passing to a Nisnevich cover of Z ′, there exists a smooth (resp.
étale) representable morphism f ∶ X ′ → X with X ′ fundamental and a
cartesian square

Z ′ X ′

Z X .
f0 f

i

13An ∞-category is contractible if the ∞-groupoid/animum obtained by formally
adjoining inverses to all its morphisms is contractible.
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Moreover, if X has affine diagonal then f can be taken to be affine.

Proof. Note that the claim is Nisnevich-local both on Z ′ and X . Therefore,
we may assume Z ′ and X (and hence Z) are fundamental (Theorem 2.12(ii)).
In that case, the claim follows by combining Theorems 1.13 and 1.5 in
[AHHLR]. �

Proof of Proposition 3.13. This follows from Proposition 3.7 and Theorem 3.14,
exactly as in the proof of [Kh, Thm. 3.1.1]. �

3.5. Derived invariance.

Theorem 3.15. Let X be a scalloped derived stack and let i ∶ Xcl → X denote
the inclusion of the classical truncation. Then the functor i∗ ∶ H(X )→H(Xcl)
is an equivalence.

Construction 3.16. Let X ′ ∈ Sm/X with structural morphism p ∶ X ′ → X .

Given a section t ∶ Xcl → X ′
cl of the classical truncation pcl ∶ X ′

cl → Xcl, we
define the Rep-fibred animum over X of “t-trivialized maps” to X ′,

hX (X ′, t).

This is the presheaf on Rep/X whose sections over X ′′ ∈ Rep/X are pairs

(f,α) with f ∶ X ′′ → X ′ an X -morphism and α a “t-trivialization” of f , i.e.,
a commutative triangle

X ′′ ×X Xcl X ′ ×X Xcl ≃ X ′
cl,

Xcl

f ×X Xcl

t

where the isomorphism X ′ ×X Xcl ≃ X ′
cl is by flatness of X ′ over X . More

precisely, RΓ(X ′′,hX (X ′, t)) is the homotopy fibre of the canonical map

MapsX (X ′′,X ′)→MapsXcl
(X ′′ ×

X
Xcl,X ′

cl)

at the point defined by the morphism X ′′ ×X Xcl → Xcl
t↪ X ′

cl. See [Kh,
Constr. 4.1.3] or [Ho5, §1].

Proposition 3.17. Let (X ′, t) be as in Construction 3.16. Then, Nisnevich-
locally on X ′, the Rep-fibred animum hX (X ′, t) is motivically contractible,
i.e.,

LhX (X ′, t) ≃ pt

in H(X ).

The proof of Proposition 3.17 will require a few geometric preliminaries.

Lemma 3.18. Let p ∶ Y → X be a smooth representable morphism of derived
stacks where X is fundamental. Suppose given a commutative triangle as on
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the left-hand side below:

Z0 Ycl

Xcl

i0

q0
pcl

Z Y

X ,

i

q
p

where i0 is a closed immersion and q0 is smooth (resp. étale). Then there
exists, Nisnevich-locally on Y, a quasi-smooth closed immersion i ∶ Z → Y
lifting i0 such that the composite q ∶ Z → Y → X is a smooth (resp. étale)
morphism lifting q0.

Proof. Let I denote the ideal of definition of i0 ∶ Z0 ↪ Ycl. Since q0 and pcl

are smooth, i0 is quasi-smooth and hence has finite locally free conormal
sheaf Ni0 . By [Ho3, Erratum, Thm. B], there exists an affine Nisnevich cover
Y ′0 ↠ Ycl and a finite locally free E0 on Y ′0 lifting Ni0 . By derived invariance
of the étale site and [BKRS, Lem. A.2.6], we can lift this data to an affine
Nisnevich cover Y ′↠ Y and a finite locally free E on Y ′. As the statement is
Nisnevich-local on Y , we may replace Y by Y ′ and thereby assume that there
exists a finite locally free E on Y such that i∗0k

∗(E) ≃ Ni0 , where k ∶ Ycl → Y
denotes the inclusion of the classical truncation.

Consider the unit morphism φ ∶ E → k∗i0,∗i
∗
0k

∗(E) ≃ k∗i0,∗(Ni0). Since E
is projective on Y by [BKRS, Prop. A.3.4], φ lifts along the π0-surjection
I ↠ I/I2 ≃ k∗i0,∗(Ni0) to a morphism

ψ ∶ E → I ⊆ OY .

Up to passing to a Zariski cover of Ycl, the Nakayama lemma implies that
Z0 is the zero locus of π0(ψ) ∶ E0 → OYcl

. In other words, the square

Z0 Ycl

Ycl VYcl
(Ecl)

i0

i0 ψcl

0

is (classically) cartesian. We define Z as the derived zero locus of ψ, so that
there is a homotopy cartesian square

Z Y

Y VY(E).

i

i ψ

0

In particular, Zcl ≃ Z0 and i lifts i0. It remains only to show that q ∶= p ○ i ∶
Z → X is smooth.

Recall that smoothness can be checked after derived base change to the
classical truncation of the target (e.g. [Lu3, Cor. 11.2.2.8]). Thus it will
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suffice to show that the following squares are homotopy cartesian:

Z0 Ycl Xcl

Z Y X .

i0 pcl

k

i p

The right-hand square is homotopy cartesian because p is smooth, and the
left-hand square is classically cartesian by construction. We claim the latter
square is in fact homotopy cartesian. For this it is enough to show that the
morphism Z0 → Z̃ ∶= Z ×R

Y Ycl is étale. But in the transitivity triangle

L
Z̃/Ycl

∣Z0 → LZ0/Ycl
→ L

Z0/Z̃
,

the first map is identified with the canonical isomorphism L
Z̃/Ycl

∣Z0 ≃
E ∣Z0[1] ≃ Ni0[1] ≃ LZ0/Ycl

, so the relative cotangent complex L
Z0/Z̃

van-

ishes. �

Lemma 3.19. Let p ∶ Y → X be a smooth affine morphism of fundamental
derived stacks. Then for any section s ∶ X → Y, there exists a morphism
f ∶ Y → NX /Y , étale on the image of s, and a homotopy cartesian square

X Y

X NX /Y .

s

f

0

Here NX /Y = VX (NX /Y) is the normal bundle, total space of the conormal
sheaf NX /Y = LX /Y[−1].

Proof. Since s is a section of p, we have NX /Y ≃ LY/X ∣X . Since p is smooth,
the latter is finite locally free and we have

π0(NX /Y) ≃ NX /Y ∣Xcl
≃ NXcl/Ycl

≃ I/I2,

where I is the ideal sheaf of the closed immersion scl ∶ Xcl ↪ Ycl. In
particular, there is a canonical OXcl

-module surjection pcl,∗(I)↠ π0(NX /Y).
Since π0(NX /Y) is projective (see [Ho3, Lem. 2.17] or [BKRS, Prop. A.3.4]),
this admits a splitting and the resulting morphism φ0 ∶ π0(NX /Y)→ pcl,∗(I) ⊆
pcl,∗(OYcl

) lifts from Xcl to X by [BKRS, Lem. A.2.6]:

φ ∶ NX /Y → p∗(OY).

This determines a morphism f ∶ Y → NX /Y (recall that p is affine) which fits
in a commutative square

X Y

X NX /Y .

s

f

0

which is cartesian on classical truncations by construction. To show that
the square is homotopy cartesian, it will suffice to show that the induced
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morphism X → X̂ ∶= X ×N
X /Y
Y is étale. For this consider the exact triangle

L
X̂ /Y

∣X → LX /Y → LX /X̂

where the first arrow is identified with the canonical isomorphism

L
X̂ /Y

∣X ≃ LX /N
X /Y

≃ NX /Y[1] ≃ LX /Y .

Finally, the fact that f is étale on the image of s follows from the isomorphism
s∗Lf ≃ LX /X ≃ 0, which comes from the homotopy cartesianness of the above
square. �

The preparations for the proof of Proposition 3.17 are complete.

Proof of Proposition 3.17. By Lemma 3.18, we may pass to a Nisnevich cover
of X ′ (if necessary) to assume that t lifts to a section s ∶ X → X ′ of p ∶ X ′ → X .
By Lemma 3.19 there exists a homotopy cartesian square

X X ′

X NX /X ′

s

f

0

where f is étale on a Zariski neighbourhood X ′
0 ⊆ X ′ of s. This gives rise to

canonical isomorphisms of motivic Rep-fibred anima

LhX (X ′, s) ≃ LhX (X ′
0, s) ≃ LhX (NX /X ′ ,0)

by [Kh, Lem. 4.2.6] or [Ho5, Lem. 2] (whose proofs extend to our setting
without modification). Now note that, for any vector bundle V → X , the
Rep-fibred animum hX (V,0) is contracted to the zero section 0 ∶ X → V via
the scaling action of A1 on V (see [Kh, Lem. 4.2.5]). �

Proof of Theorem 3.15. By Theorem 2.12(ii) and Proposition 3.12, we are
immediately reduced to the case where X is fundamental. Since every
X ′

0 ∈ Sm/Xcl
lifts (up to Nisnevich-localizing on X ′

0) to some X ′ ∈ Sm/X

(Theorem 3.14), Proposition 3.7 implies that i∗ generates its codomain
H(Xcl) under colimits. It will thus suffice to show that the unit morphism

id→ i∗i
∗

is invertible, i.e., that i∗ ∶ H(X )→H(Xcl) is fully faithful.

We will show that for every X ′ ∈ Sm/X , the canonical map

hX (X ′)→ i∗i
∗hX (X ′) ≃ i∗hXcl

(X ′
cl) (3.20)

is a motivic equivalence on Sm-fibred anima (where X ′
cl ≃ X ′ ×X Xcl since X ′

is flat over X ). In (3.20) and the following, all operations (such as i∗) are
at the level of “unlocalized” fibred anima. Since i∗ commutes with sifted
colimits (Proposition 3.13) and motivic Sm-fibred anima on X are generated
under sifted colimits by motivic localizations of hX (X ′) (Proposition 3.7),
the claim will follow. In fact, we claim that (3.20) is a motivic equivalence
on all Rep-fibred anima.
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By universality of colimits, it is enough to show that for every X ′′ ∈ Rep/X

and every morphism hX (X ′′) → i∗hXcl
(X ′

cl), corresponding to a morphism
t ∶ X ′′ ×X Xcl → X ′

cl over Xcl, the base change

hX (X ′) ×
i∗hXcl

(X ′
cl
)
hX (X ′′)→ hX (X ′′) (3.21)

is invertible. On Rep-fibred anima, we can write hX (X ′′) ≃ p♯hX ′′(X ′′) where
p ∶ X ′′ → X is the projection. We moreover have the projection formula14

F ×
G
p♯hX ′′(X ′′) ≃ p♯(p∗F ×

p∗G
hX ′′(X ′′)), (3.22)

for any morphism F → G over X , and the base change formula p∗i∗ ≃ i′′∗p∗cl
where i′′ ∶ X ′′ ×X Xcl → X ′′ is the base change of i. It follows that (3.21) is
identified with the image by p♯ of

hX ′′(X ′ ×
X
X ′′, t′) ∶= hX ′′(X ′ ×

X
X ′′) ×

i′′
∗

h
X
′′

cl
(X ′

cl
×Xcl

X ′′
cl
)
hX ′′(X ′′)→ hX ′′(X ′′),

where t′ ∶ X ′′ ×X Xcl → (X ′ ×X X ′′)cl ≃ X ′
cl ×Xcl

X ′
cl is the section induced by

t ∶ X ′′ ×X Xcl → X ′
cl. Since hX ′′(X ′ ×X X ′′, t′) is motivically contractible by

Proposition 3.17, the claim follows. �

3.6. Localization.

Theorem 3.23. Suppose given a complementary closed-open pair

Z X Ui j

of scalloped derived stacks. Then the commutative square of endofunctors of
H(X )

j♯j
∗ id

j♯j
∗i∗i

∗ i∗i
∗,

counit

unit unit

counit

where j♯j
∗i∗i

∗ is contractible by the smooth base change formula (Proposi-
tion 3.11), is homotopy cocartesian.

Proof. By Theorem 3.15 we may assume that X and Z are classical. By
Theorem 2.12(ii), Proposition 3.12 and Proposition 3.11, we may assume
that X is fundamental. Now the statement is [Ho3, Thm. 4.18], modulo the
equivalence mentioned in Remark 3.8. �

Remark 3.24. As pointed out to us by the referee, the proof of the localiza-
tion theorem in [Ho3, Thm. 4.18] contains a subtle error. Namely, it makes
use of the projection formula

F ×
G
p♯(F ′) ≃ p♯(p∗F ×

p∗G
F ′)

14The reader is warned that the analogous formula does not hold on Sm-fibred anima
(even when p is smooth), see Remark 3.24, which is why we work with Rep-fibred anima
in this proof. We thank the referee for pointing out this mistake in a previous revision.
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for a smooth morphism p, asserted in [Ho3, Prop. 4.3], which in fact does
not hold on Sm-fibred anima.15 However, it does hold on Sch-fibred or Rep-
fibred anima, and one can moreover show that the motivic contractibility of
hS(X, t) (Assertion (∗) in the proof of [Ho3, Thm. 4.18]) holds at the level of
Rep-fibred anima; indeed, one easily observes that the proof of Assertion (∗)
in [Ho3, Thm. 4.18] demonstrates this stronger statement. This refinement
of (∗) is enough to correct the gap in [Ho3, Thm. 4.18]. Thanks to the
referee’s suggestion, we have carried out the analogous fix in our proof here
of Theorem 3.15 (which is the special case of localization for the inclusion of
the classical truncation), see Proposition 3.17 for the refined contractibility
statement in our context. See also [Ho5, §1], where the same fix is carried
out in the setting of classical schemes.

4. The stable homotopy category

4.1. Thom anima. The stabilization SH(X ) of H(X ) is defined, at least
Nisnevich-locally on X , by adjoining ⊗-inverses of certain pointed objects in
H(X ).
Definition 4.1 (Thom anima). Let X be a scalloped derived stack. For
any finite locally free sheaf E on X , write V = VX (E) for its total space and
V ∖X for the complement of the zero section. The Thom animum of E is
the pointed motivic animum

ThX (E) ∶= LhX (V)/LhX (V ∖X ),

i.e., the cofibre of the inclusion V ∖X ↪ V taken in the ∞-category H(X ).
Note that this is compact by Proposition 3.7(iii).

Example 4.2. The Thom animum of the free sheaf of rank one is

ThX (OX ) ≃ ΣS1LhX (X ×A1 ∖ {0}) ≃ LhX (P1 ×X ) ∈ H(X )●,

where ΣS1 denotes topological suspension, A1 ∖ {0} is pointed at 1, and P1

is pointed at ∞.

Remark 4.3. For any morphism f ∶ X ′ → X of scalloped derived stacks and
any finite locally free E on X , we have a canonical isomorphism f∗(ThX (E)) ≃
ThX ′(f∗E).

Remark 4.4. Given an exact triangle E ′ → E → E ′′ of finite locally free
sheaves on X , there is a canonical isomorphism

ThX (E) ≃ ThX (E ′) ∧ThX (E ′′)

in H(X )●. This follows by the arguments of [CD, 2.4.10] or [Ho3, §3.5].

15The same mistake is present in the proof of localization in [MV, Thm. 2.21] (for
classical schemes) and [Kh, Thm. B] (for derived schemes). The incorrect projection
formula is used implicitly in the proof of [MV, Thm. 2.21], and stated explicitly in [Kh,
Prop. 2.5.13]. These can be fixed in the same way, by noting that the motivic contractibility
statement in [Kh, Thm. 4.1.6] holds at the level of Sch-fibred anima.
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4.2. Characterization. The stable motivic homotopy category SH(X ), as
a functor in X , will be characterized uniquely as follows.

Theorem 4.5. For every scalloped derived stack X , there exists a symmetric
monoidal colimit-preserving functor

Σ∞ ∶ H(X )● → SH(X )

satisfying the following properties:

(i) For every scalloped derived stack X and every finite locally free sheaf
E on X , the object Σ∞ ThX (E) ∈ SH(X ) is ⊗-invertible. Moreover,
the assignment E ↦ Σ∞ ThX (E) induces a canonical map of E∞-
groups

ThX ∶ K(X )→ Pic(SH(X )),
from the algebraic K-theory animum of perfect complexes on X to
the Picard animum of ⊗-invertible objects in SH(X ).

(ii) For every morphism f ∶ X → Y of scalloped derived stacks, there is a
symmetric monoidal colimit-preserving functor

f∗ ∶ SH(Y)→ SH(X )

which commutes with Σ∞ and Th.

(iii) The assignments

X ↦ SH(X ), f ↦ f∗

of (ii) determine a presheaf SH∗ with values in the ∞-category of sym-
metric monoidal presentable ∞-categories and symmetric monoidal
colimit-preserving functors, which satisfies Nisnevich descent.

(iv) For every representable morphism f ∶ X → Y of scalloped derived
stacks, there is a canonical isomorphism of SH(Y)-modules

H(X )● ⊗H(Y)● SH(Y)→ SH(X ).
(v) If X = BG is the classifying stack of an embeddable nice group scheme

G over an affine scheme S, then

Σ∞ ∶ H(X )● → SH(X )

is the universal symmetric monoidal colimit-preserving functor which
⊗-inverts the Thom anima ThX (E) of all finite locally free sheaves E
on X (i.e., finite representations of G over S).

Remark 4.6. The proof of Theorem 4.5 will in fact construct morphisms of
presheaves

Σ∞ ∶ H∗
● → SH∗,

Th ∶ K→ Pic(SH∗).

Moreover, Σ∞ ∶ H∗
● → SH∗ will be the unique morphism of presheaves out

of H∗
● , on the site of scalloped derived stacks, satisfying properties (iii), (iv)

and (v).
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Notation 4.7. We will write Ω∞ ∶ SH(X )→H(X )● for the right adjoint of
Σ∞. For a morphism f ∶ X → Y, we will write f∗ ∶ SH(X )→ SH(Y) for the
right adjoint of f∗.

Remark 4.8. Let G be an embeddable nice group scheme over an affine
scheme S, and X a qcqs derived algebraic space over S with G-action. Then
f ∶ [X/G] → BG is a representable morphism of scalloped derived stacks
(Theorem 2.14). Combining claims (v) and (iv) of Theorem 4.5, we find that
SH([X/G]) is obtained from H([X/G])● by formally adjoining ⊗-inverses
of the objects

f∗ ThBG(E) ≃ Th[X/G](f∗(E))
where E ranges over finite locally free sheaves on BG.

Remark 4.9. In the situation of Remark 4.8, it follows from Remarks 3.8
and 4.8 that there is a canonical equivalence of symmetric monoidal stable
∞-categories

SH([X/G]) ≃ SHG(X)
where the right-hand side is Hoyois’s G-equivariant stable motivic homotopy
category (see [Ho3, §6]), when the latter is defined (i.e., when X is a G-quasi-
projective scheme). For general X, the left-hand side can be taken as the

definition of SHG(X).

4.3. Functoriality. Before proceeding to the construction of SH∗, let us
also record its functorial properties:

Theorem 4.10. Let f ∶ X → Y be a morphism of scalloped derived stacks.

(i) If f is smooth representable, then f∗ ∶ SH(Y)→ SH(X ) satisfies the
following properties:

(a) Left adjoint. It admits a left adjoint f♯ which commutes with
Σ∞. In particular, f∗ commutes with Ω∞.

(b) Smooth base change. The functor f♯ commutes with arbitrary ∗-
inverse image. Equivalently, f∗ commutes with arbitrary ∗-direct
image.

(c) Smooth projection formula. The functor f♯ is a morphism of
SH(Y)-modules.

(ii) If f is a closed immersion, then f∗ ∶ SH(X ) → SH(Y) satisfies the
following properties:

(a) Closed base change. It commutes with arbitrary ∗-inverse image.

(b) Smooth-closed base change. It commutes with ♯-direct image by
smooth representable morphisms.

(c) Closed projection formula. It is a morphism of SH(Y)-modules.

(d) Localization. It is fully faithful. If the complementary open
immersion j ∶ U → X is quasi-compact, then the essential image
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of f∗ is spanned by the kernel of j∗ ∶ SH(X ) → SH(U). (For
example, f∗ is an equivalence if f is surjective.)

(iii) The functor f∗ ∶ SH(Y)→ SH(X ) is compact, i.e., its right adjoint
f∗ commutes with colimits.

4.4. The quasi-fundamental case. We will construct SH(X ) in increas-
ingly greater generality, starting with the quasi-fundamental case:

Construction 4.11. Let X be a quasi-fundamental derived stack.

(i) Consider the ∞-category H(X )● of pointed motivic anima, with
the symmetric monoidal structure given by smash product. Let TX
denote the (small) set of objects

ThX (E) ∈ H(X )●
where E ranges over all finite locally free sheaves on X . Now formally
adjoin to H(X )● the ⊗-inverse of every object in TX (in the sense of
[Ro], [Ho3, §6.1]) to get the symmetric monoidal presentable stable
∞-category

SH(X ) = H(X )●[T ⊗−1
X ]

together with the canonical symmetric monoidal colimit-preserving
functor Σ∞ ∶ H(X )● → SH(X ).16

(ii) Let f ∶ X → Y be a morphism of quasi-fundamental derived stacks.
Note that the functor f∗ ∶ H(Y)● →H(X )● preserves Thom anima,
i.e.,

f∗(ThY(E)) = ThX (f∗(E))
for every finite locally free E over Y . By universal properties it follows
that there is a unique extension of f∗ to a symmetric monoidal colimit-
preserving

f∗ ∶ SH(Y)→ SH(X )
such that f∗ commutes with Σ∞ and f∗ commutes with Ω∞.

This defines a morphism of presheaves Σ∞ ∶ H∗
● → SH∗ on the site of

quasi-fundamental derived stacks.

Remark 4.12. For a quasi-fundamental derived stack X , the assignment

E ↦ Σ∞ ThX (E)

defines by construction a functor from the ∞-groupoid of finite locally free
sheaves on X to the Picard E∞-group of ⊗-invertible objects in SH(X ).
Moreover, since it sends direct sums to tensor products (Remark 4.4), it is
a map of E∞-monoids. Since the target is group-complete, the map factors
through the group completion of the source, which is the algebraic K-theory

16Note that the objects in TX are symmetric in the sense of [Ro]. Indeed, this follows
by functoriality from the case of BG, for any nice embeddable group scheme G over an
affine S, which is a special case of [Ho3, Lem. 6.3].
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animum of X (since quasi-fundamental stacks have the resolution property,
see Proposition 2.20). Thus we have a map of presheaves

Th ∶ K→ Pic(SH∗)
on the site of quasi-fundamental derived stacks.

Lemma 4.13. Let f ∶ X → Y be a representable morphism of quasi-
fundamental derived stacks. Then the morphism of SH(X )-modules

H(X )● ⊗H(Y)● SH(Y)→ SH(X )
is an equivalence.

Proof. First assume that the morphism f is quasi-affine. In this case, for
every finite locally free sheaf E on X , the proof of Lemma 2.22 shows that
one can find a finite locally free sheaf E ′ on Y and a surjection

f∗(E ′)↠ E .
If K denotes its kernel, then we get a canonical isomorphism (Remark 4.4)

ThX (f∗E ′) ≃ ThX (E) ∧ThX (K)
in H(X )●. Thus ThX (E) is invertible in H(X )●[f∗(TY)⊗−1].

Next consider the case of a general representable morphism. Since X has
affine diagonal, we can apply Theorem 2.14(ii) to get a scallop decomposition
(Ui,Vi, ui), where Vi are quasi-affine over Y. Hence by induction and the
quasi-affine case above, it will suffice to show that for any Nisnevich square

W V

U X

p

j

where j is an open immersion and p is an étale morphism inducing an
isomorphism away from U , we have that if the claim holds for fU = f ∣U ∶ U →
Y, fV = f ∣V and fW = f ∣W , then it also holds for f . Indeed, ⊗-invertibility
of ThX (E) in H(X )●[f∗(TY)⊗−1] (for any finite locally free E on X ) is
equivalent to invertibility of the canonical evaluation morphism

ev ∶ ThX (E) ∧Hom(ThX (E),pt+)→ pt+

where pt+ is the monoidal unit, image of LhX (X )+ ∈ H(X )●. Since smooth
inverse image commutes with Th, ⊗ and Hom (by Remark 4.3, Proposi-
tion 3.9, and by adjunction from the projection formula of Proposition 3.10,
respectively), this immediately follows from Nisnevich separation (Proposi-
tion 3.12). �

Lemma 4.14. Let X be a quasi-fundamental derived stack.

(i) For every X ′ ∈ Sm/X and every α ∈ K(X ), the object

Σ∞
+ (X ′)⊗ThX (α) ∈ SH(X )

is compact.
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(ii) Choose a quasi-affine morphism f ∶ X → BG where G is an embed-
dable nice group scheme over an affine scheme S. Then SH(X ) is
compactly generated by the set of objects

Σ∞
+ (X ′)⊗ThX (f∗(E))⊗−1,

where X ′ ∈ Sm/X , and E is a finite locally free sheaf on BG.

Proof. It is a formal consequence of Proposition 3.7 and general facts about ⊗-
inversion of objects (see e.g. the proof of [Ho3, Prop. 6.4]) that objects of the
form Σ∞

+ (X ′)⊗ThX (E)⊗−1, where X ′ ∈ Sm/X and E is a finite locally free sheaf
on X , generate SH(X ) under sifted colimits. The second claim follows by
combining this with the canonical equivalence H(X )●[f∗(TBG)⊗−1] ≃ SH(X )
(Lemma 4.13).

Recall that the object ThX (E) ∈ H(X ) is compact for every finite locally
free E on X (Example 4.1). By construction of SH(X ), this implies that
Σ∞ is a compact functor. The functor − ⊗ ThX (α) ∶ SH(X ) → SH(X ) is
also compact, for every α ∈ K(X ), since it is an equivalence. Thus the claim
follows from the fact that the object LhX (X ′) ∈ H(X ) is compact for every
X ′ ∈ Sm/X (Proposition 3.7(iii)). �

Remark 4.15. At this point, we can already prove Theorems 4.5 and 4.10
on the site of quasi-fundamental derived stacks. Indeed, Theorem 4.5(v)
holds by construction, (i) by Remark 4.12, and (iv) by Lemma 4.13. The
last property (iii) is a standard consequence of the properties asserted in
Theorem 4.10 (cf. [Ho3, Prop. 6.24]).

Theorem 4.10(iii) follows from Lemma 4.14. Theorem 4.10(i) follows immedi-
ately from the analogous unstable statements (Propositions 3.10, 3.11, 3.12)
by extending scalars along Σ∞ (in view of Theorem 4.5). For example, for
smooth base change we argue as follows. By the unstable statement we have
the commutative square

H(X ) H(Y)

H(X ′) H(Y ′).

p♯

f∗ g∗

q♯

Then by Lemma 4.13, extension of scalars along Σ∞ gives the upper commu-
tative square in the diagram

SH(X ) SH(Y)

H(X ′)⊗H(X ) SH(X ) H(Y ′)⊗H(X ) SH(X )

H(X ′)⊗H(X ′) SH(X ′) H(Y ′)⊗H(X ′) SH(X ′)

SH(X ′) SH(Y ′)

p♯

f∗ g∗

q♯

q♯
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where the middle square commutes tautologically and the lower right-hand
isomorphism is Lemma 4.13.

In Theorem 4.10(ii), localization is deduced similarly from the unstable
statement (Theorem 3.23, compare the proof of [Kh5, Thm. 1.36]). The
other properties are immediate consequences of localization, just as in [Kh5,
Lems 2.19, 2.20, 2.21].

4.5. Proof of Theorem 4.5. We now extend Construction 4.11 to general
scalloped stacks.

Construction 4.16. Let X be a scalloped derived stack. We define the
∞-category SH(X ) by the formula

SH(X ) = lim←Ð
(U ,U→X )

SH(U)

where the limit is taken over the ∞-category of pairs (U , u) where U is
quasi-fundamental and u ∶ U → X is a representable étale morphism.

To show that this determines a presheaf SH∗ satisfying Nisnevich descent, we
will show that this construction is right Kan extended from the subcategory
of quasi-fundamental derived stacks.

Lemma 4.17. Let C be the ∞-category of scalloped derived stacks and C0

the full subcategory of quasi-fundamental derived stacks. Regard C and C0 as
sites with the representable Nisnevich topology. Then restriction along the
inclusion i ∶ C0 ↪ C induces an equivalence from the ∞-category of sheaves
on C to the ∞-category of sheaves on C0. In particular, every sheaf on C is
right Kan extended from C0.

Proof. Note that i is both topologically continuous and cocontinuous, so that
restriction i∗ and its right adjoint i∗ (right Kan extension) preserve sheaves.
Its left adjoint LNisi! is Nisnevich-localized left Kan extension. Since i is fully
faithful, it is clear that LNisi! is fully faithful. Hence the claim follows from
the fact that LNisi! generates the ∞-category of sheaves on C under colimits,
which is proven exactly as in Proposition 3.7. �

Remark 4.18. Let SH′∗ denote the right Kan extension of the presheaf
SH∗, defined on the site of quasi-fundamental derived stacks (Construc-
tion 4.11), to the site of scalloped derived stacks. By Lemma 4.17, SH′∗

satisfies Nisnevich descent. Recall that for any scalloped X , SH′(X ) can be
computed by the same limit as in Construction 4.16, except taken over the
∞-category of pairs (U , u) where U is quasi-fundamental and u ∶ U → X is
any morphism. We claim that the canonical functor SH′(X )→ SH(X ) is an
equivalence. This is clear when X is quasi-fundamental. In general, X admits
a scallop decomposition (Ui,Vi, ui)i of X where Vi are quasi-fundamental
(Theorem 2.12(ii)). By induction, it will therefore suffice to show that if X
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is covered by a Nisnevich square

W V

U X

p

j

such that the claim is true for U , V and W, then it is also true for X . By
Nisnevich descent, we have a canonical equivalence

SH′(X ) ≃ SH′(U) ×
SH′(W)

SH′(V) ≃ SH(U) ×
SH(W)

SH(V).

Since each of the maps U → X , V → X and W → X are representable and
étale, there is a projection functor SH(X )→ SH′(X ), which one checks is
inverse to the canonical one.

Construction 4.19.

(i) It follows from Remark 4.18 that Construction 4.16 lifts to a presheaf
SH∗, given by

X ↦ SH(X ), f ↦ f∗,

on the site of scalloped derived stacks. This presheaf takes values
in the ∞-category of symmetric monoidal presentable stable ∞-
categories and symmetric monoidal colimit-preserving functors (since
the forgetful functor from the latter to the ∞-category of large ∞-
categories is limit-preserving).

(ii) Since H∗
● is also right Kan extended from quasi-fundamental stacks

(by Lemma 4.17), it follows that Σ∞ ∶ H∗
● → SH∗ also admits a

unique extension to the site of scalloped derived stacks.

(iii) Similarly, right Kan extension17 produces an extension of the map
Th ∶ K → Pic(SH∗) (Remark 4.12) to the site of scalloped derived
stacks.

4.6. Proof of Theorem 4.10(i).

4.6.1. Left adjoint (a). Note that, over the site of fundamental derived stacks
and smooth representable morphisms, SH∗ takes values in the ∞-category
of presentable ∞-categories and right adjoint functors (by Theorem 4.10(i),
which we have already proven in the fundamental case). It follows from
[Lu, Thm. 5.5.3.18] that the same holds for the extension of SH∗ to the
site of scalloped derived stacks, since the transition functors in the limit in
Construction 4.16 are in particular smooth representable.

It follows that, for every smooth representable morphism p ∶ X → Y of
scalloped derived stacks p∗ admits a left adjoint

p♯ ∶ SH(X )→ SH(Y).

17Algebraic K-theory satisfies Nisnevich descent on scalloped derived stacks (see Theo-
rem 10.2), hence is also right Kan extended from fundamentals.
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It follows from the construction that it commutes with Σ∞.

4.6.2. Smooth base change (b). Let p ∶ X → Y be a smooth representable
morphism of scalloped derived stacks. For any morphism of scalloped derived
stacks g ∶ Y ′ → Y, form the base change square

X ′ Y ′

X Y.

q

f g

p

The claim is that the exchange transformation

Ex∗♯ ∶ q♯f∗ → g∗p♯,

is invertible. For the proof, we will require the following lemma.

Lemma 4.20. Let the notation be as above. Suppose that X is covered by
a Nisnevich square

W V

U X

w v

u

such that (p ○u)♯, (p ○ v)♯, and (p ○w)♯ satisfy base change against g∗. Then
p♯ satisfies base change against g∗.

Proof. The assumption is that the exchange transformation

Ex∗♯ ∶ qU ′,♯f∗U → g∗pU ,♯

associated to the composite square

U ′ X ′ Y ′

U X Y,

u′

fU

q

f g

u p

is invertible, where U ′ = U ×Y Y ′, fU ∶ U ′ → U is the base change of f ,
pU = p ○ u ∶ U → X , and qU ′ = q ○ u′ ∶ U ′ → Y ′ is the base change of pU .
Similarly for Ex∗♯ ∶ qV ′,♯f∗V → g∗pV,♯ and Ex∗♯ ∶ qW ′,♯f∗W → g∗pW,♯.

To show that the exchange transformation Ex∗♯ ∶ q♯f∗ → g∗p♯ is invertible,
combine the above isomorphisms with the descent isomorphisms,

p♯ ≃ pU ,♯u∗ ⊔
pW,♯w

∗

pV,♯v
∗

q♯ ≃ qU ′,♯u′∗ ⊔
q
W′,♯w

′∗

qV ′,♯v
′∗,

cf. Proposition 5.10. �

We now return to the proof of smooth base change.

Case 0. If X , Y, X ′ and Y ′ are quasi-fundamental, then the claim is
Remark 4.15.
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Case 1. Assume Y and Y ′ are quasi-fundamental and X and X ′ are scalloped.
Since X is representable over Y, we have X = [X/G] where Y = [Y /G],
G is an embeddable nice group scheme over an affine scheme S, Y is a
quasi-affine derived G-scheme, and X is a quasi-compact derived algebraic
space over Y with G-action. Then by Theorem 2.14(ii) and Lemma 4.20,
we may reduce to the case where X is quasi-affine. In this case p ∶ X → Y
is quasi-affine (since U → Y is quasi-affine), hence X is quasi-fundamental
(since Y is quasi-fundamental).

Case 2. Assume Y is quasi-fundamental and X , X ′, Y ′ are scalloped. By
Theorem 2.12(ii) and Case 1 it will suffice to show that if we have a Nisnevich
square

W V

U Y ′
w v

u

such that the claim holds after replacing g ∶ Y ′ → Y by any of the composites
g ○ u, g ○ v, or g ○w, then it also holds for g. This follows immediately from
Nisnevich descent and [GR, Pt. I, Chap. 1, Lem. 2.6.4].

Case 3. Let X , X ′, Y , and Y ′ be scalloped. By Theorem 2.12(ii) and Case 2
it will suffice to show that if we have a Nisnevich square

W V

U Y

w v

u

such that the claim holds after base changing p ∶ X → Y (and hence the whole
square) along any of u, v, or w, then it also holds for p itself. This follows
immediately from Nisnevich descent and [GR, Pt. I, Chap. 1, Lem. 2.6.4].

4.6.3. Smooth projection formula (c). By adjunction, p♯ inherits from p∗ a
canonical structure of colax morphism of SH(Y)-modules. In particular,
there are canonical morphisms

p♯(F ⊗ p∗(G))→ p♯(F)⊗ G

for every object F ∈ SH(X ) and G ∈ SH(Y), which we claim are invertible.
This claim is Nisnevich-local on Y, in view of smooth base change (b).
Arguing as in Lemma 4.20, we also see that it is local on X . Hence we
can reduce to the case where X and Y are quasi-fundamental, proven in
Remark 4.15.

4.7. Proof of Theorem 4.10(ii). As in (i), we can argue Nisnevich-locally
on the target. When Y is quasi-fundamental, then so is X , and we are
reduced to the situation of Remark 4.15.
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4.8. Proof of Theorem 4.10(iii). Let f ∶ X → Y be a morphism of
scalloped derived stacks. The claim is that for every filtered diagram (Fα)α
of objects of SH(X ), the canonical morphism in SH(Y)

limÐ→
α

f∗(Fα)→ f∗( limÐ→
α

Fα)

is invertible. If v ∶ Y0 ↠ Y is a representable Nisnevich cover by a funda-
mental derived stack Y0, then since v∗ commutes with colimits and with
f∗ (Theorem 4.10(i)), we may reduce to the case where Y = Y0 is quasi-
fundamental.

The claim is also local on X in the sense that if

W V

U X

w v

u

is a Nisnevich square such that the claim holds for fU = f ○ u, fV = f ○ v
and fW = f ○w in place of f , then it also holds for f . Indeed by Nisnevich
descent (see Proposition 5.10), there is a canonical isomorphism

f∗ ≃ fU,∗u∗ ×
fW,∗w∗

fV,∗v
∗,

and filtered colimits commute with finite limits in SH(Y).

Thus by induction (on the length of an appropriate scallop decomposition
of X ), we eventually reduce to the case where X and Y are both quasi-
fundamental, which was proven in Remark 4.15.

5. Axiomatization

We now make a brief interlude to give an axiomatic description of the results
proven so far.

5.1. (∗, ♯,⊗)-formalisms.

Notation 5.1.

(i) Given a presheaf of ∞-categories D∗ on the ∞-category of scalloped
derived stacks, we will write

D(X ) ∶= D∗(X )
for every scalloped derived stack X . For every morphism f ∶ X → Y,
we denote by

f∗ ∶= D∗(f) ∶ D(Y)→D(X )
the functor of inverse image along f .

(ii) If D∗ takes values in presentable ∞-categories and colimit-preserving
functors, then we say simply that D∗ is a presheaf of presentable
∞-categories. In this case, every inverse image functor f∗ admits a
right adjoint f∗ called direct image along f .
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(iii) If D∗ moreover factors through the ∞-category of symmetric monoidal
presentable ∞-categories, then we say that D∗ is a presheaf of sym-
metric monoidal presentable ∞-categories. We write

⊗ ∶ D(X )⊗D(X )→D(X )
for the monoidal product and 1X ∈ D(X ) for the monoidal unit over
any X . Since ⊗ commutes with colimits in each argument (recall our
conventions), it admits as right adjoint an internal hom bifunctor

Hom ∶ D(X )op ×D(X )→D(X ).

Definition 5.2. A (∗, ♯,⊗)-formalism (on scalloped derived stacks) is a
presheaf D∗ of symmetric monoidal presentable ∞-categories on the site of
scalloped derived stacks satisfying the following properties.

(i) For every smooth representable morphism f ∶ X → Y, the inverse
image functor f∗ admits a left adjoint

f♯ ∶ D(Y)→D(X ).
(Cf. Theorem 4.10(i)(a).)

(ii) The ♯-direct image functors satisfy base change against arbitrary
∗-inverse image. (Cf. Theorem 4.10(i)(b).)

(iii) The ♯-direct image functors satisfy the projection formula. That is,
f♯ ∶ D(X )→D(Y) is a morphism of D(Y)-modules, where D(X ) is
regarded as a D(Y)-module via the symmetric monoidal functor f∗.
(Cf. Theorem 4.10(i)(c).)

(iv) Additivity. For any finite family (Xα)α of scalloped derived stacks,
the canonical functor

D (∐
α

Xα)→∏
α

D(Xα)

is an equivalence.

Remark 5.3. In practice, it is useful to consider the variant of Definition 5.2
where the site of scalloped derived stacks is replaced with the site of scalloped
derived stacks over some base algebraic space S, or some nice full subcategory
thereof.

Definition 5.4 (Thom twist). Let D∗ be a (∗, ♯,⊗)-formalism. Let E be a
finite locally free sheaf on a scalloped derived stack X . The Thom twist ⟨E⟩
is the endofunctor of D(X ) given by

F ↦ F⟨E⟩ ∶= p♯0∗(F),
where p is the total space of E and 0 is the zero section.

5.2. The Voevodsky conditions. The following key conditions were singled
out by Voevodsky in the case of schemes (see [Vo2, §2, 1.2.1]).

Definition 5.5. Let D∗ be a (∗, ♯,⊗)-formalism. We say that D∗ satisfies
the Voevodsky conditions if the following all hold:
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(i) Homotopy invariance. For every vector bundle p ∶ V → X , the unit
map

id→ p∗p
∗

is invertible.

(ii) Localization. For every complementary closed-open pair

Z X Ui j

of scalloped derived stacks, the functor i∗ is fully faithful with essential
image spanned by objects in the kernel of j∗.

(iii) Thom stability. For every finite locally free sheaf E on a scalloped
derived stack X , the endofunctor ⟨E⟩ ∶ D(X ) →D(X ) is an equiva-
lence.

Remark 5.6. The base change formula for ♯-direct image implies that for
any complementary closed-open pair

Z X U ,i j

we have the identities

j∗j♯ = id, j∗j∗ = id, j∗i∗ ≃ 0, i∗j♯ ≃ 0.

The localization property can be reformulated as exactness of the triangle

j♯j
∗ counitÐÐÐ→ id

unitÐÐ→ i∗i
∗,

or by passing to right adjoints,

i∗i
! ≃ i!i!

counitÐÐÐ→ id
unitÐÐ→ j∗j

∗.

Remark 5.7 (Tate twists). Given a scalloped derived stack X , let q ∶
(A1 ∖ {0}) ×X → X denote the projection. The unit section of A1 defines
a canonical morphism 1X → q♯(1X ) whose fibre we denote 1X (1). Since
1X ⟨1⟩ ≃ 1X (1)[2], Thom stability implies that 1X (1) is ⊗-invertible. The
Tate twist by n ∈ Z is the endofunctor of D(X ) given by

F ↦ F(n) ∶= F ⊗ (F(1))⊗n.

5.3. Constructible separation. Let D∗ be a (∗, ♯,⊗)-formalism satisfying
the Voevodsky conditions. The following is an immediate consequence of the
localization property (see e.g. [Kh5, 2.11, 2.13]).

Proposition 5.8. For any constructible covering18 (jα ∶ Xα → X )α of a
scalloped derived stack X , the inverse image functors

j∗α ∶ D(X )→D(Xα)

are jointly conservative.

18i.e., a family that generates a covering for the constructible topology
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Corollary 5.9 (Nil invariance). Let i ∶ X ′ → X be a surjective closed
immersion of scalloped derived stacks. Then the pair of adjoint functors

i∗ ∶ D(X )→D(X ′), i∗ ∶ D(X ′)→D(X )
is an equivalence of ∞-categories. In particular, for every scalloped derived
stack X , there are canonical equivalences

D(X ) ≃ D(Xcl) ≃ D(Xcl,red)
where Xcl is the classical truncation and Xcl,red is its reduction.

5.4. Nisnevich descent. Let D∗ be a (∗, ♯,⊗)-formalism satisfying the
Voevodsky conditions. We have the following (see e.g. [Kh5, 4.26, 4.52]):

Proposition 5.10 (Étale excision). Let f ∶ X ′ → X be a representable étale
morphism which induces an isomorphism away from a quasi-compact open
immersion j ∶ U → X . Then the commutative square

id j∗j
∗

f∗f
∗ g∗g

∗,

is homotopy cartesian, where g ∶ f−1(U)→ X .

Proposition 5.11 (Nisnevich descent). The presheaf of ∞-categories D∗

satisfies Nisnevich descent on the ∞-category of scalloped derived stacks. In
particular, for any scalloped derived stack X and Nisnevich covering family
(fα ∶ Xα → X )α, the inverse image functors

f∗α ∶ D(X )→D(Xα)
are jointly conservative.

5.5. The example of SH∗.

Example 5.12. Consider the presheaf SH∗, given by X ↦ SH(X ), f ↦ f∗

(see Theorem 4.5). This is a (∗, ♯,⊗)-formalism satisfying the Voevodsky
conditions:

(i) The existence of ♯-direct images for smooth representable morphisms,
satisfying the base change and projection formula, was proven in
Theorem 4.10(i).

(ii) The additivity property follows from Nisnevich descent (Theorem 4.5(iii)).

(iii) For homotopy invariance, use Nisnevich descent to reduce to the case
of X fundamental, in which case it holds by construction.

(iv) For Thom stability, observe that by localization (Theorem 4.10(ii)(d))
and the smooth and closed projection formulas (Theorem 4.10(i)(c)
and (ii)(c)), there are canonical isomorphisms of functors

⟨E⟩ ≃ (−)⊗Σ∞ ThX (E)
for every finite locally free E on X . These are equivalences by
Theorem 4.5(i).
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This example is universal in the following sense:

Proposition 5.13. Let D∗ be a (∗, ♯,⊗)-formalism on scalloped derived
stacks satisfying the Voevodsky conditions. Then there exists a unique system
of colimit-preserving functors

RX ∶ SH(X )→D(X )
for every scalloped derived stack X , which commute with ♯-direct images
(along smooth representable morphisms), inverse images (along arbitrary
morphisms), tensor products, and arbitrary Thom twists.

Proof. By Nisnevich descent (Proposition 5.11), both SH∗ and D∗ are right
Kan extended from the subcategory of fundamental stacks. For fundamental
stacks, this holds by Remark 4.8 and the construction of H∗; compare [Kh5,
Rem. 2.14]. �

Example 5.14 (Étale motivic spectra). The étale-local stable motivic ho-
motopy category SH∗

ét defines a (∗, ♯,⊗)-formalism satisfying the Voevodsky
conditions. In fact, this formalism extends to the site of all derived alge-
braic stacks (not necessarily scalloped). More generally, any constructible
∞-category (as in [Kh5]) satisfying étale descent on the site of schemes or
algebraic spaces admits a canonical extension to the site of algebraic stacks.
Moreover, ♯-direct image also exists for non-representable smooth morphisms.
See [Kh3, App. A] and [LZ2], and also Example 12.2.

Corollary 5.15. Let D∗ be a (∗, ♯,⊗)-formalism on scalloped derived stacks
satisfying the Voevodsky conditions. Then for every scalloped derived stack
X , the assignment E ↦ ⟨E⟩ extends from finite locally frees to a map of
anima

K(X )→ AutD(X )(D(X )) ≃ Pic(D(X )),
to the animum of D(X )-linear autoequivalences of D(X ), i.e., the Picard
animum of ⊗-invertible objects in D(X ).

Proof. In fact, we have the canonical map of presheaves

K
ThÐ→ Pic(SH∗) Pic(R)ÐÐÐÐ→ Pic(D∗)

where the first map is as in Remark 4.6 and the second is induced by the
(symmetric monoidal) realization R ∶ SH∗ →D∗ of Proposition 5.13. �

Notation 5.16. In the situation of Corollary 5.15, every K-theory class
α ∈ K(X ) induces a canonical auto-equivalence of D(X ) which we denote by

⟨α⟩ ∶ D(X )→D(X )
and continue to call the Thom twist by α.

6. Proper base change

6.1. Statement. For the duration of this section, we fix a (∗, ♯,⊗)-formalism
D∗ satisfying the Voevodsky conditions on the site of scalloped derived
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stacks. The following theorem summarizes our results about direct image
along proper representable morphisms:

Theorem 6.1. Let f ∶ X → Y be a proper representable morphism of
scalloped derived stacks. Then we have:

(i) Compactness. The functor f∗ ∶ D(Y) → D(X ) is compact, i.e., its
right adjoint f∗ commutes with colimits. Equivalently, f∗ admits a
right adjoint f !.

(ii) Proper base change. For any commutative square of scalloped derived
stacks

X ′ Y ′

X Y

g

u v

f

which is cartesian on classical truncations, there is a canonical iso-
morphism

Ex∗∗ ∶ v∗f∗ → g∗u
∗

of functors D(X )→D(Y ′).
(iii) Smooth-proper base change. For any cartesian square

X ′ Y ′

X Y,

g

p q

f

where p and q are smooth representable, there is a canonical isomor-
phism

Ex♯,∗ ∶ q♯g∗ → f∗p♯

of functors D(X ′)→D(Y).
(iv) Atiyah duality. If f is moreover smooth, then the canonical morphism

of functors D(X )→D(Y) (see Construction 6.7)

εf ∶ f♯⟨−Lf ⟩→ f∗

is invertible. In particular, f∗⟨Lf ⟩ is left adjoint to f∗.

(v) Proper excision. If f is an isomorphism away from a closed substack
Z ⊆ Y, then the commutative square

id i∗i
∗

f∗f
∗ g∗g

∗

is homotopy cartesian in D(Y), where i ∶ Z → Y is the inclusion and
g ∶ f−1(Z) ⊆ X → Y is the induced morphism.
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6.2. Cdh descent. Before proceeding, let us mention a reformulation (Re-
mark 6.4) of proper excision as a descent statement for the ∗-direct image
functor.

Definition 6.2.

(i) The proper cdh topology on the site of scalloped derived stacks is the
Grothendieck topology associated to the pretopology generated by
the following covering families: (a) the empty family, covering the
empty stack ∅; (b) for every scalloped derived stack X and every
representable proper morphism f ∶ X ′ → X inducing an isomorphism
away from a closed immersion i ∶ Z ↪ X , the family {i, f} covering
X .

(ii) The cdh topology on the site of scalloped derived stacks is the union
of the Nisnevich (Definition 2.4) and proper cdh topologies.

Remark 6.3. In the definition of the proper cdh topology, it suffices to take
only families {i, f} where f is a projective morphism inducing an isomorphism
away from i. This follows from [HK, Cor. 2.4].

Remark 6.4. Fix a scalloped derived stack Y and a coefficient F ∈ D(Y),
and let C be (a full subcategory of) the ∞-category of scalloped derived
stacks over Y. Proper excision, for all proper representable morphisms
f ∶ X ′ → X in C, is equivalent to the assertion that the presheaf on C given by
(h ∶ X → Y)↦ h∗h

∗(F) satisfies descent for the proper cdh topology. This
follows from [Kh, Thm. 2.2.7].

Corollary 6.5. Let D∗ be a (∗, ♯,⊗)-formalism satisfying the Voevodsky
conditions. Then the presheaf of ∞-categories D∗ satisfies cdh descent.

Proof. Nisnevich descent is Proposition 5.11. Proper cdh descent follows
from proper base change (Theorem 6.1) and proper cdh descent for f∗f

∗

(Remark 6.4); see [Kh5, Thm. 2.52] for details. �

6.3. Relative purity. We begin with a construction of the morphism which
is asserted to be invertible in Theorem 6.1(iv). This will require a preliminary
result:

Theorem 6.6 (Relative purity). Let i ∶ X → Y be a closed immersion of
scalloped derived stacks which are smooth and representable over a scalloped
derived stack S. If NX /Y denotes the conormal sheaf of i, and p ∶ X → S
and q ∶ Y → S denote the structural morphisms, then there is a canonical
isomorphism

q♯i∗ ≃ p♯⟨NX /Y⟩
of functors D(X )→D(S).

Proof. For any i ∶ X → Y as in the statement, set PS(X ,Y) ∶= q♯i∗. Then we
have

PS(X ,NX /Y) = p♯π♯s∗ ≃ p♯⟨NX /Y⟩,
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where π ∶ NX /Y → X is the projection of the normal bundle (i.e., the total
space of NX /Y) and s ∶ X → NX /Y is the zero section. The deformation to
the normal bundle DX /Y (see [KhRy, Thm. 4.1.13]) is a scalloped derived
stack (as DX /Y → Y is representable), smooth over S and equipped with
canonical morphisms of pairs (i.e., homotopy cartesian squares)

(X ,Y)→ (X ×A1,DX /Y)← (X ,NX /Y)

given by the inclusions of the fibres over 0 and 1 of DX /Y → A1. It will
suffice to show that the induced morphism (cf. [CD, 2.4.32])

PS(X ,Y)→ PS(X ×A1,DX /Y) ○ pr∗ ← PS(X ,NX /Y)

is invertible, where pr ∶ X ×A1 → X is the projection. By Nisnevich descent
(Proposition 5.11) and derived invariance (Corollary 5.9) we may reduce to
the case where Y (and hence X ) is fundamental. In that case the result is
proven as in [Ho3, Prop. 5.7]. �

Construction 6.7. Let f ∶ X → Y be a smooth proper representable
morphism of scalloped derived stacks. Its diagonal is a closed immersion
∆f ∶ X → X ×Y X (since f is separated and representable) whose conormal
sheaf is canonically identified with the cotangent complex Lf . The exchange
transformation Ex♯,∗ associated to the square

X ×Y X X

X Y

pr1

pr2 f

f

gives rise to a natural transformation

εf ∶ f♯ = f♯pr2,∗∆f,∗
Ex♯,∗ÐÐÐ→ f∗pr1,♯∆f,∗ ≃ f∗⟨Lf ⟩

where the isomorphism is relative purity (Theorem 6.6). By the smooth base
change formula, formation of εf commutes with smooth representable inverse
image.

6.4. Reductions. We discuss some of the relationships between the various
assertions in Theorem 6.1.

Lemma 6.8. Let f ∶ X → Y be a smooth proper representable morphism.

(i) If D∗ satisfies Atiyah duality (Theorem 6.1(iv)) for any base change
of f , then it also satisfies compactness, proper base change, and
smooth-proper base change (Theorem 6.1(i),(ii),(iii)) for f .

(ii) If D∗ satisfies smooth-proper base change (Theorem 6.1(iii)) for f ,
then it also satisfies Atiyah duality for f (Theorem 6.1(iv)).

Proof. Immediate consequence of the definition of ε, see [Kh5, Lem. 2.28,
2.29]. �
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Lemma 6.9. Let S be a scalloped derived stack. For any finite locally free
sheaf E on S, let f ∶ P(E)→ S denote the associated projective bundle. Then
D∗ satisfies Atiyah duality for f .

Proof. Set X ∶= P(E) to simplify the notation. By Nisnevich descent
(Proposition 5.11) and the fact that formation of εf commutes with in-
verse image by representable étale morphisms, we may reduce to the case
where S is fundamental. We may also assume S is classical by derived
invariance (Corollary 5.9). In this case the Pontryagin–Thom collapse map
ηf ∶ 1S → f♯(1X ⟨−Lf ⟩) in SH(S), constructed in [Ho3, §5.3], induces by
Proposition 5.13 a morphism of the same form in D(S), which in turn induces
by the smooth projection formula a natural transformation

ηf ∶ idD(S) → f♯f
∗⟨−Lf ⟩.

To show that εf ∶ f∗ → f♯⟨Lf ⟩ is invertible it will suffice to show that its
left transpose ε′f ∶ f∗f♯⟨−Lf ⟩ → id and ηf are the counit and unit of an

adjunction (f∗, f♯⟨−Lf ⟩). The verification of the triangle identities reduces
to showing that the composite

f∗
ηfÐ→ f∗f♯⟨−Lf ⟩f∗

ε′fÐ→ f∗

induces the identity when evaluated on the unit 1S , as in the beginning of
the proof of [Ho3, Thm. 5.22]. Again by Proposition 5.13 it will suffice to
show this in the case D∗ = SH∗, which is done in [Ho3, Thm. 6.9]. �

Lemma 6.10. Let f ∶ X → Y be a proper representable morphism of
scalloped derived stacks. If D∗ satisfies proper base change for f (Theo-
rem 6.1(ii)), then it also satisfies proper excision for f (Theorem 6.1(v)).

Proof. Let i ∶ Z ↪ Y be a closed immersion, with complementary open im-
mersion j ∶ U → X , such that f is an isomorphism over U . By Proposition 5.8
it will suffice to show the square in question is homotopy cartesian after
applying either i∗ or j∗. The i∗ case follows easily from the localization
property and proper base change (Theorem 6.1(ii)). The j∗ case follows
immediately from the smooth base change formula. �

6.5. Proof of Theorem 6.1, projective case. Let f ∶ X → Y be a
projective morphism between scalloped derived stacks.

Let us prove the proper base change formula (ii) and smooth-proper base
change formula (iii) for f . By Nisnevich descent and the smooth base
change formula (Theorem 4.10(i)(b)), both claims are local on Y (for proper
base change, choose a Nisnevich cover of Y and apply ∗-inverse image
by the induced cover of Y ′). Therefore, we may assume that Y has the
resolution property (e.g., that Y is quasi-fundamental, by Theorem 2.12(ii)
and Proposition 2.20).

Since Y has the resolution property, the projective morphism f factors
through a closed immersion into a projective bundle over Y. For the closed
immersion the claims are standard consequences of the localization property
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(Definition 5.5(ii)), see e.g. [Kh5, §2.2]. For the projective bundle the claims
follow from Lemmas 6.8 and 6.9. The claims for f then follow immediately.

Atiyah duality (iv) and proper excision (v) then follow in view of Lemmas 6.8
and 6.10.

6.6. Proof of Theorem 6.1, general case. Combining Remarks 6.3 and
6.4 with the projective case of Theorem 6.1 (proven in Subsect. 6.5), we have
both proper cdh descent and proper excision (v) for all proper representable
morphisms.

For compactness (i), proper base change (ii), and smooth-proper base change
(iii), we can use descent along a proper cdh cover of the following type to
reduce to the case of a projective morphism.

Theorem 6.11. Let f ∶ X → Y be a separated representable morphism of
finite type between quasi-compact quasi-separated derived algebraic stacks.
Assume that Y is scalloped. Then there exists a proper cdh cover g ∶ X̃ → X
such that the composite f ○ g ∶ X̃ → Y is quasi-projective.

Proof. The inclusion of the classical truncation is a proper cdh cover, so we
may assume that X and Y are classical.

By the generalization of Chow’s lemma proven in [Ry4], we can find a

projective morphism π ∶ X̃ → X which is an isomorphism over a non-empty
open U ⊆ X , such that f ○ π ∶ X̃ → X → Y is quasi-projective. Then the
family {π, i}, where i ∶ Z → X is any closed immersion complementary to j,
generates a proper cdh cover of X . Thus if X is noetherian, then the claim
follows by noetherian induction.

In general, since Y is scalloped it is of global type in the sense of [Ry3,
Def. 2.1] by Theorem 2.12(ii), as is X by Corollary 2.13. Thus we may apply
noetherian approximation in the form of [Ry3, Thm. D] to the morphism
X → Y. The conclusion is that f factors through an affine morphism
X → X0 and a separated representable morphism X0 → Y which is of finite
presentation. Since proper cdh covers are stable under base change, and
quasi-projective morphisms are stable under composition, we may replace X
by X0 and thereby assume that f is of finite presentation.

By another application of [Ry3, Thm. D] to the morphism Y → Spec(Z)
we find an affine morphism Y → Y0 such that Y0 is of finite type over
Spec(Z) (hence noetherian). Since f is of finite presentation, we can moreover
choose this approximation such that f descends to a separated representable
morphism of finite presentation f0 ∶ X0 → Y0. By the noetherian case we
have a proper cdh cover X̃0 → X0 such that X̃0 → Y0 is quasi-projective. Base
changing from X0 to X now yields the desired proper cdh cover. �

Finally, Atiyah duality (iv) again follows from Lemma 6.8.



GENERALIZED COHOMOLOGY THEORIES FOR ALGEBRAIC STACKS 53

7. The !-operations

7.1. Statement. Let D∗ be a (∗, ♯,⊗)-formalism on the ∞-category of
scalloped derived stacks. We assume D∗ satisfies the Voevodsky conditions.

Theorem 7.1. For any representable morphism of finite type f ∶ X → Y in
C, there exists a pair of adjoint functors

f! ∶ D(X )→D(Y), f ! ∶ D(Y)→D(X ),

and a natural transformation αf ∶ f! → f∗, satisfying the following conditions:

(i) There are canonical isomorphisms f! ≃ f♯ and f ! ≃ f∗ if f is an open
immersion.

(ii) The natural transformation αf ∶ f! → f∗ is invertible if f is proper.

(iii) The functor f! satisfies the base change formula. That is, for any
commutative square of scalloped derived stacks

X ′ Y ′

X Y

g

u v

f

which is cartesian on classical truncations, the canonical morphisms
of functors D(X )→D(Y ′)

Ex∗! ∶ v∗f! → g!u
∗,

Ex!
∗ ∶ u∗g! → f !v∗

are invertible.

(iv) The functor f! satisfies the projection formula. That is, f! ∶ D(X )→
D(Y) is a morphism of D(Y)-module ∞-categories, where D(X )
is regarded as a D(Y)-module via the symmetric monoidal functor
f∗ ∶ D(Y)→D(X ). In particular, the canonical morphisms

G ⊗ f!(F)→ f!(f∗(G)⊗F),
Hom(f∗(G), f !(G′))→ f !(Hom(G,G′)),
f∗(Hom(F , f !(G)))→ Hom(f!(F),G)

are invertible for all F ∈ D(X ) and G,G′ ∈ D(Y).

Moreover, the assignment f ↦ f! (resp. f ↦ f !) extends to a functor D!

(resp. to a contravariant functor D!) from the ∞-category of scalloped
derived stacks to the ∞-category of presentable ∞-categories and left-adjoint
functors (resp. right-adjoint functors).

Remark 7.2. Thom twists (Notation 5.16) commute with each of the six
operations. That is, for every morphism f ∶ X → Y and α ∈ K(Y), we have
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canonical isomorphisms of functors

f∗ ○ ⟨α⟩ ≃ ⟨f∗α⟩ ○ f∗, f∗ ○ ⟨f∗α⟩ ≃ ⟨α⟩ ○ f∗,
f! ○ ⟨f∗α⟩ ≃ ⟨α⟩ ○ f!, f ! ○ ⟨α⟩ ≃ ⟨f∗α⟩ ○ f !.

Indeed, it suffices by Proposition 5.11 to check this on fundamental stacks,
in which case we can assume that α is the class of a locally free sheaf (since
fundamental stacks have the resolution property, see Proposition 2.20). In
that case the claim is an easy consequence of various base change formulas.
In view of these formulas, we will often abuse notation by writing e.g. f∗○⟨α⟩
instead of ⟨α⟩ ○ f∗ when α lives on the target.

7.2. Compactifications. The construction of the !-operations will be done,
at least locally, by compactifying.

Definition 7.3. Let f ∶ X → Y be a representable morphism of scalloped
derived stacks. We say that f is compactifiable if there exists a factorization

f ∶ X jÐ→ X gÐ→ Y
where j is an open immersion and g is proper representable. Note that if f
is compactifiable, then it is separated of finite type.

Remark 7.4. Compactifiability can be checked on classical truncations. In-

deed, if f ∶ X → Y is a morphism and Xcl
j0Ð→ X cl

g0Ð→ Ycl is a compactification
of fcl, then

X → X cl ⊔
Xcl

X → Y

is a compactification of f . See the proof of [GR, Pt. II, Chap. 5, 2.1.6].

Example 7.5. Any affine morphism of finite type of derived stacks is com-
pactifiable.

Example 7.6. If Y is Deligne–Mumford, or at least has quasi-finite diagonal,
then a representable morphism f ∶ X → Y is compactifiable if and only if it
is separated and of finite type (see [Ry2, Thm. B]).

Remark 7.7. For any representable morphism f ∶ X → Y , the ∞-category of
compactifications of f is either empty or contractible. In the case of classical
stacks this follows from [SGA4, Exp. XVII, Prop. 3.2.6(ii)]. The derived case
follows by the argument of [GR, Pt. II, Chap. 5, 2.1.6].

Remark 7.8. Let f ∶ X → Y be a representable morphism of finite type
between scalloped derived stacks. Then there exists a commutative square

U V

X Y

f0

u v

f

where u and v are representable Nisnevich covers and f0 is affine of finite
type. (Indeed, choose v such that V is fundamental by Theorem 2.12(iii)
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and then use Theorem 2.14(i) to choose a Nisnevich cover U ↠ X ×R
Y V

such that f0 ∶ U → V is affine.) In particular, every such f is “locally
compactifiable” (on the source and target, in the representable Nisnevich
topology). Furthermore, note that if X and Y have affine diagonal, then by
Theorem 2.12(iii) and the last part of Theorem 2.14(i), we can take u and v
to be affine.

7.3. Proof of Theorem 7.1. For compactifiable morphisms, the claims
follow from Theorem 6.1, Remark 7.7, and the general machinery of [LZ]
or [GR, Chap. 8, Thm. 6.1.5] (cf. [LZ, Thm. 9.4.8], [LZ2, Eqn. (3.8)],
[GR, Chap. 5, Thm. 3.4.3], [Kh5, Thm. 2.34]). Then one extends to all
representable morphisms of finite type by Remark 7.8 and [LZ2, Thm. 4.1.8].

7.4. Constructible separation. We can formulate an analogue of Proposi-
tion 5.8 using !-inverse image:

Proposition 7.9. For any constructible covering family (jα ∶ Xα → X )α of
scalloped derived stacks, the inverse image functors

j!
α ∶ D(X )→D(Xα)

are jointly conservative.

Proof. We reduce to the case of a closed-open pair (i, j) and use the exact
triangle

i∗i
! counitÐÐÐ→ id

unitÐÐ→ j∗j
∗

from Remark 5.6 (recall that j∗ ≃ j!). �

7.5. Purity.

Theorem 7.10. Let f ∶ X → Y be a representable smooth morphism of
scalloped derived stacks. Assume that f is compactifiable or that X and Y
have affine diagonal. Then there is a canonical isomorphism

purf ∶ f ! ≃ f∗⟨LX /Y⟩
of functors D(Y)→D(X ). Equivalently, by adjunction, there is a canonical
isomorphism f! ≃ f♯⟨−LX /Y⟩.
Remark 7.11. In Theorem 7.10, and throughout the statements below, it
is enough to assume that f is Nisnevich-locally compactifiable in the sense
that there exists a commutative square

U V

X Y

f0

u v

f

where u and v are compactifiable Nisnevich covers and f0 is compactifiable.
This includes the case of X and Y having affine diagonal (by Remark 7.8),
and this is all that will be necessary for our argument (see the proof of
Corollary 7.14).
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The following is a corollary, but will in fact feature in our proof of Theo-
rem 7.10.

Corollary 7.12. Suppose given a commutative square of scalloped derived
stacks

X ′ Y ′

X Y

g

p q

f

which is cartesian on classical truncations, where f is representable of finite
type and p and q are representable and smooth. Consider the natural
transformation

Ex∗! ∶ p∗f ! unitÐÐ→ g!g!p
∗f ! ≃ g!q∗f!f

! counitÐÐÐ→ g!q∗,

where the isomorphism comes from the base change formula (Theorem 7.1(iii)).
Assume either that f is compactifiable or that X , Y, X ′ and Y ′ have affine
diagonal. Then Ex∗! is invertible.

Before proving Corollary 7.12, we record a couple weaker variants of Theo-
rem 7.10 which it implies.

Corollary 7.13. Let f ∶ X → Y be a representable étale morphism of
scalloped derived stacks. Assume that f is compactifiable or that X and Y
have affine diagonal. Then there is a canonical isomorphism f ! ≃ f∗.

Proof. Since the diagonal ∆ ∶ X → X ×Y X is an open immersion, we have
∆! ≃ ∆∗ (Theorem 7.1(i)). Applying Corollary 7.12 to the homotopy cartesian
square

X ×Y X X

X Y,

pr2

pr1 f

f

we get the invertible natural transformation

f ! = ∆∗pr∗1f
! Ex∗!ÐÐ→∆∗pr!

2f
∗ ≃ ∆!pr!

2f
∗ = f∗.

�

Corollary 7.14. Let f ∶ X → Y be an unramified morphism of derived
stacks which are representable and smooth over a scalloped derived stack S.
Assume that f is compactifiable or that X and Y have affine diagonal. Then
there is a canonical isomorphism

f !q∗ ≃ p∗⟨LX /Y⟩,
where p ∶ X → S and q ∶ Y → S are the structural morphisms and LX /Y is the
relative cotangent complex of f .

Proof. If f is a closed immersion, then this follows from Theorem 6.6 by
transposition. In general, there exists by [Ry, Thm. (1.2)] a canonical global
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factorization of f through a closed immersion i and a representable étale
morphism g:

X iÐ→ X ′ gÐ→ Y.
Let p′ = q ○g ∶ X ′ → S denote the structural morphism. Combining the closed
immersion case and Corollary 7.13, we get a canonical isomorphism

f !q∗ = i!g!q∗ ≃ i!g∗q∗ = i!(p′)∗ ≃ p∗⟨−NX /X ′⟩ ≃ p∗⟨LX /Y⟩,

where the identification −NX /X ′ ≃ LX /Y in K(X ) is induced by the isomor-
phism of perfect complexes NX /X ′[1] = LX /X ′ ≃ LX /Y induced by the étale
morphism g. �

We now return to the proof of Corollary 7.12.

Proof of Corollary 7.12. If f is proper and representable, then Ex∗! is the
right transpose of the smooth-proper base change isomorphism (hence is an

isomorphism). If f is an open immersion, then invertibility of Ex∗! is clear
from Theorem 7.1(i). This shows the claim when f is compactifiable. We
also get Corollary 7.13 for compactifiable étale morphisms.

For the case of general f (but where the stacks have affine diagonal), choose
an affine morphism of finite type f0 ∶ U → V and a commutative square as in
Remark 7.8. Its base change along q ∶ Y ′ → Y defines the cartesian cube:

X ′ Y ′

U ′ V ′

X Y

U V

g

p

q

u′

g0

p′

v′

f

u

f0

q′

v

By Proposition 5.11 it will suffice to show that the morphism

Ex∗! ∶ u′∗p∗f ! → u′∗g!q∗

is invertible. Since u and v are affine, and hence compactifiable (Example 7.5),
there are canonical isomorphisms u∗ ≃ u! and v∗ ≃ v! by above. Under these
identifications the above morphism is identified with

Ex∗! ∶ p′∗f !
0v

∗ → g!
0q
′∗v∗,

which is invertible by the compactifiable case applied to the front face (since
f0 is affine). �

Finally, now that Corollary 7.12 (and hence Corollary 7.14) is available to
us, we are in position to prove Theorem 7.10.
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Proof of Theorem 7.10. Applying Corollary 7.12 to the homotopy cartesian
square

X ×Y X X

X Y

pr1

pr2 f

f

yields a canonical isomorphism Ex∗! ∶ pr∗1f
! ≃ pr!

2f
∗. Since f is representable

and smooth, the diagonal ∆ ∶ X → X ×Y X is unramified with cotangent
complex L∆ ≃ Lf [1]. Applying ∆! and using the relative purity isomorphism

∆!pr∗1 ≃ ⟨−Lf ⟩ (Corollary 7.14), we get the canonical isomorphism

f !⟨−Lf ⟩ ≃ ∆!pr∗1f
! Ex∗!ÐÐ→∆!pr!

2f
∗ ≃ f∗.

The purity isomorphism purf ∶ f ! ≃ f∗⟨Lf ⟩ is obtained by Thom twisting by
Lf . �

7.6. Descent.

Corollary 7.15. Let C be the ∞-category of scalloped derived stacks and
representable morphisms of finite type. Then the presheaf of ∞-categories
D! on C satisfies cdh descent. Similarly, D! satisfies cdh co-descent on C
when regarded as a co-presheaf with values in the ∞-category of presentable
∞-categories and left-adjoint functors.

Proof. Follows from Theorem 7.1, see [Ho3, Prop. 6.24] or [Kh5, Thm. 2.52].
�

8. The Euler and Gysin transformations

We fix a (∗, ♯,⊗)-formalism D∗ satisfying the Voevodsky conditions, so that
D∗ extends to a formalism of six operations by Theorem 7.1.

8.1. Euler transformation.

Construction 8.1. Let X be a scalloped derived stack. Given a finite locally
free sheaf E on X , let p be the projection of its total space and 0 the zero
section. The Euler transformation associated to E , denoted

eulE ∶ id→ ⟨E⟩,

is the composite

id ≃ p!p
! unitÐÐ→ p!0!0

∗p! ≃ ⟨E⟩
where the first isomorphism is homotopy invariance and the second is purity
(Theorem 7.10).

Lemma 8.2. Let the notation be as in Construction 8.1. Suppose E admits
a surjective cosection s ∶ E ↠ OX . Then s induces a null-homotopy eulE ≃ 0.
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Proof. Write V = VX (E) for the total space. Note that s corresponds to a
nowhere zero section s ∶ X → V , i.e., it factors through the complement V ∖ 0
of the zero section. Let q ∶ V ∖ 0→ X denote the projection. The localization
triangle

q!q
! counitÐÐÐ→ p!p

! unitÐÐ→ p!0!0
∗p!

is isomorphic to

q!q
! counitÐÐÐ→ id

eulEÐÐ→ ⟨E⟩.
Since s ∶ X → V ∖ 0 is a section of q, the counit s!s

! → id induces a natural
transformation id→ q!q

! splitting this triangle, and hence a null-homotopy
of eulE . �

8.2. Gysin transformation. The Gysin transformation of [DJK, 4.3.1]19

extends immediately to our setting. We will need the following technical
hypothesis on our morphisms.

Definition 8.3. Let f ∶ X → Y be a morphism of scalloped derived stacks.
We say that f is representably smoothable if it admits a global factorization

X iÐ→ A pÐ→ Y
where p is smooth representable and i is finite unramified.

Recall that a representable morphism of derived stacks is quasi-smooth if
it is locally of finite presentation and the relative cotangent complex is of
Tor-amplitude [0,1] (with homological grading), see e.g. [KhRy].

Theorem 8.4. Let f ∶ X → Y be a quasi-smooth, representably smoothable
morphism of scalloped derived stacks with affine diagonal. Then there exists
a natural transformation

gysX /Y ∶= gysf ∶ f∗⟨Lf ⟩→ f !

of functors D(Y)→D(X ), satisfying the following properties.

(i) If f is smooth, then gysf is the purity isomorphism of Theorem 7.10.

(ii) If f is a closed immersion and X and Y are smooth representable
over a base S, then gysf ∗ q∗ (where ∗ denotes horizontal composi-
tion) is canonically identified with the relative purity isomorphism
(Corollary 7.14)

p∗⟨LX /Y⟩ ≃ f !q∗,

where p ∶ X → S and q ∶ Y → S are the structural morphisms.

Remark 8.5. By adjunction, the Gysin transformation can be rewritten as
a trace or cotrace:

trf ∶ f!f
∗⟨Lf ⟩→ id,

cotrf ∶ id→ f∗f
!⟨−Lf ⟩

cf. [SGA4, Exp. XVIII, §3.2].

19called the purity transformation in op. cit.
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Remark 8.6. The Gysin transformation is functorial in f , up to homotopy,
and also enjoys a base change property for homotopy cartesian squares. See
[DJK, Prop. 2.5.4] for the precise formulation.

8.3. Proof of Theorem 8.4. We only briefly sketch the construction, as it
is the same as in the proofs of [DJK, Thms. 4.1.4, 4.3.1].

Construction 8.7. Assume first that f is finite unramified. Consider the
deformation to the normal bundle [KhRy, Thm. 4.1.13], which fits in the
following diagram of homotopy cartesian squares:

X X ×A1 X ×Gm

NX /Y DX /Y Y ×Gm

Y Y ×A1 Y ×Gm

0 f̂ f×id

î

u

ĵ

t

where the left-hand side is the fibre over 0 and the right-hand side is the
complement. The morphism u is the projection π ∶ NX /Y → X followed by
f ∶ X → Y.

The boundary map for the localization triangle associated to the closed-open
pair (̂i, ĵ) yields a natural transformation

∂ ∶ q∗q![−1]→ u∗u
!,

where q ∶ Y×Gm → Y is the projection. Using the unit section 1 ∶ Y → Y×Gm

to split q, we get a canonical isomorphism q∗q
! ≃ id[1]⊕ id(1)[2] and thus,

by including as the first component, a natural transformation

spX /Y ∶= spf ∶ id→ u∗u
!. (8.8)

Now by homotopy invariance and purity (Theorem 7.10), we have a canonical
isomorphism

π∗π
! ≃ π∗π∗⟨−LX /Y⟩ ≃ ⟨−LX /Y⟩

using the canonical identification Lπ ≃ NX /Y ≃ −LX /Y in K(X ). In particular,
we get

u∗u
! ≃ f∗π∗π!f ! ≃ f∗f !⟨−LX /Y⟩.

The Gysin transformation for f , or rather the cotrace, is then

cotrf ∶ id
spfÐÐ→ u∗u

! ≃ f∗f !⟨−LX /Y⟩.

The compatibility with relative purity (Corollary 7.14) is proven as in [DJK,
Lem. 3.2.15].

Finally, for the general case, choose a factorization f = p○i as in Definition 8.3
and define cotrf to be the composite

id
cotrpÐÐÐ→ p∗p

!⟨−Lp⟩
cotriÐÐ→ i∗p∗p

!i!⟨−Lp −Li⟩ ≃ f∗f !⟨−Lf ⟩,
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where cotrp is the transpose of the purity isomorphism (Theorem 7.10). One
checks this is independent of the choice up to homotopy just as in [DJK,
Thm. 3.3.2].

8.4. Self-intersection formula. Let us also record the following formula-
tion of the self-intersection formula, proven the same way as [DJK, Cor. 4.2.3],
which for a closed immersion relates the Gysin transformation with the Euler
transformation of its conormal sheaf.

Proposition 8.9. Let i ∶ X → Y be a quasi-smooth closed immersion of
scalloped derived stacks. Then there is a commutative diagram

i∗⟨−NX /Y⟩ i∗

i∗⟨LX /Y⟩ i! i∗.

eulN
X /Y

gys
X /Y Ex∗!

Here Ex∗! ∶ i! → i∗ is the exchange transformation (Corollary 7.12) associated
to the self-intersection square

X X

X Y.
i

i

9. Cohomology and Borel–Moore homology theories

9.1. Definitions. We fix a (∗, ♯,⊗)-formalism D∗ on scalloped derived stacks
satisfying the Voevodsky conditions. Recall that by Theorem 7.1, D∗ extends
to a formalism of six operations.

Definition 9.1. Let f ∶ X → Y be a representable morphism of finite
type between scalloped derived stacks. The relative Borel–Moore homology
spectrum with coefficients in a sheaf F ∈ D(Y) is the following mapping
spectrum

CBM
● (X/Y ,F) ∶= MapsD(X )(1X , f !(F)).

Example 9.2. Let X be a derived algebraic space of finite type over an
affine scheme S, with an action of a nice group scheme G over S. The relative
Borel–Moore homology spectrum with coefficients in F ∈ D(BG),

CBM
● ([X/G]/BG,F),

can be regarded as a (genuine) G-equivariant Borel–Moore homology spec-
trum for X over S.

Definition 9.3.
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(i) An absolute object of D (over scalloped derived stacks) is a collection
F = (FX )X of objects FX ∈ D(X ), for every scalloped derived stack
X , together with a homotopy coherent system of isomorphisms

f∗(FY) ≃ FX
in D(X ) for every representable morphism f ∶ X → Y . More precisely,
F is a section of the cartesian fibration classified by the presheaf D∗,
which is cartesian over representable morphisms.

(ii) An absolute twist (over scalloped derived stacks) is similarly a col-
lection α = (αX )α of points αX ∈ K(X ), for every scalloped derived
stack X , together with a homotopy coherent system of isomorphisms

f∗(αY) ≃ αX
in K(Y) for every representable morphism f ∶ X → Y.

We will usually omit the subscripts by abuse of notation. We also consider
the variant of these definitions over some fixed base scalloped derived stack
S, e.g. an absolute object F over S is as above except that FX is only given
for X which live over S.

Example 9.4. Let F be an absolute object of D. For a scalloped derived
algebraic stack X , the cohomology spectrum with coefficients in F is

C●(X ,F) ∶= MapsD(X )(1X ,F).

Remark 9.5. For any absolute object F and absolute twist α, we adopt the
convention

C●(X ,F)⟨α⟩ ∶= C●(X ,F⟨α⟩)
and similarly

CBM
● (X/Y ,F)⟨α⟩ ∶= CBM

● (X/Y ,F⟨α⟩)
for any representable morphism of finite type X → Y.

9.2. Operations. Just as in [DJK, §2] and [Kh3, §2.2], we immediately get
the following structure on Borel–Moore homology from the formalism of six
operations. This structure is subject to the same type of compatibilities as
in Fulton and MacPherson’s formalism of bivariant theories [FM, Sect. 2.2],
see also [Kh3, §2.3].

Notation 9.6. We fix a base S, a scalloped derived stack, and an absolute
object F over S (Definition 9.3). We denote by C/S for the ∞-category of

scalloped derived stacks X over S, and Crep
/S

for the full subcategory spanned

by X ∈ C/S for which X → S is representable of finite type.

9.2.1. Direct image. If f ∶ X → Y is a proper morphism in Crep
/S

, then there

are direct image maps

f∗ ∶ CBM
● (X/S ,F)→ CBM

● (Y/S ,F).
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If X ,Y ∈ C/S have affine diagonal and f ∶ X → Y is a quasi-smooth, proper,
representably smoothable morphism, then there are also Gysin maps in
cohomology

f! ∶ C●(X ,F)→ C●(Y,F)⟨−LX /Y⟩.

9.2.2. Inverse image. If f ∶ X → Y is a representable morphism in C/S , then
there are inverse image maps

f∗ ∶ C●(Y,F)→ C●(X ,F).

If X ,Y ∈ Crep
/S

have affine diagonal and f ∶ X → Y is a quasi-smooth, repre-

sentably smoothable morphism, then there are also Gysin maps in Borel–
Moore homology

f ! ∶ CBM
● (Y/S ,F)→ CBM

● (X/S ,F)⟨−LX /Y⟩.

9.2.3. Change of base. For any commutative square of scalloped derived
stacks

Y T

X S
∆ f

which is cartesian on classical truncations, where X → S and Y → T are
representable of finite type, there are maps

f∗∆ ∶ CBM
● (X/S ,F)→ CBM

● (Y/T ,F).

9.2.4. Euler class. Assume that F is unital, i.e., it admits a unit map
η ∶ 1 → F . For any finite locally free sheaf E on X ∈ C/S , there is an Euler
class

e(E) ∈ C●(X ,F)⟨E⟩.

9.2.5. Composition product. Assume that F is multiplicative, i.e., it admits
a multiplication map µ ∶ F ⊗ F → F . Given representable of finite type
morphisms X → T and T → S between scalloped derived stacks, there is a
pairing

○ ∶ CBM
● (X/T ,F)⊗CBM

● (T/S ,F)→ CBM
● (X/S ,F).

Special cases of the composition product are cap and cup products:

9.2.6. Cap product. Given X ∈ Crep
/S

, there is a pairing

∩ ∶ C●(X ,F)⊗CBM
● (X/S ,F)→ CBM

● (X/S ,F). (9.7)
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9.2.7. Cup product. Given X ∈ C/S , there is a pairing

∪ ∶ C●(X ,F)⊗C●(X ,F)→ C●(X ,F). (9.8)

Remark 9.9. For every X ∈ C/S and F ∈ D(S), the twisted cohomology
spectra of X can be assembled into a K(Y)-graded spectrum

C●(X ,F)⟨∗⟩ ∶= ⊕
α∈K(Y)

C●(X ,F)⟨α⟩,

with graded ring structure coming from the cup product. For every morphism
f ∶ X → Y in Crep

/S
, the Borel–Moore homology spectra can be assembled into

a K(Y)-graded spectrum

CBM
● (X/Y ,F)⟨∗⟩ ∶= ⊕

α∈K(Y)

CBM
● (X/Y ,F)⟨α⟩,

which becomes a graded module over C●(X ,F)⟨∗⟩ via cap product. We can
also collapse these into Z-gradings, where the homogeneous components of
degree r ∈ Z are

⊕
rk(α)=r

C●(X ,F)⟨α⟩, ⊕
rk(α)=r

CBM
● (X/Y ,F)⟨α⟩,

respectively.

9.3. Properties. Let the notation be as in Notation 9.6. The following
properties follow immediately from the results of Sect. 5, just as in [DJK].

Proposition 9.10 (Localization). Given a complementary closed-open pair

Z X Ui j

in Crep
/S

, there is an exact triangle

CBM
● (Z/S ,F) i∗Ð→ CBM

● (X/S ,F) j!Ð→ CBM
● (U/S ,F).

Proposition 9.11 (Derived invariance). For every X ∈ Crep
/S

, we have:

(i) Change of base along the inclusion of the classical truncation Scl → S
induces isomorphisms

CBM
● (X/S ,F)→ CBM

● (X R×
S
Scl

/Scl

,F).

(ii) Direct image along the inclusion of the classical truncation iX ∶ Xcl →
X induces an isomorphism

iX ,∗ ∶ CBM
● (Xcl/S ,F)→ CBM

● (X/S ,F).

Moreover, both statements also hold with Xcl replaced by the reduction
Xcl,red.

Proposition 9.12 (Thom isomorphism). Let X ∈ Crep
/S

and E a finite locally

free sheaf on X with total space π ∶ V → X . Then the Gysin map

π! ∶ CBM
● (X/S ,F)→ CBM

● (V/S ,F)⟨−E⟩,
is an isomorphism.
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9.4. Fundamental classes and Poincaré duality. Let the notation be
as in 9.6, and assume that F is unital.

Definition 9.13. Let X ∈ Crep
/S

such that X and S have affine diagonal.

If X is smooth over S, or more generally quasi-smooth and representably
smoothable, then there is a relative fundamental class

[X /S] ∈ CBM
● (X/S ,F)⟨−LX /S⟩

defined as the image of the unit by the Gysin map

f ! ∶ CBM
● (S/S ,F)→ CBM

● (X/S ,F)⟨−LX /S⟩.

Since the Gysin transformation is invertible for smooth morphisms (see
Theorems 8.4 and 7.10), we have:

Proposition 9.14 (Poincaré duality). Let X ∈ Crep
/S

such that X and S
have affine diagonal. If X is smooth over S, then cap product with the
fundamental class [X /S] induces isomorphisms

C●(X ,F) ∩[X /S]ÐÐÐÐ→ CBM
● (X /S,F)⟨−LX /S⟩.

10. Examples

10.1. Homotopy invariant K-theory.

Notation 10.1. Given a scalloped derived stack X , we let KB(X ) denote the
Bass–Thomason–Trobaugh K-theory spectrum of the stable ∞-category of
perfect complexes on X (see [Kh4, Def. 2.6], [CK, Sect. 4]). By construction,

its infinite loop animum Ω∞(KB(X )) is the K-theory animum K(X ).

We have the following extension of the celebrated result of Thomason–
Trobaugh [TT]:

Theorem 10.2. The assignment X ↦ KB(X ) determines a Nisnevich sheaf
of spectra on the site of scalloped derived stacks.

Proof. This follows from Theorem 2.24 and [Kh4, Thm. 2.13 and Rem. 2.15].
�

Construction 10.3. Let X be a scalloped derived stack. Restricting the
presheaf X ′ ↦ KB(X ′) to the site Sm/X (notation as in Subsect. 3.1) and

applying the (exact) A1-localization functor, we get a motivic Sm-fibred S1-
spectrum KHX (with E∞-ring structure). The homotopy invariant K-theory
spectrum KH(X ) is given by its global sections:

KH(X ) = RΓ(X ,KHX ) ≃ limÐ→
[n]∈∆op

K(X ×An).

This definition agrees with [HK, §4C] and [KrRa, §5A] in case X is classical
and with [Kh2, 5.4.1] in case X is a derived algebraic space. If X is regular,
then KH(X ) ≃ KB(X ) ≃ K(X ) ≃ G(X ), where K(X ) is the (connective)
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K-theory spectrum of perfect complexes on X and G(X ) is the (connective)
K-theory spectrum of coherent sheaves on X (see [Kh4, Thm. 3.5]).

Remark 10.4. The motivic S1-spectrum KHX is stable under representable
∗-inverse image. Indeed, the proof over classical stacks in [Ho4, Prop. 4.6]
generalizes in view of [BKRS, Prop. A.2.5].

Remark 10.5. Combining Remark 10.4 with Theorem 3.15, we deduce that
for every scalloped derived stack X , the canonical map

i∗ ∶ KH(X )→ KH(Xcl),

where i is the inclusion of the classical truncation, is invertible. This gives
a proof of Corollary F which is independent of our stable results such as
proper base change (Theorem 6.1).

Remark 10.6. Using the cdh descent criterion of [Kh2, Thm. E, Rem. 5.11(c)],
we can give a direct proof of Corollary G by following [Kh2, 5.3.4]. The new
input in our setting is Remark 10.5 and the localization theorem for H∗

(Theorem 3.23), which together imply closed descent (cf. [Kh2, Ex. 5.9]).

We have the following stable representability result:

Theorem 10.7. For every scalloped derived stack X , there exists a canonical
motivic E∞-ring spectrum KGLX ∈ SH(X ) satisfying the following properties:

(i) For every X ′ ∈ Sm/X , there are functorial isomorphisms of spectra

KH(X ′) ≃ C●(X ′,KGLX ).
(ii) For every finite locally free sheaf E on X , there is a canonical Bott

periodicity isomorphism

KGLX ⟨E⟩ ≃ KGLX

in SH(X ).
(iii) For any representable morphism f ∶ X → Y, there is a canonical

isomorphism

f∗(KGLY) ≃ KGLX

in SH(X ). In fact, the collection (KGLX )X forms an absolute motivic
spectrum in the sense of Definition 9.3.

Proof. We follow the proof of [Ho4, Thm. 1.7], which proves the result in
the case of certain (classical) global quotient stacks, and “N-quasi-projective”
morphisms between them.

If X is fundamental, it follows from the description of SH(X ) in Remark 4.8,
[Ho4, Prop. 3.2], and the projective bundle formula, that there is a unique
Bott-periodic delooping KGLX ∈ SH(X ) of KHX ∈ H(X ). In particular, (i)
and (ii) hold by construction and (iii) follows from Remark 10.4. See the
discussion around Def. 5.1 in [Ho4].
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For general X , the claim now follows from Remark 10.4 and Nisnevich descent
(cf. Lemma 4.17). More precisely, there exists a unique motivic E∞-ring
spectrum KGLX ∈ SH(X ) with a homotopy coherent system of isomorphisms

u∗(KGLX ) ≃ KGLU

for every fundamental derived stack U and every Nisnevich covering u ∶ U ↠
X . See the comments on Thm. 1.7 in [Ho4, p. 16]. �

Remark 10.8. One can similarly construct a motivic spectrum KQX ∈
SH(X ) representing hermitian K-theory, see [PW] or [HJNY, §6], at least
assuming that 2 is invertible on X (although see [HJNY, Rem. 6.3]).

10.2. Algebraic cobordism. Following Voevodsky [Vo, §6.3], we can use
our formalism to introduce a theory of algebraic cobordism for stacks.

The following definition generalizes the one in [BH, §16] in the case of
schemes.

Construction 10.9. Given a scalloped derived stack X , we define MGLX ∈
SH(X ) as the colimit

MGLX = limÐ→
(U ,α)

f♯(1U ⟨α⟩)

over the ∞-category20 of pairs (U , α) with f ∶ U → X smooth representable
and α ∈ K(U) a K-theory class of virtual rank 0. By construction, MGLX
admits a canonical (homotopy coherent) orientation in the sense that there
is a homotopy coherent system of Thom isomorphisms

MGLX ⟨E⟩ ≃ MGLX (r)[2r]
for every locally free sheaf E of rank r on X . See [BH, Prop. 16.28, Ex. 16.30].

Proposition 10.10. For every representable morphism f ∶ X → Y of scal-
loped derived stacks, there is a canonical isomorphism

f∗(MGLY) ≃ MGLX

in SH(X ). In fact, the collection (MGLX )X forms an absolute motivic
spectrum in the sense of Definition 9.3.

Proof. Let K○
X denote the presheaf on Sm/X sending X ′ to the rank 0

component of the K-theory animum K(X ′). Then the canonical morphism

f∗(K○
Y)→ K○

X

is a Nisnevich-local equivalence by [Ho4, Cor. 2.9] (cf. the discussion near
the end of [Ho4, §5]). Then the claim follows by construction of MGL.
Absoluteness, which asserts homotopy coherence of these isomorphisms,
is a straightforward exercise with ∞-categorical fibrations, see e.g. [BH,
Thm. 16.19]. �

20i.e., the “total space” of the cartesian fibration associated to the presheaf sending
U ∈ Sm/X to the virtual rank 0 part of K(U)
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Remark 10.11. It follows from [Ho4, Cor. 2.10] that, when X is a quotient
stack, MGLX can be described in terms of tautological bundles over “infinite
Grassmannians”, similarly to Voevodsky’s original definition in the case of
schemes [Vo, §6.3]. Compare [BH, Thm. 16.13].

Remark 10.12. Following [BH, Ex. 16.22] one can similarly construct
a motivic spectrum MSLX ∈ SH(X ) representing special linear algebraic
cobordism.

10.3. Motivic cohomology. We construct a motivic cohomology spectrum
for scalloped derived stacks following the framed description given in [Ho5,
Thm. 21]. We begin with the following natural generalization of [EHKSY,
Def. 2.3.4].

Definition 10.13. Let X be a scalloped derived stack and X ′,X ′′ ∈ Sm/X .

A framed correspondence from X ′ to X ′′ is a diagram

Z

X ′ X ′′

f g

where f is a finite quasi-smooth morphism and g is representable, together
with an isomorphism LZ/X ′ ≃ 0 in the ∞-groupoid K(Z). (Compare [EHKSY,
Def. 2.3.4].)

Construction 10.14. Given a scalloped derived stack X , we let Smfr
/X

denote

the ∞-category whose objects are those of Sm/X and morphisms are framed
correspondences (defined as in [EHKSY, §4]). The ∞-categories Hfr(X )
and SHfr(X ) of framed motivic spectra over X are defined by repeating the

constructions of H(X ) and SH(X ) over Smfr
/X

(the conditions of Nisnevich

descent and A1-invariance being imposed on the restrictions to Sm/X ). As X
varies, this defines a (∗, ♯,⊗)-formalism which satisfies homotopy invariance
and Thom stability by construction, and should also satisfy localization (the
proof in the case of schemes [Ho5, Thm. 8] likely generalizes).

Remark 10.15. A framed correspondence as above acts on cohomology
with coefficients in F ∈ D(X ), for any (∗, ♯,⊗)-formalism D:

C●(X ′′,F) g∗Ð→ C●(Z,F) ≃ C●(Z,F)⟨Lf ⟩
f!Ð→ C●(X ′,F).

This observation implies that the canonical morphism R ∶ SH∗ →D∗ (Propo-
sition 5.13) admits a canonical factorization through SH∗

fr.
21 On the restric-

tion to (derived) schemes this factorization is unique, i.e., the morphism
SH∗ → SH∗

fr (“free transfers”) is invertible (see [Ho5, Thm. 18]). This should
generalize to scalloped stacks, but the necessary analysis of the geometry of
framed correspondences over stacks will not be undertaken here.

21This argument requires a homotopy coherent action of framed correspondences, which
we do not construct here.
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Construction 10.16. Consider the constant sheaf ZX on Sm/X , with its
canonical framed transfers (see [Ho5, §4]). We may regard it as an object of
the unstable category Hfr(X ), form the framed infinite suspension Σ∞

fr (ZX ) ∈
SHfr(X ), and forget transfers to get a motivic E∞-ring spectrum

ZX ∈ SH(X )
that we call the (integral) motivic cohomology spectrum over X . In the same
manner, we get an A-linear motivic cohomology spectrum AX ∈ SH(X ) for
every abelian group A. The argument of [Ho5, Lem. 20] should generalize to
show that this construction is stable under representable ∗-inverse image.

Remark 10.17. Note that the definition of ZX is unconditional on the
above conjectures on framed correspondences over stacks.

Remark 10.18. If the description of MGL in [EHKSY3, Thm. 3.4.1] is
extended to stacks, then we also get a canonical E∞-ring morphism

MGLX → ZX

for every scalloped derived stack X .

Remark 10.19. One can similarly construct a motivic spectrum Z̃X ∈
SH(X ) representing Milnor–Witt motivic cohomology, following the framed
construction in [HJNY, Thm. 7.3].

11. Fixed point localization

In this section we prove Theorem C. We fix the following notation.

Notation 11.1.

(i) Let S be a connected noetherian affine base scheme. Let T = G×l
m,S

be a split torus over S of dimension l ⩾ 0.

(ii) Given a motivic E∞-spectrum F ∈ SH(BT ), we consider a certain
localization22 of the Z-graded cohomology ring spectrum (see Re-
mark 9.9),

C●(BT,F)loc ∶= S−1C●(BT,F)⟨∗⟩
at a set S of homogeneous elements of degree 1. Namely, let L =
[A1

S/Gm,S] denote the tautological line bundle on BGm,S , where
Gm,S acts on A1

S by scaling with weight 1, and let pri ∶ BT → BGm,S

denote the ith projection. Then S is the multiplicative closure of the
set of Euler classes

pr∗i e(L⊗n) ∈ π0 C●(BT,F)⟨L⊗n⟩
for n ⩾ 1 and 1 ⩽ i ⩽ l.

(iii) Given an C●(BT,F)⟨∗⟩-module spectrum M , we also set

Mloc ∶=M ⊗L
C●(BT,F)⟨∗⟩ C●(BT,F)loc

22in the sense of E∞-ring spectra, see e.g. [Lu2, §7.2.3]
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for the extension of scalars.

Theorem 11.2 (Concentration). Let i ∶ Z → X be a closed immersion of
T -equivariant derived algebraic spaces of finite type over S, such that T
acts without fixed points on the complement X ∖Z. Then for every motivic
spectrum F ∈ SH(BT ), the C●(BT,F)⟨∗⟩-module map

i∗ ∶ CBM
● ([Z/T ]/BT ,F)⟨∗⟩→ CBM

● ([X/T ]/BT ,F)⟨∗⟩
induces an isomorphism of C●(BT,F)loc-modules

i∗ ∶ CBM
● ([Z/T ]/BT ,F)loc ≃ CBM

● ([X/T ]/BT ,F)loc.

Corollary 11.3. Let X be a T -equivariant derived algebraic space, separated
of finite type over S. If i ∶ XT → X is the inclusion of the locus of fixed
points

XT ∶= MapsBT (BT,X),
then for every motivic spectrum F ∈ SH(BT ), there is an isomorphism of
C●(BT,F)loc-modules

i∗ ∶ CBM
● ((XT ×BT )/BT ,F)loc ≃ CBM

● ([X/T ]/BT ,F)loc.

Remark 11.4. In the situation of Theorem C, where S is the spectrum of
a field and T = Gm,S , the separation hypothesis in Corollary 11.3 can be
dropped in view of [Dr, Prop. 1.2.2].

Remark 11.5. Theorem 11.2 and Corollary 11.3 hold more generally, with
the same proof, for any coefficient F ∈ D(BT ), where D∗ is as in Subsect. 7.1.

Proof of Theorem 11.2. We may assume that X is classical and reduced by
Proposition 9.11. By Nisnevich descent and Theorem 2.14, we may also as-
sume that X is separated. By the localization triangle (Theorem 4.10(ii)(d)),
it will suffice to show that if T acts without fixed points on the whole of X,
then

CBM
● ([X/T ]/BT ,F)loc ≃ 0.

Since T then acts without fixed points on every T -invariant proper closed
subspace Y ⊊ X as well, it will suffice by noetherian induction (on the
quotient stack [X/T ]), and the localization triangle again, to show that this
claim holds after replacing X by some nonempty T -invariant open subspace.

By Thomason’s generic slice theorem (see [Th, Thm. 4.10, Rem. 4.11]),
there exists a nonempty open U ⊆ X, a proper diagonalizable subgroup
T ′ ⊊ T , and a T ′-equivariant algebraic space V such that [U/T ] ≃ [V /T ′].
Therefore, the C●(BT,F)⟨∗⟩-module structure on CBM

● ([U/T ]/BT ,F)⟨∗⟩ is

obtained by restriction of scalars from the C●(BT ′,F)⟨∗⟩-module structure
on CBM

● ([V /T ′]/BT ,F)⟨∗⟩. Then we have

CBM
● ([U/T ]/BT ,F)loc ≃ CBM

● ([U/T ]/BT ,F)⊗C●(BT ′,F)⟨∗⟩ C●(BT ′,F)loc,

so it will suffice to show that C●(BT ′,F)loc vanishes.

For simplicity, assume T = Gm,S and T ′ = µn,S (n ⩾ 1); since T ′ ⊊ T is a
proper inclusion and S is connected, the argument readily generalizes using
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[SGA3, Exp. VIII, 1.4, 3.2] (as in the proof of [Th2, Prop. 1.2]). Note that
the line bundle L⊗n on BT , which corresponds to the Gm,S-equivariant line
bundle A1

S where Gm,S acts with weight n, restricts to the trivial line bundle
on µn,S . Therefore, by Lemma 8.2 its Euler class e(L⊗n) restricts to 0 on
BT ′. Hence 0 is a unit in C●(BT ′,F)loc. �

Remark 11.6. One can show that the classes ti,n = pr∗i e(L⊗n) are usually
nonzero. Indeed, rationalization and étale localization gives a canonical map
F → FQ,ét. Using, say, the additive formal group law to orient FQ,ét, this
determines a homomorphism of Z-graded ring spectra

C●(BT,F)⟨∗⟩→ C●(BT,FQ,ét)⟨∗⟩,

which in degree r is the map

⊕
rk(α)=r

C●(BT,F)⟨α⟩→ ⊕
rk(α)=r

C●(BT,FQ,ét)⟨α⟩
foldÐÐ→ C●(BT,FQ,ét)⟨r⟩.

Under the Thom isomorphism

C●(BT,FQ,ét)⟨L⊗n⟩ ≃ C●(BT,FQ,ét)⟨1⟩,

the element ti,n maps to pr∗i c1(L⊗n) = n ⋅ ti, where

ti = pr∗i c1(L) ∈ π0C●(BT,FQ,ét)⟨1⟩

is nonzero in the polynomial ring (of characteristic zero)

π0C●(BT,FQ,ét)⟨∗⟩ ≃ R[t1, . . . , tl],

see [MV, §4, Prop. 3.7], as long as R = π0C●(S,FQ,ét)⟨∗⟩ is nonzero.

Remark 11.7. For unoriented examples such as Milnor–Witt motivic co-
homology, hermitian K-theory, or special linear algebraic cobordism, Theo-
rem 11.2 is probably not very satisfactory. At least for the lisse-extended
theories (see Sect. 12), the Witt cohomology of BGm is trivial, so that Euler
classes in these theories should have no “Witt contribution”. We thank Marc
Levine for explaining this to us.

12. Lisse extensions

12.1. Lisse-extended categories. We begin with a construction of lisse
extensions of categories of coefficients from algebraic spaces to stacks, and a
proof of Theorem D.23 Throughout the section, we implicitly assume that all
(derived) algebraic spaces are quasi-separated, and all (derived) Artin stacks
have quasi-separated representable diagonal.

Let S be a derived algebraic space and D∗ a (∗, ♯,⊗)-formalism satisfying
the Voevodsky conditions over derived algebraic spaces over S (see [Kh5,
§2]).

23The idea to consider such a generalization originally arose in unpublished work of
Marc Hoyois with the first author.
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Construction 12.1. Let X be a derived Artin stack over S. We define

D◁(X ) = lim←Ð
(T,t)

D(T )

where the limit is taken over the ∞-category LisX of pairs (T, t) where T is
a derived algebraic space and t ∶ T → X is a smooth morphism. Note that
D◁(X ) ≃ D(X ) if X =X is a derived algebraic space.

Example 12.2. When D∗ has étale descent (on algebraic spaces), this
construction was considered in [Kh3, App. A].

Remark 12.3. The limit in Construction 12.1 can also be taken over the full
subcategory Lisaff

X of LisX spanned by (T, t) with T affine. More precisely,
the canonical functor

lim←Ð
(T,t)∈LisX

D(T )→ lim←Ð
(T,t)∈Lisaff

X

D(T ) (12.4)

is an equivalence. This follows from Nisnevich descent for D (over algebraic
spaces). Indeed, we can write the source as

lim←Ð
(T,t)∈LisX

lim←Ð
(S aff,s∶S→T ét)

D(S) ≃ lim←Ð
(T,t,S aff,s∶S→T ét)

D(S).

The forgetful functor from the right-hand indexing category to Lisaff
X (which

remembers only S and S → T → X ) induces a functor to this category from
the target of (12.4), which one checks is inverse to (12.4).

Remark 12.5. The discussion of [Kh3, App. A] can be adapted to show
that on the lisse-extended categories, the following operations extend: ⊗ and
Hom, f∗ and f∗ for arbitrary morphisms, f! and f ! for finite type morphisms,
and ⟨α⟩ for K-theory classes α. We also have the base change formula, the
isomorphism αf ∶ f! ≃ f∗ for f proper representable, the purity isomorphism

purf ∶ f ! ≃ f∗⟨Lf ⟩ for a smooth morphism, homotopy invariance for vector
bundles, and the localization triangles for complementary closed/open pairs.
The only nontrivial part is the exceptional functoriality, which we will not
use here.

12.2. Cohomology.

Definition 12.6. For every derived Artin stack X over S, the cohomology
spectrum with coefficients in F ∈ D(X ) is defined by the formula

C●
◁(X ,F) = MapsD◁(X )(1,F).

Given α ∈ K(X ) we will write

Aα
◁(X ,F) = HomD◁(X )(1,F⟨α⟩) = π0(C●

◁(X ,F)⟨α⟩). (12.7)

We have inverse images along arbitrary morphisms and Gysin direct images
along proper smooth representable morphisms.
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Remark 12.8. For any derived Artin stack X , F ∈ D◁(X ), the cohomology
spectrum is by construction the homotopy limit

C●
◁(X ,F) ≃ lim←Ð

(T,t)

C●
◁(T,F)

over (T, t) ∈ LisX .

12.3. The Borel construction. The following result shows that, for quo-
tient stacks, lisse-extended cohomology theories can be computed via Totaro’s
algebraic version of the Borel construction.

Let S be the spectrum of a perfect field k. (For non-perfect fields the result
will also follow, up to inverting the characteristic, in view of [EK].)

Theorem 12.9. Let G be an fppf group scheme over S. Suppose given a
tower

V0 ↪ V1 ↪ V2 ↪ ⋯
of inclusions of vector bundles over BG, together with closed substacks
Wi ⊆ Vi, such that for each i we have:

(i) The open complement Ui = Vi ∖Wi is representable (by an algebraic
space).

(ii) There is an inclusion Ui ⊆ Ui+1.

(iii) Given any integer n ⩾ 0, there exists an i≫ 0 such that codimVi(Wi) >
n.

Then for any motivic spectrum F ∈ SH(S), there is a canonical isomorphism

C●
◁(BG,F) ≃ lim←Ð

i

C●(Ui,F).

More generally, if X = [X/G] is the quotient of a smooth algebraic space X
with G-action, we have

C●
◁(X ,F) ≃ lim←Ð

i

C●(X ×
BG

Ui,F).

Example 12.10. If G is a smooth embeddable group scheme over S, then
there exists a choice of (Vi,Wi)i as in Theorem 12.9 by [Tot, Rem. 1.4]. For
example, for the multiplicative group Gm we get

C●
◁(BGm,F) ≃ lim←Ð

i

C●(Pi,F).

More generally for the general linear group GLn we get

C●
◁(BGLn,F) ≃ C●(Grn,∞,F).

where Grn,∞ is the Grassmannian ind-scheme of rank n vector subspaces.

Remark 12.11. In the situation of Theorem 12.9, the canonical maps

Aα
◁(X ,F) ≃ π0 lim←Ð

i

C●(X ×
BG

Ui,F)⟨α⟩↠ lim←Ð
i

Aα(X ×
BG

Ui,F)
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are always surjective by the Milnor exact sequence. More generally for every
s ∈ Z we have surjections

πsC
●
◁(X ,F)⟨α⟩↠ lim←Ð

i

πsC
●(X ×

BG
Ui,F)⟨α⟩.

In the case of motivic cohomology, we will show (see Remark 12.13) that
these are in fact bijective.

Remark 12.12. See [KhRa] for generalizations of Theorem 12.9 to the case
where X is singular.

12.4. Proof of Theorem 12.9 for motivic cohomology. Let Λ be a
commutative ring in which the characteristic exponent of the field k is
invertible. In this subsection, we will give a proof of Theorem 12.9 in the
special case of Λ-linear motivic cohomology, i.e., where F = Λ⟨n⟩ for any
n ∈ Z. This will be independent of the proof of the general statement proven
in the next subsection, but we decided to also include this argument due to
its comparative simplicity.

Proof. Let πi ∶ X ×BG Vi → X denote the projections and ji ∶ X ×BGUi →
X ×BG Vi the inclusions. The inverse image maps

C●
◁(X ,Λ)⟨n⟩

π∗iÐ→ C●
◁(X ×

BG
Vi,Λ)⟨n⟩

j∗iÐ→ C●
◁(X ×

BG
Ui,Λ)⟨n⟩,

where

C●
◁(X ×

BG
Ui,Λ)⟨n⟩ ≃ C●(X ×

BG
Ui,Λ)⟨n⟩

since Ui is an algebraic space, induce a canonical map

C●
◁(X ,Λ)⟨n⟩→ lim←Ð

i

C●(X ×
BG

Ui,Λ)⟨n⟩.

By homotopy invariance, π∗i is invertible for every i, so it will suffice to show
that j∗i is invertible for i≫ 0. More precisely, we will show that this holds
for all i such that codimVi(Wi) > n.

By construction of the lisse-extended theory and cofinality, it is enough
to prove the claim with X replaced by T , for any (T, t) ∈ Lisaff

X . By the
localization triangle and Poincaré duality, the fibre of the map j∗i is the
Borel–Moore homology spectrum

CBM
● (T ×

BG
Wi/S ,Λ)⟨−d + n⟩,

where d = dim(T ×BG Vi). But this spectrum vanishes as soon as d − n >
dim(T ×BGWi), i.e., whenever

codimT ×BG Vi(T ×
BG
Wi) = codimVi(Wi)

is strictly larger than n. (This follows from the comparison with the Bloch
cycle complex; see [MWV, Prop. 19.18] and [CD2, Cor. 8.12], and note that
T ×BGWi is affine since T is.) �



GENERALIZED COHOMOLOGY THEORIES FOR ALGEBRAIC STACKS 75

Remark 12.13. Our proof also shows that the canonical homomorphisms
(Remark 12.11)

πsC
●
◁(X ,Λ)⟨n⟩↠ lim←Ð

i

πsC
●(X ×

BG
Ui,Λ)⟨n⟩

are bijective for all n, s ∈ Z. Indeed, these are the limits over i of the
restriction maps

πsC
●
◁(X ,Λ)⟨n⟩ ≃ πsC●

◁(X ×
BG
Vi,Λ)⟨n⟩

j∗iÐ→ πsC
●(X ×

BG
Ui,Λ)⟨n⟩

which we showed were invertible for i ≫ 0. (The first isomorphism is
homotopy invariance for the vector bundle X ×BG Vi → X .)

12.5. Proof of Theorem 12.9 in general. We will deduce the general case
of Theorem 12.9 from a stronger comparison at the level of stable motivic
homotopy types.

Notation 12.14. Let X be a smooth Artin stack over an algebraic space S.
Then we write

M◁
S (X ) ∶= f♯(1X ) ∈ SH(S),

where f♯ ∶ SH◁(X ) → SH◁(S) ≃ SH(S) is ♯-direct image along the struc-
tural morphism f ∶ X → S. Note that if X = X is an algebraic space, then
MS(X) ≃ Σ∞

+ LhS(X). In general it is computed as

M◁
S (X ) ≃ limÐ→

(T,t)∈LisX

M◁
S (T ).

The following can be regarded as a comparison of the lisse-extended motivic
stable homotopy type of a quotient stack with its Morel–Voevodsky motivic
stable homotopy type (see [MV, §4.2] and [Kri2, §3]).

Theorem 12.15. Let G be an fppf group scheme over S. Let (Vi)i, (Wi)i
and (Ui)i be as in Theorem 12.9. Let X = [X/G] be the quotient of a
smooth algebraic space X over S with G-action. Then there is a canonical
isomorphism

M◁
S (X ) ≃ limÐ→

i

MS(X ×
BG

Ui)

in SH(S).

Proof. As in the proof in Subsect. 12.4, the morphism

limÐ→
i

MS(X ×
BG

Ui)→M◁
S (X )

is induced by the canonical morphisms

M◁
S (X ×

BG
Ui)→M◁

S (X ×
BG
Vi) ≃M◁

S (X )

for every i. These can be described as the colimits over (T, t) ∈ Lisaff
X over

the analogous morphisms

MS(T ×
BG

Ui)→MS(T ×
BG
Vi) ≃MS(T ).
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We claim that for every (T, t), the colimit over i of the cofibres

Ki ∶=MS(T ×
BG
Vi)/MS(T ×

BG
Ui)

vanishes. In fact, we will show that each Ki is ci-connective for the homotopy
t-structure on SH(S), where ci is the codimension of Wi in Vi. This will
imply (see [Ho2, Cor. 2.4]) that for every Y ∈ Sm/S and r, s ∈ Z, we have

HomSH(S)(MS(Y )(r)[s],Ki) = 0

for i large enough that ci > s − r + dim(Y ). Since the objects MS(Y )(r)[s]
form a set of compact generators of SH(S), it will follow that limÐ→iKi = 0 as

claimed.

Since k is perfect, each scheme T ×BGWi can be stratified by smooth closed
subschemes. By the localization triangle and relative purity, it follows that
each Ki is contained in the full subcategory of SH(S) generated under
colimits and extensions by objects of the form MS(W )⟨E⟩ for W ∈ Sm/S and
E a locally free sheaf on W of rank ⩾ ci. It will thus suffice to show that
every such MS(W )⟨E⟩ is ci-connective, since this property is preserved under
colimits and extensions. But this holds by [Ho2, Lem. 3.1]. �

12.6. Equivariant Chow groups, cobordism and K-theory. Let S be
the spectrum of a perfect field k, G be a smooth embeddable group scheme
over S, and X a smooth G-quasi-projective S-scheme. Theorem 12.9 yields
the following comparisons.

Example 12.16. The lisse-extended motivic cohomology of [X/G]
C●
◁([X/G],Λ)⟨n⟩

is computed for every n ∈ Z by Λ-linear Bloch cycle complexes of the Borel
construction. Here Λ is any commutative ring in which the characteristic
exponent of k is invertible. This follows from the comparison of the motivic
complexes and Bloch cycle complexes of schemes (see [MWV, Lect. 19]). By
Remark 12.13 we moreover get for all n, s ∈ Z canonical isomorphisms

πsC
●
◁([X/G],Λ)⟨n⟩ ≃ AG

d−n(X,s)⊗Λ,

if X is of pure dimension d, where on the right-hand side are the G-equivariant
higher Chow groups of X as defined by Edidin–Graham [EG]. In particular,

An
◁([X/G],Λ) ≃ AG

d−n(X)⊗Λ

where the left-hand side is defined as in (12.7).

Example 12.17. Applying Theorem 12.9 to the algebraic cobordism spec-
trum MGL, we find that the lisse-extended algebraic cobordism of [X/G]

C●
◁([X/G],MGL)⟨n⟩

can be computed via Voevodsky’s algebraic cobordism [Vo, §6.3] of the Borel
construction. If k is of characteristic zero, then it follows from [Le2, Ho2]
that there are surjections

An
◁([X/G],MGL)↠ lim←Ð

i

Ωn([X/G] ×
BG

Ui) (12.18)
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where the notation is as in Theorem 12.9. The right-hand side here has been
considered in [HML] and [Kri, Thm. 6.1]. We note that these theories are
not known to satisfy several fundamental properties such as the right-exact
localization sequence24 (see however [Kri, Cor. 6.2] for the special case of
sections of projective morphisms). Therefore, lisse-extended cobordism can
be viewed as a well-behaved replacement for the latter theories which does
admit the right-exact localization sequence. Moreover, using the higher
groups it is also extends to the left. Indeed, we have:

Proposition 12.19. Let i ∶ Z → X and j ∶ U → X be a complementary
closed-open pair of smooth G-equivariant k-schemes. Write X = [X/G],
Z = [Z/G], and U = [U/G] for the quotient stacks. Then for every n ∈ Z
there is a long-exact sequence

⋯ ∂Ð→ πsC
●
◁(Z,MGL)⟨n−c⟩ i!Ð→ πsC

●
◁(X ,MGL)⟨n⟩ j∗Ð→ πsC

●
◁(U ,MGL)⟨n⟩ ∂Ð→

⋯ ∂Ð→ An−c
◁ (Z,MGL) i!Ð→ An

◁(X ,MGL) j∗Ð→ An
◁(U ,MGL)→ 0

where c = codimX(Z).

Proof. In view of the localization triangle and relative purity for SH◁, we
only need to demonstrate right-exactness of the last row. In other words, it
is enough to show that π−1C●

◁(Z,MGL)⟨n⟩ = 0 for every n. For this we use
the description in terms of the Borel construction (Theorem 12.9). By the
Milnor exact sequence and the fact that the Mittag–Leffler condition holds
for the projective system {π0C●(Z ×BGUi,MGL)⟨n⟩}i (see [HML, Lem. 18]),
we have

π−1C●
◁(Z,MGL)⟨n⟩ ≃ lim←Ð

i

π−1C●(Z ×
BG

Ui,MGL)⟨n⟩.

We can choose Ui to be quasi-projective as in Example 12.10, so the claim
follows from the corresponding vanishing on smooth quasi-projective schemes
(see e.g. [Ho]). �

Example 12.20. In view of Example 12.10, the lisse-extended cobordism
ring of the classifying stack BGm or more generally BGLn can be computed
as in [Ve, Props. 3.4, 3.5]. In particular, in that case the canonical surjections
(12.18) are in fact bijective.

Example 12.21. There is a canonical ring homomorphism25

K0([X/G])→ A0
◁([X/G],KGL)

which however is not an isomorphism. In fact, [Kri2, Thm. 9.10] (combined
with Theorem 12.9) shows that it exhibits the target as the completion of
the source along the augmentation ideal.

24The contrary is claimed in [HML, Thm. 20]. However, as brought to our attention by
M. Levine (who attributes the observation to A. Merkurjev) and H. Park, the proof relies
on the (false) assertion that the limit of a right-exact sequence of a projective system of
abelian groups, the R1 lim

←Ð
terms each of which vanish, is still right-exact.

25The 0 in the target does not correspond to the 0 in the source: we have
An
◁([X/G],KGL) ≃ A0

◁([X/G],KGL) for all n ∈ Z by Bott periodicity.
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12.7. Lisse vs. Kan extension. Let D∗ be as in Subsect. 12.1. Define
D∗

Kan as the right Kan extension of D∗ from derived algebraic spaces to
derived stacks. In this subsection we will show that the lisse extension D∗

◁

agrees with D∗
Kan for a large class of stacks (see Corollary 12.27). This

result was inspired by C. Chowdhury’s thesis [Chow1], and another proof of
the comparison has appeared in [Chow2]. We will restrict our attention to
classical (underived) stacks, since by derived invariance there is no loss of
generality.

Definition 12.22.

(i) If Y is an algebraic space, a Nis-Artin atlas of Y is a smooth morphism
f ∶ X → Y of algebraic spaces such that there exists an algebraic
space Y ′ and a Nisnevich cover Y ′ ↠ Y for which the base change
X ×Y Y ′ → Y ′ admits a section.

(ii) A Nis-Artin atlas is a smooth representable morphism of stacks
f ∶ X → Y such that for any morphism Y → Y with Y an algebraic
space, the base change Y ×Y X → Y is a Nis-Artin atlas.

(iii) A Nis-Artin stack is a stack X which has quasi-separated repre-
sentable diagonal and admits a Nis-Artin atlas p ∶X → X where X
is a scheme.

Remark 12.23.

(i) Any Nis-Artin stack is Artin.

(ii) A morphism f ∶ X → Y is a Nis-Artin atlas if and only if it is smooth,
representable, and surjective on field-valued points. This follows from
[KhRa, Lem. 0.6].

(iii) Any algebraic space26 is a Nis-Artin stack, since it admits a Nisnevich
cover by a scheme. See [RG, I, Prop. 5.7.6].

(iv) More generally, any quasi-separated Artin stack with separated diag-
onal is Nis-Artin; see [KhRa, Thm. 0.7].

(v) One can also define higher Nis-Artin stacks by analogy with higher
Artin stacks: see [KhRa, 0.2.2]. Our results in this and the following
subsection continue to hold in that case.

Let τ denote the representable Nisnevich topology on Nis-Artin stacks, which
by [KhRa, Lem. 0.6] is generated by the pretopology in which covers are
Nis-Artin atlases.

Proposition 12.24. Let C be the category of Nis-Artin stacks and C0 the full
subcategory of algebraic spaces (or affine schemes). Then for any ∞-category
V admitting small limits, restriction along the inclusion i ∶ C0 → C induces an
equivalence

Shvτ(C)V → Shvτ(C0)V = ShvNis(C0)V

26recall our implicit quasi-separatedness convention
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on ∞-categories of V-valued τ -sheaves.

Proof. As in the proof of Lemma 4.17, this follows from the fact that any
Nis-Artin stack X can be written as the colimit of the Čech nerve of a
Nis-Artin atlas by a scheme. See also [Chow1, Thm. 3.4.1]. �

Since the inverse to the equivalence of Proposition 12.24 is given by right
Kan extension, we have in particular:

Corollary 12.25. On Nis-Artin stacks, D∗
Kan is the unique τ -sheaf which

restricts to D∗ on algebraic spaces (or affine schemes).

Theorem 12.26. Let V be an ∞-category admitting small limits, and F
a V-valued Nisnevich sheaf on algebraic spaces. Let FKan denote the right
Kan extension of F from algebraic spaces to Artin stacks, and let F◁ denote
the lisse extension, i.e.

RΓ(X ,F◁) = lim←Ð
(T,t)∈LisX

RΓ(T,F).

Then for any Nis-Artin stack X , there is a canonical isomorphism

RΓ(X ,F◁)→ RΓ(X ,FKan)

in V.

Proof. By Corollary 12.25 it is enough to show that F◁ satisfies descent for
Nis-Artin atlases. Let p ∶ U ↠ X be a Nis-Artin atlas. For every (T, t) ∈ LisX ,
the base change UT = T ×X U → T is a Nis-Artin atlas of algebraic spaces,
hence generates a covering in the Nisnevich topology. Thus by Nisnevich
descent for F we have homotopy limit diagrams

RΓ(T,F)→ RΓ(UT ,F)⇉ RΓ(UT ×T UT ,F)→→→ RΓ(UT ×T UT ×T UT ,F)→→→→ ⋯.

Passing to the limit over (T, t) and using a cofinality argument yields that

RΓ(X ,F◁)→ RΓ(U ,F)⇉ RΓ(U ×X U ,F)→→→ RΓ(U ×X U ×X U ,F)→→→→ ⋯

is also a homotopy limit diagram. The claim follows. �

Corollary 12.27. Let X be a Nis-Artin stack. Then there is a canonical
equivalence of ∞-categories

D◁(X )→DKan(X ).
Remark 12.28. In [Chow1], Chowdhury takes SH∗

Kan as his definition of
the stable motivic homotopy category on the class of Nis-Artin stacks. Thus
Corollary 12.27 shows that the lisse extension recovers his construction when
the latter is defined.

12.8. Lisse-extended motivic homotopy types. Let X be a smooth
Artin stack over an algebraic space S. Recall the lisse-extended stable
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motivic homotopy type M◁
S (X ) ∈ SH(S) defined in Notation 12.14. We also

have the unstable variant

Lh◁S (X ) = limÐ→
(T,t)∈LisX

LhS(T )

in H(S), so that M◁
S (X ) = Σ∞

+ Lh◁S (X ). Note that this definition still makes
sense for X singular. In this subsection we give some alternative descriptions
of Lh◁S (X ) and M◁

S (X ) (Theorem 12.31) in the case of Nis-Artin stacks (see
Definition 12.22).

Construction 12.29. Let X be an Artin stack locally of finite presentation
over S. Let hS(X ) denote the Sm-fibred animum over S represented by X ,
i.e., the presheaf of anima

T ∈ Sm/S ↦Maps/S(T,X ).
We then write

MYon
S (X ) ∶= Σ∞

+ LhS(X ) ∈ SH(S)
for the infinite T-suspension of its motivic localization.

Construction 12.30. Consider the assignment T ∈ Sm/S ↦ MS(T ) ∈
SH(S). Let X ↦ MKan

S (X ) denote its left Kan extension along the in-
clusion from algebraic spaces locally of finite presentation over S to Artin
stacks locally of finite presentation over S. For example, if X ↠ X is a
Nis-Artin atlas, then by Proposition 12.24 we may write

MKan
S (X ) ≃ ∣MS(Č(X/X )●)∣ = limÐ→

[n]∈∆op

MS(Č(X/X )n)

where Č(X/X )● is the Čech nerve and ∣−∣ denotes geometric realization of
simplicial objects. We similarly write LhKan

S (X ) ∈ H(S) for the unstable
analogue, defined by left Kan extending T ∈ Sm/S ↦ LhS(T ) ∈ H(S).

Theorem 12.31. Let X be an Artin stack locally of finite presentation over
an algebraic space S. If X is a Nis-Artin stack, then there are canonical
isomorphisms

Lh◁S (X ) ≃ LhKan
S (X ) ≃ LhS(X )

in H(S), hence in particular

M◁
S (X ) ≃MKan

S (X ) ≃MYon
S (X )

in SH(S).

Proof. The canonical isomorphism Lh◁S (X ) ≃ LhKan
S (X ) follows from Theo-

rem 12.26 (applied to T ↦ LhS(T ), regarded as a Nisnevich sheaf Smop
/S
→

H(S)op). Consider the canonical morphism

hKan
S (X )→ hS(X )

where hKan
S (−) is defined by left Kan extension as in Construction 12.30.

Choosing a Nis-Artin atlas p ∶X ↠ X , we may identify this with the canonical
map of Sm-fibred anima

∣hS(Č(X/X )●)∣→ hS(X )
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which is a Nisnevich-local equivalence by definition of Nis-Artin atlases and
[Lu, Cor. 6.2.3.5] (compare [GR, Vol. I, Chap. 2, Lem. 2.3.8] which is the
étale analogue). Since motivic localization commutes with colimits, we get a
canonical isomorphism

LhKan
S (X ) ≃ ∣LhS(Č(X/X )●)∣→ LhS(X )

as claimed. �

Remark 12.32. Let S be the spectrum of a field k and consider the “lin-
earization” functor

H(S)→DMeff(S)
to the ∞-category of effective Voevodsky motives over S (with integral
coefficients), see e.g. [CD, Ex. 5.2.17] or [EHKSY, §5.3]. The image of
LhS(X ) ∈ H(k) by this functor was defined as the Nisnevich motive of X in
[CDH]. Thus Theorem 12.31 shows that the lisse-extended motivic homotopy

type Lh◁S (X ) recovers the Nisnevich motive of [CDH]. Therefore, it also
recovers the étale-local construction of [Chou] and, in the smooth proper case,
the Chow motive constructed by Toën [Toë2] in view of [Chou, Thm. 6.4].

When S is not the spectrum of a field, Lh◁S (X ) ∈ H(S) still gives rise to
a relative (effective) motive over S in the sense of [CD, Chap. 11] or [Sp,
Chap. 9], say.

Remark 12.33. Theorem 12.31 generalizes a computation of the motivic
animum LhS(X ) ∈ H(S) obtained in [CDH, Thm. 1.2]. Indeed, whenever
p ∶X ↠ X is a Nis-Artin atlas, Theorem 12.31 yields an isomorphism

LhS(X ) ≃ ∣LhS(Č(X/X )●)∣
in H(S). In [CDH, Thm. 1.2], this was proven when S is the spectrum of a
field k and X admits a representable Nisnevich cover [U/GLn]↠ X , for the
Nis-Artin atlas U ↠ [U/GLn]↠ X .

12.9. Exhaustive stacks. In [HPL], Hoskins and Pepin Lehalleur adapt
the algebraic approximation to the Borel construction of Totaro and Morel–
Voevodsky to a certain class of exhaustive algebraic stacks. In this subsection,
we record a generalization of the material of Subsect. 12.5 to this setting.

Definition 12.34. Let X be an algebraic stack. A system of approximations
(Xi,Vi,Wi)i for X consists of:

(i) An exhaustive filtration of X by an increasing sequence of quasi-
compact opens Xi ⊆ X .

(ii) For every i, a vector bundle Vi over Xi and a closed substack Wi ⊆ Vi.
(iii) For every i, a monomorphism of vector bundles φi ∶ Vi → Vi+1 ∩Xi

over Xi.

This data is subject to the following conditions:

(a) For every i, the open complement Ui = Vi ∖Wi is representable by a
quasi-separated algebraic space.
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(b) For every i, the morphism φi sends Ui ⊆ Vi to Ui+1 ∩Xi ⊆ Vi+1 ∩Xi.
(c) Given any integer n ⩾ 0, there exists an i≫ 0 such that codimVi(Wi) >

n.

We have the following generalization of Theorem 12.15, with the same proof.
When S is the spectrum of a field, this can alternatively be deduced by
combining the comparison of Theorem 12.31 with [CDH, Prop. 5.4].

Theorem 12.35. Let X be a smooth algebraic stack over an algebraic space
S. Given any system of approximations (Xi,Vi,Wi)i for X , the canonical
morphism in SH(S)

limÐ→
i

MS(Ui)→M◁
S (X )

is invertible, where Ui = Vi ∖Wi and the transition morphisms in the colimit
are induced by the composites

Ui
φiÐ→ Ui+1 ∩Xi ↪ Ui+1.

Remark 12.36. Let S be the spectrum of a field k. In [HPL, Def. 2.15], X
is said to be exhaustive if it admits a system of approximations as above,
where Ui are representable by separated schemes of finite type over k. For
X exhaustive, the right-hand side of Theorem 12.35, or rather its image by
the “linearization” functor (see Remark 12.32)

H(S)→DMeff(S),
is taken to be the definition of the Voevodsky motive of X in [HPL, Def. 2.17].
Combining Theorems 12.35 and 12.31, we find that for exhaustive stacks, all
existing constructions of the motive or motivic homotopy type agree. For
example, this applies to moduli stacks of vector bundles on curves (see [HPL,
Thm. 3.2]). Compare the étale-local comparison of [HPL, Prop. A.7].

Appendix A. Linearly scalloped stacks

In this appendix we explain how our results can be generalized from nicely
to linearly scalloped stacks, to include for example arbitrary quotients by
reductive groups in characteristic zero.

In the nicely scalloped case our proofs and constructions are relatively clean
thanks in large part to the work of [AHR] and [AHHLR], in particular
the local structure theorem for nicely scalloped stacks (Theorem 2.12). As
we will now see, it is possible to reach essentially the same results, at the
cost of somewhat more complicated definitions and arguments, by relying
instead on Hoyois’s work on equivariant motivic homotopy theory [Ho3].
This has the advantage that it will include the case of linearly scalloped
stacks, while also reducing much of our reliance on the not yet published
works [AHR, AHHLR].

We have chosen to write this separately from the main text in order to keep
the exposition as readable as possible. After giving some background on
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the definition of linearly scalloped stacks, we will go through sections 3–10
and explain all modifications necessary for the linearly scalloped case. For
simplicity, we will work with classical stacks throughout (but it is easy to
generalize to derived stacks, using the notion of quasi-projectivity developed
in [AKR]).

Note that Sect. 11 only deals with quotients by algebraic tori, which are
nicely scalloped, so there is nothing to change there. Of course there is
nothing to change in Sect. 12 either.

A.1. Linearly scalloped stacks.

Definition A.1. Let X be a quasi-compact quasi-separated algebraic stack.

(i) We say that X is linearly fundamental if it admits an affine morphism
X → BG for some linearly reductive embeddable group scheme G
over an affine scheme S.

(ii) We say that X is linearly quasi-fundamental if it admits a quasi-
projective morphism X → BG for some linearly reductive embeddable
group scheme G over an affine scheme S.

(iii) We say that X is linearly scalloped if it has separated diagonal and
admits a scallop decomposition (Ui,Vi, ui)i where Vi are linearly
quasi-fundamental and ui are quasi-projective.

Remark A.2. Any linearly quasi-fundamental stack X satisfies the resolution
property. This follows from the fact that BG has the resolution property for
G linearly reductive and embeddable (Example 2.19), and the fact that X
is quasi-projective over such a BG and in particular admits a family of line
bundles which is relatively ample over BG.

Warning A.3. Every nicely fundamental (resp. quasi-fundamental) stack is
of course linearly fundamental (resp. quasi-fundamental). Nicely scalloped
stacks with affine diagonal are also linearly scalloped by Theorem 2.12(iii).
Note that without the affine diagonal condition, this is not clear because
given a scallop decomposition (Ui,Vi, ui)i as in Definition 2.9, the ui’s may
not be quasi-projective in general.

Example A.4. Let G be a linearly reductive group scheme over an affine
scheme S and X a G-quasi-projective scheme. Then the quotient stack
X = [X/G] is linearly scalloped. Indeed, while G need not be embeddable,
it is always locally so by [AHR, Cor. 13.2].

Example A.5. Let X be a qcqs algebraic stack with affine diagonal and
finitely many characteristics. If all stabilizers of X are linearly reductive,
then X is linearly scalloped. This follows from [AHHLR, Thm. 1.13].

Remark A.6. The analogue of Theorem 2.12 is not available to us in the
linearly scalloped case. For example, a linearly scalloped stack need not have
all stabilizers linearly reductive.
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Remark A.7. Linearly fundamental stacks are also linearly fundamental
in the sense of [AHR, Defn. 2.7], but not conversely. See [AHR, Rem. 2.9,
App. A.1].

A.2. The unstable category. We now describe the modifications necessary
throughout the text, starting with Sect. 3, if we want to replace all instances
of “nice group scheme” by “linearly reductive group scheme”, “fundamental”
by “linearly fundamental”, “scalloped” by “linearly scalloped”, and so on.

A.2.1. The site Sm/X . Given a linearly scalloped stack X , Sm/X will denote

the ∞-category of stacks X ′ which are smooth and quasi-projective over X .
Note that X ′ is then linearly scalloped (a scallop decomposition for X gives
one for X ′ by base change).

A.2.2. The ∞-category of motivic spaces. We define H(X ) as in Defini-
tion 3.2, except that a presheaf F of anima on Sm/X is homotopy invariant

if for every X ′ ∈ Sm/X and every vector bundle torsor π ∶ V → X ′, the map
of anima

π∗ ∶ RΓ(X ′,F)→ RΓ(V,F)
is invertible.

If X happens to be nicely scalloped, then this is equivalent to the ∞-category
H(X ) we already defined in Subsect. 3.1. There are two differences to be
reconciled:

(a) The homotopy invariance condition is a priori stronger in the linearly
scalloped setting. However, the stronger condition involving vector
bundle torsors is in fact automatic in the nicely scalloped case. Indeed,
any nicely scalloped X admits a Nisnevich cover u ∶ U ↠ X with U
nicely fundamental (Theorem 2.12(ii)). Then if π ∶ V → X is a vector
bundle torsor, the base change V ×X U → U admits a section, and
hence is a vector bundle.

(b) In the nicely scalloped case, we defined Sm/X to consist only of smooth
stacks that are representable, but not necessarily quasi-projective,
over X . However, when X is nicely scalloped both variants give rise
to the same ∞-category H(X ) (up to equivalence). In fact, we claim
that the inclusions

Smqaff
/X
↪ Smqproj

/X
↪ Smrepr

/X

of the sites of smooth quasi-affine, smooth quasi-projective, and
smooth representable stacks over X , both induce equivalences on A1-
invariant Nisnevich sheaves (by left Kan extension). To see this recall

that the assignment X ↦ Sm?
/X

is a Nisnevich (or even étale) sheaf for

? ∈ {qaff, repr}, which easily implies that the corresponding versions
of X ↦H(X ) are both Nisnevich sheaves. Therefore to show that the
induced functor is an equivalence, it is enough by Theorem 2.12(ii)
to consider the case where X is nicely quasi-fundamental. This
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easily follows from the fact that every X ′ ∈ Smrepr
/X

is isomorphic

(up to Nisnevich localization) to a colimit of objects in Smqaff
/X

by

Theorem 2.14.

A.2.3. Generation. The proof of the direct analogue of Proposition 3.7 re-
quires no modifications. However, we will require the sharper statement
that H(X ) is generated under sifted colimits by LhX (X ′) with X ′ linearly
fundamental (and not just linearly quasi-fundamental). To prove this, it
is enough to show that for every linearly quasi-fundamental X ′ ∈ Sm/X ,

there is a linearly fundamental X ′′ ∈ Sm/X such that LhX (X ′) ≃ LhX (X ′′).
This follows from the following variant of [Ho3, Prop. 2.20], which will be a
substitute for Theorem 2.17.

Proposition A.8 (Jouanolou device). Let f ∶ X → Y be a quasi-projective
morphism with Y quasi-fundamental. Then there exists an affine bundle
π ∶ V → X such that the composite V → X → Y is affine.

Proof. Write Y = [Y /G], where G is a linearly reductive embeddable group
scheme over an affine scheme S, and Y is a G-quasi-projective scheme. By
Remark A.2, Y has the resolution property. By [Ho3, Prop. 2.20] we therefore
have the result in the special case X = PY(E) for E a finite locally free sheaf
over Y.

For f projective, choose an embedding into a projective bundle PY(E) where
E is a finite locally free sheaf on Y. By the previous case there exists an
affine bundle π0 ∶ V0 → PY(E) such that V0 → Y is affine. Then its base
change π ∶ V → X along the closed immersion X → PY(E) is an affine bundle,
and V ↪ V0 is a closed immersion (hence in particular affine).

Finally for f quasi-projective, since Y has the resolution property, we may
choose a factorization through an affine open immersion and a projective
morphism. Then we may repeat the same argument to reduce to the projective
case. �

Similarly, Proposition 3.7(ii) becomes: for every quotient X = [X/G], where
G is a linearly reductive group scheme over an affine scheme S and X is a
G-quasi-projective scheme over S, H(X ) is generated under sifted colimits
by LhX ([U/G]) with U an affine G-scheme, smooth over X. For this we can
again apply Proposition A.8 if G is embeddable. Otherwise, let S′↠ S be a
Nisnevich cover with S′ an affine scheme such that G′ = G×S S′ is embeddable
(such exists by [AHR, Cor. 13.2]). Then for every Y = [Y /G] ∈ Sm/X (where
Y is G-quasi-projective), LhX (Y) is by Nisnevich descent the geometric
realization of a simplicial diagram of objects of the form LhX (Y ′) where
Y ′ = [Y ′/G′] ≃ [Y ′/G] is quasi-projective over BS′(G′) ≃ BG×S S′ ≃ [S′/G]
(where G acts trivially on S′). We conclude by the embeddable case.

A.2.4. Comparison with Hoyois. In Remark 3.8, we now get the comparison

H([X/G]) ≃ HG(X)



86 A. A. KHAN AND C. RAVI

for all G-quasi-projective schemes X over S, with G a linearly reductive
group scheme over an affine scheme S, where the right-hand side is Hoyois’s
construction [Ho3]. This follows from the variant of Proposition 3.7(ii) proven
just above and [Ho3, Prop. 3.16(1)].

A.2.5. Functoriality. In Propositions 3.10 and 3.11, replace “smooth repre-
sentable” by “smooth quasi-projective.” In Proposition 3.12, assume the
Nisnevich cover is by quasi-projective morphisms. For later use let us record
the following (which is a reformulation of homotopy invariance for vector
bundle torsors):

Proposition A.9. Let X be a linearly scalloped stack. Then for every vector
bundle torsor π ∶ V → X , the inverse image functor

π∗ ∶ H(X )→H(V)

is fully faithful (in particular, conservative).

A.2.6. Exactness of i∗. We have the analogue of Theorem 3.14 in the special
case where f0 is affine. In view of Proposition 3.7(ii) (the form proven above),
this will imply Proposition 3.13. This is a small (but much easier) variant
on the proof of [AHHLR, Prop. 6.1]; for simplicity we sketch the argument
in the case where Z = Xcl and i is the canonical inclusion, which is all we
will need for Theorem 3.15.

Since X is linearly fundamental, there exists an affine morphism X → BG
where G is a linearly reductive group scheme over an affine scheme S. Write
X as the colimit of its n-truncations τ⩽n(X ) (see e.g. [AHHLR, Prop. 6.1]).
Since the relative cotangent complex LZ′/Z is projective (since f0 ∶ Z ′ → Z is
smooth and BG is cohomologically affine), there is no obstruction to lifting
f0 to smooth (resp. étale) morphisms fn ∶ X ′

⩽n → τ⩽n(X ) for all n. We can
also extend the affine morphism p0 ∶ Z ′ = τ⩽0(X ′) → BG to pn ∶ X ′

⩽n → BG,
since the obstruction to this lifting again vanishes because the cotangent
complex of BG is of Tor-amplitude [−1,0] (with homological grading) and
BG is cohomologically affine. Finally, let X ′ be the colimit of X ′

⩽n over n,
i.e.,

X ′ = limÐ→
n

X ′
⩽n ≃ SpecBG ( lim←Ð

n

pn,∗OX ′
⩽n

).

Then there is an affine morphism X ′ → BG by construction (so X ′ is linearly
fundamental), and we conclude by passing to the colimit over n of the squares

Z ′ X ′
⩽n

Z = Xcl τ⩽n(X ).

f0 fn

A.2.7. Localization. No modifications necessary in Theorem 3.23.
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A.3. The stable category. Throughout Sect. 4, “representable morphism”
should be changed to “quasi-projective morphism”. In particular, we get the
analogue of Theorem 4.10 except that in part (i) we only look at smooth
quasi-projective morphisms. Moreover, any reference to the “Nisnevich
topology” or “Nisnevich descent”, etc. refers now to the topology generated
by quasi-projective Nisnevich covers (instead of representable ones).

The necessary modifications in this section are as follows:

A.3.1. Proof of Lemma 4.13. The proof in the (quasi-)affine case requires no
modifications. For the general (quasi-projective) case, we use the following
claim: if π ∶ V → X is a vector bundle torsor such that the claim holds for
fV = f ○ π, then it holds for f itself. This follows by the same argument with
Proposition A.9 substituted for Nisnevich separation. Now by Proposition A.8
we are reduced to the affine case.

A.3.2. Smooth base change, Theorem 4.10(i)(b) (see (4.6.2)). We have the
following variant of Lemma 4.20: if π ∶ V → X is a vector bundle torsor such
that (p ○ π)♯ satisfies base change against g∗, then so does p♯. The proof is
the same except we use the isomorphism p♯ ≃ (p ○ π)♯π∗ (Proposition A.9)
and similarly for q, instead of the “descent” isomorphisms.

In the proof of Case 1, we have appealed to Theorem 2.14(ii). This is
not available in the linearly scalloped case but we can use Proposition A.8
instead: take π ∶ V → X a vector bundle torsor such that p ○ π ∶ V → Y is
affine. Combining this with the statement just mentioned proves Case 1.

Cases 2 and 3 then go through without modification.

A.3.3. Smooth projection formula, Theorem 4.10(i)(b) (see (4.6.3)). Instead
of appealing to Lemma 4.20 we argue as in the above proof of smooth base
change, using the isomorphism p♯ ≃ (p ○ π)♯π∗ for π ∶ V → X a vector bundle
torsor with p ○ π affine (Proposition A.8).

A.4. Proper base change. No modifications necessary in Sect. 6. Note
that Theorem 6.11 holds also for Y linearly scalloped, since linearly scalloped
stacks are also of global type in the sense of [Ry3].

A.5. The !-operations. In Sect. 7, the !-operations are defined by the same
procedure for representable morphisms of finite type which are Nisnevich-
locally compactifiable in the sense that there exists a commutative square
as in Remark 7.8 with f0 compactifiable and u, v quasi-projective Nisnevich
covers. For example, any quasi-projective morphism of linearly scalloped
stacks f ∶ X → Y is compactifiable (by definition).

Throughout Subsect. 7.5 we replace the assumption that “f ∶ X → Y is
compactifiable or X and Y have affine diagonal” with the assumption that f
is Nisnevich-locally compactifiable in the above sense. Compare Remark 7.11.
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A.6. The Euler and Gysin transformations. In Sect. 8 we replace the
representably smoothable assumptions (Definition 8.3) by quasi-projectively
smoothable, meaning that f factors through a closed immersion and a quasi-
projective smooth morphism. Note that if Y has the resolution property, then
any quasi-projective morphism f ∶ X → Y is quasi-projectively smoothable.

Since quasi-projectively smoothable morphisms are compactifiable, we can
then drop the affine diagonal assumptions on X and Y (thanks to the
modifications to Subsect. 7.5 described just above).

A.7. Cohomology and Borel–Moore homology. In Sect. 9 one should
make the obvious modifications. For example, whenever a !-operation appears
(e.g. in the definition of Borel–Moore homology), we should assume that f is
Nisnevich-locally compactifiable. When the word “representably smoothable”
appears, it should be replaced with “quasi-projectively smoothable”. On
the other hand all affine diagonal assumptions can be dropped (e.g. in
Definition 9.13 and Proposition 9.14).

A.8. Examples. In Sect. 10 we make the following modifications.

A.8.1. Homotopy invariant K-theory. In Subsect. 10.1:

(a) We claim that Nisnevich descent for KB (Theorem 10.2) still holds
on linearly scalloped stacks. For this we just need to verify that
Theorem 2.24 goes through. The only modification necessary is in
the proof of Lemma 2.26, where we have to replace “quasi-affine
morphism f ∶ X → BG” by “quasi-projective”. Then the functor
f∗ ∶ Dqc(BG) → Dqc(X ) does not typically generate under colim-
its anymore. Nevertheless, if we choose a quasi-compact immersion
i ∶ X ↪ PBG(E), then we claim that the functors f∗(−)⊗i∗(O(k)) do
jointly generate under colimits (as k ∈ Z varies). Indeed, since i∗ gener-
ates under colimits, it suffices to show that g∗(−)⊗O(k) ∶ Dqc(BG)→
Dqc(PBG(E)) generate under colimits, where g ∶ PBG(E) → BG is
the projection. This follows from [Kh2, Thm. 3.3].

(b) Remarks 10.5 and 10.6 generalize our Corollary F and Corollary G
to the linearly scalloped case. Note that this extends the cdh descent
theorem of [HK] to the case of stacks with linearly reductive but
possibly infinite stabilizer groups, at least assuming affine diagonals
(see Example A.5).

(c) In Theorem 10.7(iii) we should replace “representable” by “quasi-
projective”.

A.8.2. Algebraic cobordism. In Subsect. 10.2, “smooth representable” should
be replaced by “smooth quasi-projective” in Construction 10.9 and Proposi-
tion 10.10.
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A.8.3. Motivic cohomology. In Subsect. 10.3:

(a) Add the assumptions in Definition 10.13 that f is quasi-projectively
smoothable and g is quasi-projective. (The former is superfluous
if X admits the resolution property, e.g. if it is linearly quasi-
fundamental.)

(b) In Construction 10.16, change “representable” to “quasi-projective”.
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und ihrer Grenzgebiete. 3. Folge 39, Springer (2000).
[LMM] G. Lewis, J. P. May, J. E. McClure, Ordinary RO(G)-graded cohomology.

Bull. Am. Math. Soc. 4 (1981), 208–212.
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