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Abstract. We introduce the theory of weaves, an axiomatization of the
six operations formalism on various derived categories of sheaves. Very
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1. Introduction

In this paper we introduce a notion called weaves, which is our axiomatization
of a sheaf theory equipped with Grothendieck’s formalism of six operations.

Definition 1.1. A preweave D on the ∞-category of derived schemes S is a
lax symmetric monoidal functor

D∗! ∶ Corr(S)→ Cat∞

valued in the ∞-category of ∞-categories, which factors through the subcat-
egory containing only left adjoint functors.
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2 A.A. KHAN

Here Corr(S) is the∞-category of correspondences, whose objects are derived
schemes and whose morphisms X → Y are diagrams

Z X

Y

g

f

where g is locally of finite type. The functor D∗! therefore encodes both the
(contravariant) operation f∗ and the (covariant) operation g!. Functoriality
with respect to correspondences (which are composed by forming fibre prod-
ucts) encodes the base change formula between g! and f∗. The lax symmetric
monoidal structure encodes the tensor product ⊗ and the projection formula
for g!. Moreover, it encodes the right adjoint operations f∗, g

!, and Hom
(internal Hom).

Definition 1.2. A weave is a preweave which admits ∗-direct image for
proper morphisms and ♯-direct image for smooth morphisms.

See Definition 2.49. Informally speaking, D admits ∗-direct image for proper
morphisms f if f∗ admits a right adjoint f∗ satisfying the base change and
projection formulas, and moreover commuting with the !-operation. Dually,
it admits ♯-direct image for smooth morphisms f if f∗ admits a left adjoint f♯
satisfying the base change and projection formulas, and moreover commuting
with the !-operation. Due to an asymmetry (unlike for proper morphisms,
the diagonal of a smooth morphism is typically no longer smooth) the latter
should be interpreted as also requiring that for every section s of a smooth
morphism f , the operation f♯s! is invertible. See Definitions 2.18 and 2.30
for the precise definitions.

Remark 1.3. We do not make it explicit here, but S can be replaced by any
reasonable category, including say the category of (locally compact Hausdorff)
topological spaces or the ∞-category of derived complex-analytic spaces.

The idea to encode six functor formalisms via ∞-categories of correspon-
dences seems to first appear in [Ga] where it was attributed to J. Lurie.
In [GR], Gaitsgory and Rozenblyum showed that the (∞,2)-category of
correspondences admits a universal property that allows one to easily define
functors out of it. For that reason they considered an (∞,2)-categorical
version of Definition 1.1; lax symmetrical monoidal structures were later
incorporated into the definition by Richarz and Scholbach in order to encode
projection formulas coherently (see [RS, App. A]).

The work of Liu and Zheng [LZ1, LZ2] appeared shortly after [Ga] and
provides an alternative approach to the construction of functors out of ∞-
categories of correspondences. Their approach has the advantage of not
relying on the theory of (∞,2)-categories (which at the time of writing is
not yet fully established, see Warning 2.53), though at the cost of being
technically much more involved and not yielding any uniqueness of the
resulting functor. Recently, L. Mann [Man, App. A.5] combined aspects of
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all these ideas, looking at functors out of correspondences to encode base
change formulas, and incorporating lax symmetric monoidality to encode
projection formulas, but disregarding the (∞,2)-categorical structures as in
Liu–Zheng. His notion of “6-functor formalism” defined in [Man, Def. A.5.7]
is what we have called preweaves here.

For us, a preweave does not yet incorporate all the features a six functor
formalism should have. Our notion of weave (Definition 1.2) is designed to
encode the further properties we believe are missing, such as smooth and
proper base change formulas and Poincaré duality.

We lay out the basic aspects of the theory in Sect. 2. Once the definitions
are made, the arguments are very standard for those accustomed to working
with abstract six functor formalisms.

In Sect. 3 we axiomatize sheaf theories that are modelled on the Betti sheaf
theory in some sense (in contrast with quasi/ind-coherent sheaves and related
theories). We call these topological weaves: they include Betti sheaves, étale
sheaves (with torsion or ℓ-adic coefficients), and various categories of motivic
sheaves. In fact, we show that topological weaves are equivalent to Voevod-
sky’s axiomatization of “motivic” six functor formalisms (Corollary 3.32).
In particular, topological weaves are equivalent to “motivic ∞-categories”
[Kha1, CD, Ayo] or (∗, ♯,⊗)-formalisms satisfying Voevodsky’s conditions
[Kha4]. Again, the arguments here are very well-known to experts, who will
hardly find anything original here.

In Sect. 4 we sketch a proof of a result announced a year ago, which explains
how to extend weaves from schemes or algebraic spaces to Artin stacks,
even without étale descent. For example, we can form the lisse-extension
of the motivic stable homotopy category to Artin stacks. In particular,
all the results of [Kha3] on virtual fundamental classes can be extended
to arbitrary generalized cohomology theories. (This is different from the
“genuine” extensions considered in [KhRa1].)

Conventions and notation. We fix an implicit base scheme B; the term
“stack” will mean “derived stack over B” throughout the paper, and similarly
for “scheme” and “algebraic space”.

We say that an algebraic space is decent if it is Zariski-locally quasi-separated
in the sense of [SP, Tag 02X5]. This is equivalent to being Nisnevich-locally
a scheme by [Knu, Chap. II, Thm. 6.4]. (It is stronger than the notion of
decent algebraic space introduced in [SP, Tag 03I8], see [SP, Tag 03JX].)

Acknowledgments. The first version of this paper was written in early 2022
as notes for a seminar. I am very grateful to Charanya Ravi for suggesting
the term weave, which perfectly conveys the intuition that the two operations
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f∗ and g! are “woven” together via commutative diagrams

D(X0,n) D(X0,n−1) ⋯ D(X0,0)

D(X1,n) D(X1,n−1) ⋯ D(X1,0)

⋯ ⋯ ⋯ ⋯

D(Xn,n) D(Xn,n−1) ⋯ D(Xn,0)

f∗0,n−1

g0,n,!

f∗0,n−2

g0,n−1,!

f∗0,0

g0,1,! g0,0,!

f∗1,n−1

g1,n,!

f∗1,n−2

g1,n−1,!

f∗1,0

g1,0,!

gn−1,n,! gn−1,n−1,! gn−1,0,!
f∗n,n−1 f∗n,n−2 f∗n,0

I would like to thank Marco Volpe for discussions about the six operations
in topology, and Bogdan Zavyalov for some questions about the proof of
Poincaré duality in [Kha] (see also his related paper [BZ]1 about axiomatizing
Poincaré duality).

2. Weaves

2.1. Preweaves.

Notation 2.1. We let S be a full subcategory of the ∞-category of stacks
which is closed under finite coproducts and finite limits. Let S ′ ⊆ S be a
subcategory such that:

(i) Every isomorphism in S lies in S ′ (so that in particular, S ′ contains
all objects of S).

(ii) For every morphism f ∶ X → Y in S ′ and any morphism q ∶ Y ′ → Y
in S, the fibred product X ×Y Y ′ exists in S and the morphism
X ×Y Y ′ → Y ′ belongs to S ′.

When not otherwise specified, S ′ will default to the subcategory of locally of
finite type morphisms.

Definition 2.2. Given X and Y in S, a correspondence from X to Y is a
diagram

Z X

Y

g

f

1The papers are not entirely independent, since they began as a joint project before
B.Z. chose to write [BZ] on his own.



WEAVES 5

where g belongs to S ′. An (iso)morphism of correspondences (X ← Z ′ →
Y )→ (X ← Z → Y ) is a commutative diagram in S

Z ′

Z Y

X

h

where h is an (iso)morphism. For X and Y fixed, correspondences from X
to Y (and isomorphisms between them) form an ∞-groupoid Corr(X,Y ).
Moreover, there exists an ∞-category Corr(S) whose objects are those of S
and whose mapping anima are given by

MapsCorr(S)(X,Y ) = Corr(X,Y )≃,

with composition law defined by forming fibred products. Moreover, Corr(S)
admits a canonical symmetric monoidal structure. See e.g. [GR, Chap. 7].

Definition 2.3. Given a symmetric monoidal ∞-category V , a left preweave
with values in V is a lax symmetric monoidal functor

Corr(S)→ V.

A left preweave is a left preweave with values in Cat∞. A right preweave is a
left preweave with values in Catop

∞
. Given a left (resp. right) preweave D,

we will denote the corresponding functor by

D∗! ∶ Corr(S)→ Cat∞, resp. D!
∗
∶ Corr(S)op → Cat∞. (2.4)

Definition 2.5. A preweave is a left preweave such that the functor Corr(S)→
Cat∞ factors through the subcategory of Cat∞ containing only left adjoint
functors. Equivalently, it is a right preweave such that Corr(S)op → Cat∞ fac-
tors through the subcategory of Cat∞ containing only right adjoint functors.
Given a preweave D, we will write

D∗! ∶ Corr(S)→ Cat∞ and D!
∗
∶ Corr(S)op → Cat∞ (2.6)

for the corresponding left and right preweaves, respectively.

Remark 2.7. More precisely, we will refer to preweaves on S or even (S,S ′)
when there is possible ambiguity.

Remark 2.8. Implicit in Definition 2.3 is the choice of Grothendieck universe
with respect to which the objects of Cat∞ are small. When we wish to make
this explicit, we will speak of small (left/right) weaves, large (left/right)
weaves, and so on.

Definition 2.9. A left preweave is (finitely) cocomplete, (finitely) complete,
(finitely) bicomplete, presentable, or compactly generated if every ∞-category
D(X) has the respective property for every X ∈ S. A weave has one of these
properties if its underlying left preweave does.
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Notation 2.10. Given a left preweave D, the functor D∗! ∶ Corr(S)→ Cat∞
gives rise to two functors

D∗ ∶ Sop → Cat∞ and D! ∶ S ′ → Cat∞. (2.11)

In particular, for every morphism f ∶ X → Y in S we have a functor f∗ ∶
D(Y )→D(X) and, if f belongs to S ′, a functor f! ∶D(X)→D(Y ). Dually,

if D is a right preweave then the functor D!
∗
∶ Corr(S)op → Cat∞ gives rise

to functors

D∗ ∶ S → Cat∞ and D! ∶ S ′op → Cat∞ (2.12)

encoding operations f∗ and (if f belongs to S ′) f !.

Notation 2.13. Let D be a left preweave. For every cartesian square

X ′ Y ′

X Y,

g

p q

f

(2.14)

the functor D∗! encodes a canonical isomorphism

Ex∗! ∶ q∗f! ≃ g!p∗ (2.15)

called the base change formula.

Notation 2.16. Let D be a left preweave. The lax symmetric monoidal
structure onD∗! encodes some further data. For example, there is a symmetric
monoidal structure on D(X) for every X ∈ S. Given a morphism f ∶X → Y
in S, the functor f∗ is symmetric monoidal. Given a morphism f ∶X → Y in
S ′, the functor f! is D(X)-linear (where D(Y ) is a module over D(X) via
the symmetric monoidal functor f∗); that is, there is a canonical isomorphism

Pr∗! ∶ f!(−)⊗ (−) ≃ f!(− ⊗ f∗(−)) (2.17)

called the projection formula.

2.2. Proper axioms.

Definition 2.18. Let D be a left preweave. We say that D admits ∗-direct
image for a morphism f ∶X → Y in S if the following conditions hold:

(Pr1) For every base change g of f (along a morphism in S), the functor
g∗ admits a right adjoint g∗.

(Pr2) For every base change g of f (along a morphism in S), the functor
g∗ satisfies the projection formula. That is, the canonical morphism

Pr∗
∗
∶ g∗(−)⊗ (−)→ g∗(− ⊗ g∗(−))

is invertible.
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(Pr3) The functor f∗ commutes with ∗-inverse image. That is, for every
cartesian square

X ′ Y ′

X Y,

g

p q

f

the canonical morphism

Ex∗
∗
∶ q∗f∗

unitÐÐ→ g∗g
∗q∗f∗ ≃ g∗p∗f∗f∗

counitÐÐÐ→ g∗p
∗ (2.19)

is invertible.

(Pr4) The functor f∗ commutes with !-direct image. That is, for every
cartesian square as above, the exchange transformation

Ex!,∗ ∶ q!g∗
unitÐÐ→ f∗f

∗q!g∗ ≃ f∗p!g∗g∗
counitÐÐÐ→ f∗p!. (2.20)

is invertible.

Lemma 2.21. Let D be a left preweave admitting ∗-direct image for proper
morphisms. Let f ∶X → Y be an n-truncated2 morphism in S with proper
diagonal, where n ⩾ −2. Then there is a canonical morphism ϵf ∶ f∗f! → id.
Moreover, when f is proper, the right transpose f! → f∗ is invertible.

Proof. If n = −2, then f is an isomorphism and the claim is obvious. If n ⩾ −1,
assume the claim holds for (n − 1)-truncated morphisms. Since the diagonal
∆f is (n − 1)-truncated and proper, we have the isomorphism ∆! ≃ ∆∗ by
assumption. The cartesian square

X ×Y X X

X Y

pr2

pr1 f

f

gives rise to a natural transformation

ϵf ∶ f∗f! ≃ pr2,!pr∗1
unitÐÐ→ pr2,!∆!∆

∗pr∗1 ≃ id. (2.22)

If f is proper, then the right transpose of ϵf is the natural transformation

f! ≃ f!pr2,∗∆∗
Ex!,∗ÐÐÐ→ f∗pr1,!∆∗ ≃ f∗pr1,!∆! ≃ f∗ (2.23)

where Ex!,∗ ∶ f!pr2,∗ → f∗pr1,! is invertible by (Pr4). □

Lemma 2.24. Let D be a left preweave. Let f ∶ X → Y be a proper
morphism in S with diagonal ∆ ∶ X → X ×Y X. Suppose that there exist
morphisms

cf ∶ 1Y → f!(1X),
c∆ ∶ 1X ×Y X →∆!(1X)

2For example, any n-representable morphism of stacks is n-truncated. Any morphism
of n-Artin stacks is n-representable.
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in D(Y ) and D(X ×Y X), respectively, and a commutative square

f∗(1Y ) 1X

f∗f!(1X) pr2,!(1X ×Y X) pr2,!∆!(1X).

cf

c∆

(2.25)

Then the natural transformations

ηf ∶ id ≃ (−)⊗ 1Y
(−)⊗cfÐÐÐÐ→ (−)⊗ f!(1X) ≃ f!f∗

and
ϵf ∶ f∗f! ≃ pr2,!pr∗1

η∆Ð→ pr2,!∆!∆
∗pr∗1 ≃ id,

where η∆ is defined like ηf using c∆, exhibit f! as a right adjoint of f∗.

Proof. We need to show that the composites

f∗
f∗∗ηfÐÐÐ→ f∗f!f

∗
ϵf∗f

∗
ÐÐÐ→ f∗ (2.26)

f!
ηf∗f!ÐÐÐ→ f!f

∗f!
f!∗ϵfÐÐÐ→ f! (2.27)

are both identity. Note that the evaluation of (2.26) on the unit object, call
it θ, is the counterclockwise loop around f∗(1Y ) in (2.25). In particular, it
is homotopic to the identity by assumption. By the projection formula for f!,
(2.26) is itself identified with f∗(−)⊗ θ, hence also homotopic to the identity;
similarly, (2.27) is identified with f!(− ⊗ θ). □

Corollary 2.28. Let D be a left preweave. The following conditions are
equivalent:

(i) Every n-truncated proper morphism admits ∗-direct image in D.

(ii) There exists a collection of morphisms cf ∶ 1Y → f!(1X) associated
with every proper morphism f ∶X → Y in S, which is stable under
base change and composition.

Proof. It is easy to see that the condition is necessary. Conversely, suppose
we have the collection (cf)f . Then for every f , the conditions of Lemma 2.24
are satisfied. Indeed, the commutative square (2.25) can be subdivided as
follows:

f∗(1Y ) 1X 1X

f∗f!(1X) pr2,!(1X ×Y X) pr2,!∆!(1X)

cf cpr2

c∆

where the left-hand square commutes by base change and the right-hand
square commutes by functoriality. □

Remark 2.29. If S has morphisms that are not n-truncated for any n,
it would be appropriate to require an additional axiom (Pr5) requiring
invertibility of the endofunctor g∗s!, for any section s of any base change g
of f ; compare (Sm5). Then, one could extend Corollary 2.28 to a necessary
and sufficient condition for ∗-direct image for arbitrary proper morphisms,
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where in (ii) we have to incorporate some ⊗-invertible object σ just as in the
dual statement Lemma 2.42.

2.3. Smooth axioms.

Definition 2.30. Let D be a left preweave. We say that D admits ♯-direct
image for a morphism f ∶X → Y in S, or that f admits a ♯-direct image in
D, if the following conditions hold:

(Sm1) For every base change g of f (along a morphism in S), the functor
g∗ admits a left adjoint g♯.

(Sm2) For every base change g of f (along a morphism in S), the functor
g♯ satisfies the projection formula. That is, the canonical morphism

Pr∗
♯
∶ g♯(− ⊗ g∗(−))→ g♯(−)⊗ (−)

is invertible.

(Sm3) The functor f♯ commutes with ∗-inverse image. That is, for every
cartesian square

X ′ Y ′

X Y,

g

p q

f

(2.31)

the canonical morphism

Ex∗
♯
∶ g♯p∗

unitÐÐ→ g♯p
∗f∗f♯ ≃ g♯g∗q∗f♯

counitÐÐÐ→ q∗f♯ (2.32)

is invertible.

(Sm4) The functor f♯ commutes with !-direct image. That is, for every
cartesian square as above, the exchange transformation

Ex
♯,! ∶ f♯p!

unitÐÐ→ f♯p!g
∗g♯ ≃ f♯f∗q!g♯

counitÐÐÐ→ q!g♯. (2.33)

is invertible.

(Sm5) For every section s of every base change g of f (along a morphism in
S), the functor g♯s! is an equivalence.

Remark 2.34. The asymmetry between Definitions 2.18 and 2.30 stems from
the fact that the class of smooth morphisms is not stable under formation of
diagonals. (For étale morphisms, this is not a problem; cf. Lemma 2.47.)

Notation 2.35. If D satisfies (Sm1) for a morphism f ∶X → Y , we set

Σf ∶= pr2,♯∆! ∶D(X)→D(X) (2.36)

where ∆ ∶ X → X ×Y X is the diagonal and pr2 ∶ X ×Y X → X the second
projection. By (Sm4) and (Sm5), Σf is an invertibleD(X)-linear endofunctor
of D(X), i.e., it is given by tensoring with the object Σf(1X).

Lemma 2.37. Let D be a left preweave. Let f ∶ X → Y be a morphism
in S satisfying (Sm1) and (Sm4). Then there is a canonical isomorphism
f♯ ≃ f!Σf .
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Proof. The cartesian square

X ×Y X X

X Y

pr2

pr1 f

f

gives rise by (Sm4) to an invertible natural transformation

Ex
♯,! ∶ f♯pr1,! → f!pr2,♯,

whence an invertible natural transformation

f♯ ≃ f♯pr1,!∆!

Ex♯,!ÐÐ→ f!pr2,♯∆!. (2.38)

□

Corollary 2.39. Let D be a left preweave. Let f ∶X → Y be a morphism
in S satisfying (Sm1), (Sm2) and (Sm4). Then f satisfies (Sm5) if and only
if Σg is invertible for every base change g of f .

Proof. The condition is clearly necessary. For the other direction, let g ∶X ′ →
Y ′ be a base change of f as in (2.31) and let s be a section. To show that g♯s!
is invertible, it will suffice to show that the object g♯s!(1Y ′) is ⊗-invertible
because g♯ satisfies the projection formula (Sm2). By Lemma 2.37 we have

g♯s!(1Y ′) ≃ g!(s!(1Y ′)⊗Σg(1X′)) ≃ g!s!s∗(Σg(1X′)) ≃ s∗(Σg(1X′))

by the projection formula for s!. Since Σg is invertible, Σg(1X) is ⊗-invertible.
□

Corollary 2.40 (Poincaré duality). Let D be a left preweave. If f ∶X → Y
is a morphism in S admitting ♯-direct image in D, then f! admits a right
adjoint f ! ∶= Σff

∗.

Proof. Let Σ−1f be an inverse of the equivalence Σf . We have f♯ ≃ f!Σf by

Lemma 2.37, hence f♯Σ
−1
f ≃ f!. Since Σff

∗ is a right adjoint to f♯Σ
−1
f , the

claim follows. □

Remark 2.41. By definition, we have the formula Σf(1X) ≃ f !(1Y ) when-
ever D admits ♯-direct image for f .

Lemma 2.42. Let D be a left preweave. Let f ∶X → Y be a morphism in
S with diagonal ∆ ∶X →X ×Y X. Suppose that there exists a ⊗-invertible
object σ ∈D(X) along with morphisms

cf ∶ f!(σ)→ 1Y

c∆ ∶∆!(σ⊗−1)→ 1X ×Y X

in D(Y ) and D(X ×Y X), respectively, such that

c∆ ∶∆!(1X) ≃∆!(σ⊗−1 ⊗ σ) ≃∆!(σ⊗−1 ⊗∆∗pr∗1(σ))

≃∆!(σ⊗−1)⊗ pr∗1(σ)
c∆⊗pr

∗
1(σ)ÐÐÐÐÐÐ→ pr∗1(σ)
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fits in a commutative square

pr2,!∆!(1X) pr2,!pr
∗

1(σ) f∗f!(σ)

1X f∗(1Y )

c∆

f∗(cf ) (2.43)

where pri ∶ X ×Y X → X are the projections. Set Ξ ∶= (−) ⊗ σ, Ξ−1 ∶=
(−)⊗ σ⊗−1, and define a natural transformation

ϵf ∶ f!Ξf∗ ≃ f!(Ξ(1X))⊗ (−)
cf⊗(−)ÐÐÐÐ→ 1Y ⊗ (−) ≃ id,

using the linearity of f! and Ξ, and similarly ϵ∆ ∶ ∆!Ξ
−1∆∗(−)→ id using c∆.

Define also

ηf ∶ id ≃ pr2,!∆!Ξ
−1∆∗pr∗1Ξ

ϵ∆Ð→ pr2,!pr
∗

1Ξ ≃ f∗f!Ξ.
Then ηf and ϵf exhibit f!Ξ as a left adjoint to f∗.

Proof. This is dual to Lemma 2.24. The claim is that both composites

f!Ξ
f!Ξ(ηf )ÐÐÐÐ→ f!Ξf

∗f!Ξ
ϵf∗f!ΞÐÐÐ→ f!Ξ (2.44)

f∗
ηf∗f

∗
ÐÐÐ→ f∗f!Ξf

∗
f∗∗ϵfÐÐÐ→ f∗ (2.45)

are homotopic to identity. Let θ denote the result of evaluating (2.45) on the
unit object. Note that this is the clockwise loop around 1X in (2.43), hence
is homotopic to the identity by assumption. By the projection formula for
f!, (2.44) is identified with f!(− ⊗ θ), hence also homotopic to the identity;
similarly, (2.45) is identified with f∗(−)⊗ θ. □

Corollary 2.46. Let D be a left preweave. The following conditions are
equivalent:

(i) Every smooth morphism admits ♯-direct image in D.

(ii) (a) There exists a collection of ⊗-invertible objects σf ∈D(X) associ-
ated with every smoothable3 quasi-smooth morphism f ∶X → Y
in S, which is stable under base change and composition. That
is, p∗σf ≃ σg for any cartesian square as in (2.31); if f and g are
composable, we have σf○g ≃ g∗(σf)⊗ σg.

(b) There exists a collection of morphisms cf ∶ f!(σf)→ 1Y associated
with every smoothable quasi-smooth morphism f ∶ X → Y in
S, which is stable under base change and functorial (up to
incoherent homotopy) as in [DJK, Def. 2.3.6].

Proof. The condition is clearly sufficient (easy to see). Conversely, any
collection as in the statement satisfies the conditions of Lemma 2.42. Note
that for every f with diagonal ∆, we have σ∆ ≃ σ⊗−1f , since 1 ≃ ∆∗(σpr2)⊗σ∆

3Recall that a morphism f is smoothable if it admits a global factorization through a
closed immersion i followed by a smooth morphism p; given such a factorization, if f is
quasi-smooth, then i is necessarily quasi-smooth.
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and σpr2 ≃ pr∗1σf . Hence we have the left adjoint f♯ ∶= f!(− ⊗ σf) to f∗. It is
easy to check that it satisfies the projection formula, commutes with ∗-inverse
image, and with !-direct image. For the condition that g♯s! is invertible for
every section s of a base change g of f , note that we have

g♯s!(1) ≃ g!(s!(1)⊗ σg) ≃ g!s!s∗(σg) ≃ s∗(σg)

which is ⊗-invertible, so we conclude by the projection formula. □

The following is an analogue of Lemma 2.21.

Lemma 2.47. Let D be a left preweave admitting ♯-direct image for étale
morphisms. For every n-truncated étale morphism f ∶X → Y in S, there is
a canonical isomorphism f♯ ≃ f! (in particular, f ! ≃ f∗).

Proof. If n = −2, then f is an isomorphism and the claim is obvious. Assume
n ⩾ −1 and that the claim holds for (n − 1)-truncated morphisms. Since
the diagonal ∆ ∶ X → X ×Y X is (n − 1)-truncated and étale, we have the
isomorphism ∆♯ ≃∆! by assumption. The cartesian square

X ×Y X X

X Y

pr2

pr1 f

f

gives rise to an invertible natural transformation

Ex
♯,! ∶ f♯pr2,! → f!pr1,♯,

whence an invertible natural transformation

f♯ ≃ f♯pr2,!∆!

Ex♯,!ÐÐ→ f!pr1,♯∆! ≃ f!pr1,♯∆♯ ≃ f!. (2.48)

□

2.4. Weaves.

Definition 2.49. A left weave is a left preweave which admits ∗-direct
image for proper morphisms belonging to S ′ and ♯-direct image for smooth
morphisms belonging to S ′. A right weave is a left preweave with values in
Catop

∞
which admits ∗-direct image for proper morphisms and ♯-direct image

for smooth morphisms.4 A weave is a preweave D whose underlying left
preweave D∗! is a left weave (or equivalently, its underlying right preweave

D!
∗
is a right weave).

4To make sense of this definition, observe that Definitions 2.18 and 2.30 make sense
using the 2-categorical structure of Catop∞ (hence more generally for left preweaves with
values in a symmetric monoidal (∞,2)-category).
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2.5. Construction of weaves. We recall a (slight variant of) [Kha4, Def. 2.2]
and [Kha1, Chap. 2, Def. 3.5.2]:

Definition 2.50. A (∗, ♯,⊗)-formalism on S is a presheaf of symmetric
monoidal ∞-categories D∗ ∶ Sop → Cat∞ such that for every smooth mor-
phism f , the functor f∗ =D(f) admits a left adjoint f♯ satisfying the projec-
tion formula and the base change formula. We say that D is adjointable if
it factors through the subcategory of ∞-categories and left adjoint functors
(i.e., the functor f∗ admits a right adjoint f∗ for every morphism f in S). We
say that D satisfies Thom stability if it is cocomplete and for every smooth
separated morphism f with a section s, the endofunctor f♯s∗ is invertible.

Theorem 2.51 (Gaitsgory–Rozenblyum). The functor

Fun(Corr(S),Cat∞)→ Fun(Sop,Cat∞) (2.52)

restricts to an equivalence from the∞-category of left weaves (resp. of weaves)
to the ∞-category of (resp. adjointable) (∗, ♯,⊗)-formalisms satisfying the
proper base change and projection formulas and Thom stability.

Proof. This follows from the results of [GR, Pt. III]; see [RS, Lem. A.7]
(which corrects a mistake in the way the author attempted to encode the
projection formula in [Kha1, Thm. 4.2.2]). □

Warning 2.53. The proof of Theorem 2.51 relies on the universal property
of the (∞, 2)-category of correspondences proven in [GR, Pt. III, Ch. 7, 3.2.2].
The proof in op. cit. is based on certain facts in (∞, 2)-category theory, the
proofs of which have not at the time of writing appeared yet in the literature.
However, the machinery developed by Y. Liu and W. Zheng [LZ1, LZ2] (see
also [Man, Prop. A.5.10]) produces a canonical section of the functor (2.52),
which is enough for our purposes.

2.6. Twists.

Definition 2.54 (Thom twist). Let D be a left preweave which admits

♯-direct image for vector bundles. Given a vector bundle π ∶ E →X in S, let
0 ∶ X → E denote the zero section and consider the invertible endofunctor
ΣE ∶D(X)→D(X) defined by

ΣE ∶= π♯0!. (2.55)

Remark 2.56. Under the canonical equivalence

EndModD(X)(Cat∞)(D(X))
≃ → Pic(D(X))

between the ∞-groupoid of D(X)-linear invertible endofunctors of D(X)
and the Picard ∞-groupoid of ⊗-invertible objects in D(X), this is the same
data as that of the ⊗-invertible object ΣE(1X)

Proposition 2.57. Given an exact sequence of vector bundles

0→ E′
iÐ→ E

pÐ→ E′′ → 0
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over X, there is a canonical isomorphism

ΣE → ΣE′′ΣE′ . (2.58)

Proof. The cartesian square

E′ E

X E′′

i

πE′ p

0E′′

gives rise to the invertible exchange transformation Ex
♯,! ∶ p♯i! → 0E′′,!πE′,!,

whence the canonical isomorphism

ΣE = πE,♯0E,! ≃ πE′′,♯p♯i!0E′,!
Ex♯,!ÐÐ→ πE′′,♯0E′′,!πE′,!0E′,! = ΣE′′ΣE′ .

□

In fact, the isomorphisms of Proposition 2.57 are homotopy coherent. More
precisely, suppose given an n-gapped object of the ∞-category Vect(X) of
vector bundles in the sense of [Lur2, Lect. 16], i.e., a commutative diagram
of cocartesian squares

E0,0 E0,1 ⋯ E0,3

E1,1 ⋯ E1,n

⋯ ⋯

En,n

i0,0 i0,1

p0,1

i0,n−1

p0,n−1 p0,n

i1,1 i1,n−1

p1,n

pn−1,n

where Ek,k is the zero bundle for every 0 ⩽ k ⩽ n. We get the commutative
diagram

D(E0,0) D(E0,1) ⋯ D(E0,n)

D(E1,1) ⋯ D(E1,n)

⋯ ⋯

D(En,n),

i0,0,! i0,1,!

p0,1,♯

i0,2,!

p0,n−1,♯ p0,n,♯
i1,1,! i1,n−1,!

p1,n,♯

pn−1,n,♯

by passing to left adjoints vertically from the diagram expressing homotopy
coherence of the base change isomorphisms between p∗ and i! (which is
encoded by the functor D∗! by definition).
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In particular, by definition of Waldhausen’s S●-construction this gives rise to
a canonical map

K(Vect(X))→ Pic(D(X)) (2.59)

sending the class of E ∈ Vect(X) to ΣE(1X), for every X ∈ S. Similarly, the
homotopy coherence of the base change isomorphisms between !-direct image
(resp. ♯-direct image) with ∗-inverse image give rise to homotopy coherence

of the isomorphisms f∗ΣE ≃ Σf∗Ef∗ for any morphism f ∶X ′ →X in S. In
summary, we have:

Proposition 2.60. There exists a canonical map of presheaves of E∞-groups
on S

K(Vect(−))→ Pic(D(−)) (2.61)

which restricts to the functor Vect(−)≃ → Pic(D(−)), (E →X)↦ ΣE(1X).
Remark 2.62. Let K(−) = K(Perf(−)) denote the presheaf sending a stack
X to the ∞-category of algebraic K-theory of perfect complexes on X. Over
affines, or more generally over stacks which admit the derived resolution
property [Kha5, Def. 1.32], the map K(Vect(−)) → K(−) restricts to an
isomorphism. If D (and hence Pic(D(−))) is right Kan extended from a full
subcategory whose objects have the derived resolution property, it follows
that (2.61) factors via a canonical map of presheaves of E∞-groups on S

K(−)→ Pic(D(−)). (2.63)

For example, this is the case if D satisfies Nisnevich descent and S consists
of qcqs algebraic spaces, tame Deligne–Mumford stacks, or nicely/linearly
scalloped Artin stacks [KhRa1, Def. 2.9].

2.7. Orientations.

Definition 2.64. Let D be a left preweave which admits ♯-direct image for
vector bundles. An orientation of D is a commutative diagram of E∞-groups

K(Vect(−)) Pic(D(−))

Z

(2.61)

rk

where rk ∶ K(Vect(X)) → Z is the rank map (valued in the discrete ∞-
groupoid whose points are integers). Informally speaking, this amounts to

the choice of Thom isomorphisms ΣE(1) ≃ ΣArk(E)(1) which are functorial
and compatible with exact sequences up to coherent homotopy. We say that
D is oriented if it admits an orientation.

Remark 2.65. An incoherent orientation of D is a commutative diagram of
1-groupoids

τ⩽1K(Vect(−)) τ⩽1Pic(D(−))

Z
rk
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commute. This is compatible with the notion of orientation considered in
[CD, Def. 2.4.38].

Remark 2.66. The above notion of orientation could also be called GL-
orientation. We can similarly define SL-orientations by replacing K(Vect(−))
by the K-theory of principal SL-bundles, and similarly for SLc or Sp (cf.
[DFJK, §7]).

2.8. Descent.

Definition 2.67. We say that a left preweave D satisfies additivity if for
every finite family (Xi)i in S, the canonical morphism

D(⊔
i
X)→∏

i

D(Xi)

is invertible. In particular, D(∅) is a terminal object of V.

Definition 2.68. Let (pα ∶ Uα →X)α be a collection of morphisms in S. We
say that a presheaf F ∶ Sop → Cat∞ is separated with respect to (pα)α if the
family of functors p∗α = F (pα) is jointly conservative. If D is additive, we say
that it satisfies Čech descent along (pα)α if the following is a limit diagram
in Cat∞:

F (X)→∏
α

F (Uα)⇉∏
α,β

F (Uα,β)→→→ ∏
α,β,γ

F (Uα,β,γ)
→→→→ ⋯.

Note that Čech descent implies separation. Note also that this definition
makes sense as long as F is defined on a subcategory of S that contains the
morphisms pα.

Lemma 2.69. Let D be a left preweave satisfying additivity. Let (pα ∶ Uα →
X)α be a collection of morphisms such that D admits ♯-direct image for
every morphism obtained by base change and composition from morphisms
in (pα)α. Given a subset of indices α1, . . . , αn, we write

pα1,...,αn ∶ Uα1,...,αn ∶= Uα ×
U
⋯×

U
Uαn →X.

Consider the following conditions:

(i) The presheaf D∗ satisfies Čech descent along (Uα →X)α.
(ii) For every F ∈D(X) the following is a colimit diagram in D(X):

⋯→→→⊕
α,β

pα,β,♯p
∗

α,β(F)→⊕
α
pα,♯p

∗

α(F)⇉ F .

(iii) The presheaf D∗ is separated with respect to (Uα →X)α.

If D is a weave, then we also consider the following condition:

(ii’) For every F ∈D(X) the following is a limit diagram in D(X):

F →∏
α

pα,∗p
∗

α(F)⇉∏
α,β

pα,β,∗p
∗

α,β(F)→→→ ⋯
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Then (i) ⇒ (ii) ⇒ (iii). If D is a weave, then all four listed conditions are
equivalent.

Proof. Note that (i) holds if and only if the canonical functor

F ∗ ∶D(X)→ Tot( ∏
α1,...,α●

D(Uα1,...,α●))

is an equivalence. This admits a left adjoint F♯ given informally by

((Fα1,...,αn)α1,...,αn)[n]∈∆ ↦ limÐ→
[n]∈∆

⊕
α1,...,αn

pα1,...,αn,♯(Fα1,...,αn).

If D is a weave, then F ∗ also admits a right adjoint F∗ given informally by

((Fα1,...,αn)α1,...,αn)[n]∈∆ ↦ lim←Ð
[n]∈∆

∏
α1,...,αn

pα1,...,αn,♯(Fα1,...,αn).

Note also that (ii) holds if and only if the counit F♯F
∗ → id is invertible, and

similarly (when D is a weave), (ii’) holds if and only if the unit id→ F∗F
∗ is

invertible. It is thus clear that (i) ⇒ (ii) ⇒ (iii), and (i) ⇒ (ii’) ⇒ (iii) when
D is a weave.

Suppose D is a weave. For p a morphism admitting ♯-direct image in D, the
functor p∗ is both a left and a right adjoint, hence in particular preserves
limits and colimits. Moreover, its right adjoint p∗ commutes with ∗-inverse
image by (passing to right adjoints from) (Sm3). Hence (the dual of) [Lur,
Cor. 4.7.5.3] shows that F∗ is fully faithful, and that F ∗ is an equivalence
if and only if the functors p∗α are jointly conservative. In particular, (iii) ⇒
(i). □

Definition 2.70. Let Q be a commutative square in S. We say that a
presheaf F ∶ Sop → Cat∞ satisfies excision with respect to Q if the commu-
tative square F (Q) is cartesian. Note also that this definition makes sense
as long as F is defined on a subcategory of S that contains every morphism
appearing in Q.

Lemma 2.71. Let D be a left preweave. Let Q be a commutative square of
the form

W V

U X

p′

q′ r q

p

in S and assume D admits ♯-direct image for every morphism appearing in
Q. Consider the following conditions:

(i) The presheaf D∗ satisfies excision with respect to Q.

(ii) For every F ∈D(X) the following square is cocartesian:

r♯r
∗(F) q♯q

∗(F)

p♯p
∗(F) F .
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(iii) The presheaf D∗ is separated with respect to (p, q).

If D is a weave, then we also consider the following condition:

(ii’) For every F ∈D(X) the following square is cartesian:

F p∗p
∗(F)

q∗q
∗(F) r∗r

∗(F).

Then (i) ⇒ (ii) ⇒ (iii). If D is a weave, then (i) ⇒ (ii’) ⇒ (iii).

Proof. Let F ∗ ∶ D(X) → D(U)×D(W )D(V ) denote the canonical functor.
It admits a left adjoint F♯ given by the formula

(FU ,FV ,FW )↦ p♯(FU) ⊔
r♯(FW )

q♯(FV ),

and, if D is a weave, a right adjoint F∗ given by

(FU ,FV ,FW )↦ p∗(FU) ×
r∗(FW )

q∗(FV ).

Then (i) is the condition that the adjunction (F ∗, F♯) is an equivalence
(equivalently, if D is a weave, that (F ∗, F♯) is an equivalence). The condition
(ii) (resp. (ii’)) is the assertion that the counit F♯F

∗ → id (resp. the unit
id→ F∗F

∗) is invertible. □

3. Topological weaves

3.1. Localization. Let D be a left preweave satisfying additivity and ad-
mitting ∗-direct image (resp. ♯-direct image) for closed immersions (resp.
open immersions). We assume that D is finitely bicomplete (Definition 2.9).

Lemma 3.1. The ∞-category D(X) is pointed, i.e., admits an (essentially
unique) zero object, for every X ∈ S.

Proof. Since i ∶ ∅→X is a closed immersion, i! ≃ i∗ is a right adjoint. Since
it is an open immersion, i! ≃ i♯ is also a left adjoint. In particular, it sends
the zero object 0 ∈D(∅) to a zero object of D(X). □

Remark 3.2. Let i ∶ Z → X be a closed immersion in S such that the
complementary open immersion j ∶ X ∖ Z → X also belongs to S. By
additivity, the base change isomorphism for the cartesian square

∅ X ∖Z

Z X

j

i

takes the form j∗i! ≃ 0, where 0 is the constant functor on the zero object
(Lemma 3.1); since i! ≃ i∗ and j∗ ≃ j∗ are right adjoints, they preserve zero



WEAVES 19

objects. Thus we get a commutative square

j!j
∗ id

0 ≃ j!j∗i!i∗ i!i
∗.

(3.3)

Definition 3.4 (Localization). Let D be a left preweave taking values in
Catex

∞
which satisfies additivity and admits ∗-direct image (resp. ♯-direct

image) for closed immersions (resp. open immersions). We say that D
satisfies the localization property if for every complementary closed-open pair
i ∶ Z →X, j ∶X ∖Z →X in S, the square (3.3) is cocartesian.

Remark 3.5. If D satisfies the localization property and D is stable (i.e., it

takes values in Catstab
∞

), then the functors i∗ and j∗ are jointly conservative.

Lemma 3.6. Let D be a left preweave satisfying the localization property.
Then for every surjective closed immersion i ∶ Z →X in S, the unit id→ i!i

∗

is invertible.

Proof. Since i is surjective, the complementary open immersion is j ∶ ∅→X.
By additivity, we have j!j

∗ ≃ 0. By localization, the square (3.3) is cocartesian
so the claim follows. □

Lemma 3.7. Let D be a left preweave admitting ∗-direct image for a proper
morphisms. Let f ∶ X → Y be an n-truncated proper morphism in S with
diagonal ∆ ∶X →X ×Y X. Consider the following conditions:

(i) The natural transformation counit ∶ f∗f! → id (Lemma 2.21) is
invertible; that is, f! is fully faithful.

(ii) The natural transformation unit ∶ id→ ∆!∆
∗ (Lemma 2.21) is invert-

ible; that is, ∆∗ is fully faithful.

Then we have (ii) Ô⇒ (i).

Proof. The counit f∗f! → id factors as follows:

ϵf ∶ f∗f! ≃ pr2,!pr∗1
η∆Ð→ pr2,!∆!∆

∗pr∗1 ≃ id.

See e.g. [Hoy, Lem. B.1]. □

Corollary 3.8. Let D be a left preweave satisfying the localization property.
Then for every closed immersion i ∶ Z →X in S, the natural transformation

counit ∶ i∗i! → id

is invertible.

Proof. Let ∆ ∶ Z → Z ×X Z denote the diagonal. By Lemma 3.6, the local-
ization property implies that the unit id → ∆!∆

∗ is invertible. Hence the
counit i∗i! → id is invertible by Lemma 3.7. □
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Corollary 3.9 (Derived invariance). Let D be a left preweave satisfying
the localization property. Let X ∈ S and denote by i ∶Xcl →X the classical
truncation (resp. by Xred →X the reduced classical truncation). If Xcl (resp.
Xred) belongs to S, then the functors i∗ and i! are both equivalences.

Proof. Combine Lemma 3.6 and Corollary 3.8. □

Proposition 3.10. If D is stable and satisfies the localization property, then
it satisfies étale excision.

Proof. Suppose given a cartesian square

W V

U X

r p

j

where j is an open immersion and p is an étale morphism inducing an
isomorphism over ∣X ∖U ∣. It will suffice (see the proof of Lemma 2.71) to
show that the canonical morphisms

FU → j∗(j♯(FU) ⊔
r♯(FW )

p♯(FV ))

FV → p∗(j♯(FU) ⊔
r♯(FW )

p♯(FV ))

are invertible for all (FU ,FV ,FW ) ∈D(U)×D(W )D(V ), and that the canon-
ical morphism

j♯j
∗(F) ⊔

r♯r∗(F)
p♯p
∗(F)→ F

is invertible for all F ∈ D(X). The first two follow easily from the fact
that i∗ and j♯ commute with ∗-inverse image. For the last, it is enough
by the localization property to check after ∗-inverse image to U or X ∖ U
(Remark 3.5), after which we again use the commutativity of i∗ and j♯ with
∗-inverse image. □

Corollary 3.11. If D is stable and satisfies the localization property, then
it satisfies Nisnevich descent on the full subcategory of S spanned by stacks
that are qcqs 1-Artin.

Proof. By [HK, Prop. 2.9], the condition of Nisnevich descent on qcqs 1-Artin
stacks is equivalent to étale excision. Hence this follows from Proposition 3.10.

□

Corollary 3.12. Suppose D is stable and satisfies Zariski descent and
the localization property. If S consists of 1-Artin stacks, then D satisfies
Nisnevich descent on S.

Proof. Every 1-Artin stack admits a Zariski cover by one that is quasi-
compact and quasi-separated, so the claim follows from Corollary 3.11. □
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3.2. Homotopy invariance. In this subsection we assume that S contains
the affine line A1 (over our implicit base scheme B).

Definition 3.13. Let D be a left preweave admitting ♯-direct image for
vector bundles. We say that D satisfies homotopy invariance if for every
vector bundle π ∶ E →X in S, the counit π♯π

∗ → id is invertible.

3.3. Topological weaves. We assume that S satisfies the following: if
X ∈ S and X ′ →X is a schematic morphism of finite type, then X ′ ∈ S. We
also assume S ′ contains all schematic morphisms of finite type.

Definition 3.14. Let D be a left preweave admitting ♯-direct image for open
immersions and vector bundles and ∗-direct image for closed immersions.
We say that D is topological if satisfies localization, homotopy invariance,
and Nisnevich descent.

Remark 3.15. If all stacks in S are 1-Artin, then the condition of Nisnevich
descent in Definition 3.14 is equivalent to Zariski descent. If moreover
all stacks in S are qcqs, then we may omit the condition entirely. See
Corollary 3.11.

Proposition 3.16. Every topological left preweave D is stable.

Proof. Let π ∶ X ×A1 → X be the projection for some X ∈ S. Since D
admits ♯-direct image for π, the object T = π♯0!(1X) is ⊗-invertible, where 0
is the zero section. By localization (and since π♯ preserves colimits, as a left
adjoint), there is a cofibre sequence

π○
♯
(1)→ π♯(1)→ π♯0!(1) = T

where π○ ∶X×(A1∖{0})→X. By homotopy invariance, π♯(1) ≃ π♯π∗(1) ≃ 1.
We deduce a canonical isomorphism T ≃ Σ(π○

♯
(1)) ≃ π○

♯
(1) ⊗Σ(1), where

Σ ≃ (−)⊗Σ(1) denotes suspension in the pointed ∞-category D(X) (since
D takes values in Catex

∞
, the tensor product is right-exact in each argument).

Since T is ⊗-invertible, so is Σ(1). In particular, Σ ∶D(X) →D(X) is an
equivalence. □

Definition 3.17 (Tate twist). Let D be a topological left preweave. For
every X ∈ S and every integer n ∈ Z, define the invertible D(X)-linear
endofunctor F ↦ F(n) on D(X) by

F(n) = F ⊗ π○
♯
(1)⊗n[−n]

where π○ ∶X × (A1 ∖ {0})→X is the projection and [−1] denotes the inverse
to the shift in the stable ∞-category D(X). Then we have

ΣX×An(F) ≃ F(n)[2n] (3.18)

by the proof of Proposition 3.16, where ΣX×An ∶D(X)→D(X) is the Thom
twist with respect to the trivial bundle of rank n (Definition 2.54).

Theorem 3.19 (Robalo). On the category of decent algebraic spaces, the
weave SH, sending S to the stable ∞-category SH(S) of motivic spectra
over S, is the initial topological weave.
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See Subsect. 3.5 below for the proof.

3.4. Twists.

Theorem 3.20. Let D be a topological left weave (resp. satisfying étale
descent). Let f ∶ X → Y be a smooth schematic morphism of Nis-Artin
stacks (resp. of Artin stacks) in S and s ∶ Y →X a section. Then there is a
canonical isomorphism

f♯s! ≃ Σs∗Tf (3.21)

where Tf ∶=VX(Lf) is the relative tangent bundle.

The following is essentially a reformulation of a result of Morel–Voevodsky
[MV].

Corollary 3.22 (Relative purity). Let D be a topological left weave (resp.
satisfying étale descent). Then for every smooth schematic morphism f ∶
X → Y of Nis-Artin stacks (resp. of Artin stacks) in S, there is a canonical
isomorphism Σf ≃ ΣTf . In particular, there are canonical isomorphisms

f♯ ≃ f!ΣTf , f ! ≃ ΣTf f∗. (3.23)

Proof. Recall that Σf ≃ pr2,♯∆! by definition. Hence by Theorem 3.20,

Σf ≃ Σ∆∗Tpr2 . Moreover, ∆∗Tpr2 ≃∆∗pr∗1Tf ≃ Tf . □

Remark 3.24. In Theorem 3.20 and Corollary 3.22, the assumption that f
is schematic is not necessary.

The following notation will be useful in the proof of Theorem 3.20.

Notation 3.25. Fix a stack Y ∈ S. Given a pair (f ′ ∶X ′ → Y ′, s′) where Y ′

is smooth over Y , f ′ ∶X ′ → Y ′ is a smooth morphism, and s′ ∶ Y ′ →X ′ is a
section, we set

P (X ′, Y ′) ∶= P (f ′ ∶X ′ → Y ′, s′) ∶= f ′
♯
s′!.

Given a pair (f ′ ∶X ′ → Y ′, s′) and a morphism v ∶ Y ′′ → Y ′ we get a diagram
of cartesian squares

Y ′′ X ′′ Y ′′

Y ′ X ′ Y ′

s′′

v

f ′′

u v

s′ f ′

which we regard as a morphism of pairs v ∶ (f ′′, s′′) → (f ′, s′). This gives
rise to a canonical isomorphism

P (X ′′, Y ′′) ○ v∗ = f ′′
♯
s′′! v

∗
Ex∗!ÐÐ→ f ′′

♯
u∗s′!

Ex∗♯ÐÐ→ v∗f ′
♯
s′! = v∗ ○ P (X ′, Y ′). (3.26)
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Furthermore, the commutative square

Y ′′ Y

Y ′ Y

a′′

a′

gives rise to a canonical natural transformation

a′′
♯
○ P (X ′′, Y ′′) ○ v∗ ≃ a′′

♯
v∗P (X ′, Y ′)

Ex∗♯ÐÐ→ a′
♯
○ P (X ′, Y ′). (3.27)

If v is smooth, we also get the isomorphism

v♯P (X ′′, Y ′′) = v♯f ′′♯ s′′! ≃ f ′♯u♯s′′!
Ex♯,!ÐÐ→ f ′

♯
s′!v♯ = P (X ′, Y ′) ○ v♯. (3.28)

Proof of Theorem 3.20. By [Ryd, Thm. 1.2], s factors canonically through a
closed immersion t ∶ Y ↪X ′ and an étale morphism e ∶X ′ →X (where X ′ is
an algebraic space). Since s is a local immersion, e is a local isomorphism
(in particular, it is schematic so X ′ ∈ S by our assumptions). Since e is étale
we have a canonical isomorphism

f♯s! ≃ f♯e!t! ≃ f♯e♯t! ≃ g♯t!
where g = f ○e ∶X ′ →X → Y , and e∗Tf ≃ Tg so that Σs∗Tf ≃ Σt∗Tg . Replacing
f and s by g and t, respectively, we may therefore assume that s is a closed
immersion.

Note that P (X,Y ) = f♯s! and
P (Ns, Y ) = π♯0! =∶ ΣNs ≃ Σs∗Tf

where π ∶ Ns =VY (Ls[−1])→ Y is the normal bundle and 0 ∶ Y → Ns is the
zero section. Let D denote the deformation to the normal bundle associated
with s [KhRy, Thm. 4.1.13]. This is equipped with a closed immersion
Y ×A1 →D and a smooth affine morphism D →X ×A1, whose composite
is s × id. In particular, D ∈ S (by our assumptions) and Y ×A1 → D is a
section of the smooth morphism D →X ×A1 → Y ×A1. The morphisms of
pairs

(Ns, Y )→ (D,Y ×A1)← (X,Y ),
induced by the inclusions iϵ ∶ Y × {ϵ}→ Y ×A1, where ϵ ∈ {0,1}, give rise to
canonical morphisms (3.27)

P (Ns, Y ) ○ i∗0 → p♯ ○ P (D,Y ×A1)← P (X,Y ) ○ i∗1 (3.29)

where p ∶ X ×A1 → X is the projection. It will suffice to show that both
maps are invertible.

Let τ stand for the Nisnevich (resp. étale) topology. Since D satisfies τ -
descent, the smooth base change formula implies that the claim is τ -local on
Y . Since Y is τ -Artin, it admits a smooth atlas V ↠ Y with τ -local sections.
Replacing Y by V , we may assume that Y (and hence X) is a scheme.

Localizing further on Y and replacing X by some open neighbourhood of
s(Y ), we may assume that there exists an étale morphism q ∶ X → Y ×An
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over Y , for some n ⩾ 0, such that s ∶ Y →X is identified with the inclusion
of the zero locus q−1(Y × {0}) (see e.g. [Kha2, Lem. 4.2.3]). Under the
isomorphisms (3.26), we may therefore assume that f is the projection
Y ×An → Y and s is the zero section. In this case, there are cartesian squares

Y ×A1 D Y ×A1

Y Y ×An Y

p p

0

and (3.29) is identified with

P (An
Y , Y ) ○ i∗0 → P (An

Y , Y ) ○ p♯ → P (An
Y , Y ) ○ i∗1

under the isomorphism p♯ ○ P (An
Y , Y ) ≃ P (An

Y , Y ) ○ p♯ (3.28). By homotopy
invariance, both arrows are identified with the identity of P (An

Y , Y ) after
applying p∗ on the right. In particular, they induce isomorphisms on the
unit object, so we conclude by the projection formula. □

3.5. Topological weaves vs. Voevodsky formalisms. Assume that for
every X ∈ S, we have: every quasi-compact open U ⊆ X also belongs to S;
every closed substack Z ⊆X also belongs to S; and every projective bundle
PX(E), where E is a finite locally free sheaf on X, also belongs to S.
Definition 3.30. Let D∗ be an adjointable (∗, ♯,⊗)-formalism on S. Con-
sider the following conditions:

(i) Homotopy invariance. For every vector bundle π ∶ E →X in S, the
unit id → π∗π

∗ is invertible. Equivalently, the counit π♯π
∗ → id is

invertible.

(ii) Localization. For every closed immersion i ∶ Z → X in S with
complementary open immersion j ∶ U → X, the functor i∗ is fully
faithful with essential image spanned by objects in the kernel of j∗.
Equivalently, i∗ is fully faithful and the following square is cartesian:

j♯j
∗ id

0 ≃ j♯j∗i∗i∗ i∗i
∗,

where the isomorphism j∗i∗ ≃ 0 is the left transpose of the smooth
base change formula i∗j♯ ≃ 0.

If D∗ satisfies Thom stability, homotopy invariance, and localization, then
we say that it satisfies the Voevodsky conditions. We also say simply that
D∗ is a Voevodsky formalism on S.

Theorem 3.31 (Voevodsky, Ayoub, Cisinski–Déglise). Assume that S con-
sists of decent algebraic spaces. Every Voevodsky formalism satisfies the
proper base change and projection formulas.
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Proof. See [CD, Thms. 2.4.26, 2.4.28], [Kha1, Chap. 2, Thm. 3.5.4], [Kha4,
Thm. 2.24]. □

Corollary 3.32. Assume that S consists of decent algebraic spaces. The
functor

Fun(Corr(S),Cat∞)→ Fun(Sop,Cat∞) (3.33)

restricts to an equivalence from the ∞-category of topological weaves to the
∞-category of Voevodsky formalisms.

Proof. By Theorem 2.51 and the definitions, the functor restricts to an
equivalence from the ∞-category of topological weaves to the ∞-category
of adjointable (∗, ♯,⊗)-formalisms satisfying the proper base change and
projection formulas and the Voevodsky conditions. By Theorem 3.31, the
latter is the same as the ∞-category of Voevodsky formalisms. □

Remark 3.34. Warning 2.53 applies also to Corollary 3.32. However, the
section of (3.33) produced by the machinery of [LZ1] sends Voevodsky
formalisms to topological weaves; in particular, every Voevodsky formalism
admits a canonical extension to a topological weave, which is enough for our
purposes.

Proof of Theorem 3.19. It is proven in [Rob, Cor. 2.39] (see also [DG]) that
SH is the initial Voevodsky formalism. Hence the result follows from Corol-
lary 3.32. □

3.6. Orientations.

Example 3.35. Let S be the ∞-category of decent algebraic spaces. By
[BH, Prop. 16.28, Ex. 16.30], the weave of MGL-modules admits a canonical
orientation. In particular, any weave D equipped with a morphism DMGL →
D inherits an orientation. For example, this is the case for the weave DM of
integral Voevodsky motives, the weave of KGL-modules, the weave of étale
sheaves with Z/nZ or ℓ-adic coefficients (on the ∞-category of algebraic
spaces over Z[1/n], resp. Z[1/ℓ]).

Conjecture 3.36. The weave DMGL is the initial oriented topological weave.

Remark 3.37. By [EHKSY], DMGL is the initial topological weave equipped
with traces trf ∶ f!(1X)→ 1Y for finite flat quasi-smooth morphisms f ∶X →
Y , which are compatible with base change and composition up to coherent
homotopy. Thus the claim is equivalent to the assertion that an orientation
of a topological weave D is the same datum as a homotopy coherent system
of traces for finite flat quasi-smooth morphisms. By [DJK] there exists for
any topological weave a canonical system of traces trf ∶ f!(ΣTf (1X))→ 1Y ,
compatible with composition only up to incoherent homotopy (where Tf

is the virtual tangent bundle), which takes the form trf ∶ f!(1X) → 1Y

in the presence of an orientation. Note that the homotopy coherence (of
both orientations and traces) is automatic if, for instance, D(X) admits
a t-structure for which the objects ΣE(1X) belong to the heart, for every
X ∈ S and every vector bundle E →X (e.g., for étale or Betti sheaves).
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4. Lisse extension

Let τ ∈ {Nis, ét} stand for the Nisnevich or étale topology. We define (τ, n)-
Artin and τ -Artin stacks as in [KhRa2, 0.2.2]. A stack is (ét,0)-Artin, resp.
(Nis,0)-Artin, if it is a (resp. decent) algebraic space. For n > 0, X is
(τ, n)-Artin if it has (τ, n − 1)-representable diagonal and admits a smooth
morphism U ↠ X with τ -local sections from some scheme U . A stack is
τ -Artin if it is (τ, n)-Artin for some n. For τ = ét, these are the usual notions
of n-Artin stacks and Artin stacks, while e.g. (Nis,1)-Artin stacks are the
same as quasi-separated 1-Artin stacks with separated diagonal.

Definition 4.1. Assume that every stack in S is τ -Artin. Denote by S0 the
full subcategory of S spanned by (τ, 0)-Artin stacks. We say that a preweave
D is lisse-extended if D∗ is right Kan-extended from its restriction to S0 and
D! (2.12) is right Kan-extended from its restriction to S0.

The following is a generalization of [Kha3, Thm. A.5]. In particular, it gives
a new construction of the six functor formalism for étale sheaves on Artin
stacks [LZ2].

Theorem 4.2. Denote by S0 the full subcategory of S spanned by (τ,0)-
Artin stacks. Then for every weave D on S0 satisfying τ -descent, there exists
a unique extension of D to a lisse-extended weave D◁ on S.

The main ingredient is the following:

Theorem 4.3. With notation as above, denote by D∗,◁ the right Kan
extension to S of D∗ and by D!,◁ the right Kan extension of D! to S. Then
for every τ -Artin stack X ∈ S, there is a canonical equivalence

D∗,◁(X) ≃D!,◁(X).

We will thus define D◁(X) ∶=D∗,◁(X) for X ∈ S. Theorem 4.3 then gives

the canonical functors D∗,◁ ∶ Sop → Cat∞ and D◁! ∶ S → Cat∞ (since D!,◁

factors through the subcategory of right adjoint functors). It is not difficult
to show that the resulting operations f∗ and f! still satisfy the base change
formula. A full proof of Theorem 4.2 requires the homotopy coherence of
this base change formula, which we do not undertake here.

Let Pt(X) denote the ∞-category of pairs (T, t) where T is (τ, 0)-Artin and
t ∶ T → X is a morphism. Morphisms f ∶ (T ′, t′) → (T, t) are commutative
triangles

T ′ T

X.

f

t′ t

By construction, D∗,◁(X) is the limit

D∗,◁(X) = lim←Ð
(T,t)

D(T ), (4.4)
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taken over Pt(X)op, where the transition functors are ∗-inverse image. Simi-

larly, D!,◁(X) is given by the colimit

D!,◁(X) = lim←Ð
(T,t)

D(T ) (4.5)

where the transition functors are !-inverse image.

Denote by Lis(X) the full subcategory of Pt(X) spanned by pairs (T, t)
where t ∶ T →X is smooth, and by Lis′(X) the wide subcategory of Lis(X)
spanned by only smooth morphisms (i.e., morphisms (T ′, t′) → (T, t) are
smooth morphisms f ∶ T ′ → T with t ○ f = t′). We will require the following
lemma (a slight generalization of [KhRa2, Prop. 1.4]):

Lemma 4.6. Let F be a presheaf on S0 with values in a complete∞-category
V. Denote by F◁ its right Kan extension to S. Let X ∈ S be a τ -Artin
stack. If F satisfies τ -descent, then for any (τ,0)-representable morphism
f ∶X ′ →X, the canonical maps

F◁(X ′)→ lim←Ð
(T,t)∈LisX

F◁(T ×
X
X ′)→ lim←Ð

(T,t)∈Lis′X

F◁(T ×
X
X ′) (4.7)

are invertible.

Proof. Let p ∶ U ↠ X be a smooth morphism admitting τ -level sections
where U is a scheme. Denote by U● the Čech nerve of p. Then U● ×X X ′ is
identified with the Čech nerve of U ×X X ′ ↠ X ′, so by [KhRa2, Lem. 1.5]
there is a canonical equivalence

Tot(F (U● ×
X
X ′)) ≃ F◁(X ′).

This defines a simplicial diagram ∆op → Lis′X , so by projection there is a
canonical map

lim←Ð
(T,t)∈Lis′(X)

F (T ×
X
X ′)→ Tot(F (U s

●
×
X
X ′)) ≃ F (X),

which is inverse to (4.7). (The same argument works for limit over LisX
instead of Lis′X .) □

Following [Ga, 11.4.4], we consider a presheaf of ∞-categories D∗! on the
product Lis′X ×PtX . We first give an informal description when X is (τ,1)-
Artin. On objects, it is given by the assignment

(T, t, T ′, t′)↦D(T ×
X
T ′),

where T ×X T ′ is (τ,0)-Artin since t ∶ T → X is 0-representable. Given a
morphism of pairs (f, g) ∶ (T1, t1, T

′

1, t
′

1)→ (T2, t2, T
′

2, t
′

2), with f ∶ (T1, t1)→
(T2, t2) in Lis′X and g ∶ (T ′1, t′1) → (T ′2, t′2) in PtX , D∗! sends (f, g) to the
composite

D(T2 ×
X
T ′2)

(f×id)!ÐÐÐÐ→D(T1 ×
X
T ′2)

(id×g)∗ÐÐÐÐ→D(T1 ×
X
T2).
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That this is compatible with composition requires the observation that the
exchange transformation Ex∗! ∶ (id×g)∗(f×id)! → (f×id)!(id×g)∗ of functors
D(T2 ×X T ′2)→D(T1 ×X T ′1), associated to the cartesian square

T1 ×X T ′1 T2 ×X T ′1

T1 ×X T ′2 T2 ×X T ′2,

f×id

id×g id×g

f×id

is invertible because f is smooth. That it is homotopy coherently compatible
with composition, and hence defines a functor of ∞-categories as claimed,
requires the homotopy coherence of the exchange transformations Ex∗! for
compositions of cartesian squares. This is equivalent to the same property for
the base change isomorphisms Ex∗! , since the former are obtained formally
from the latter (cf. [Ga, Prop. 7.6.7]; more precisely, follow [Ga, 11.4.4] using
D∗! ∶ Corr(S)→ Cat∞ as input in the proof of Prop. 7.6.7). For higher Artin
stacks, proceed by induction as in [Ga, 11.5.4].

Now form the limit of ∞-categories

lim←Ð
(T,t,T ′,t′)∈Lis′X×PtX

D∗!(T ×
X
T ′). (4.8)

We can calculate this in two different ways. First, we have

lim←Ð
(T,t,T ′,t′)

D∗!(T ×
X
T ′) ≃ lim←Ð

(T ′,t′)∈PtX

lim←Ð
(T,t)∈Lis′X

D(T ×
X
T ′)

≃ lim←Ð
(T ′,t′)∈PtX

D(T ′)

≃D∗,◁(X),

where the transition functors in the systems {(T, t)} and {(T ′, t′)} are !- and
∗-inverse image, respectively, and the second isomorphism is Lemma 4.6.
Symmetrically, we also have

lim←Ð
(T,t,T ′,t′)

D∗!(T ×
X
T ′) ≃ lim←Ð

(T,t)∈Lis′X

lim←Ð
(T ′,t′)∈PtX

D(T ×
X
T ′)

≃ lim←Ð
(T,t)∈Lis′X

D(T )

≃D!,◁(X).
This concludes the proof of Theorem 4.3.
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