Exercise sheet 1

The minimum passing average is 20 points per sheet.

1. 10 points. Let X be a topological space. Let U and V be open subsets such that $X = U \cup V$. Consider the commutative square of chain complexes

$$C_*(U \cap V) \xrightarrow{i_{1,*}} C_*(V)$$

$$\downarrow^{i_{0,*}} \qquad \downarrow^{j_{1,*}}$$

$$C_*(U) \xrightarrow{j_{0,*}} C_*(X)$$

where the homomorphisms are pushforwards along the inclusions. Give a counterexample to show that this square is generally not a pushout in the category of chain complexes, or equivalently that the sequence

$$0 \to \mathcal{C}_*(\mathcal{U} \cap \mathcal{V}) \xrightarrow{\begin{bmatrix} i_{1,*} \\ i_{2,*} \end{bmatrix}} \mathcal{C}_*(\mathcal{U}) \oplus \mathcal{C}_*(\mathcal{V}) \xrightarrow{j_{0,*} - j_{1,*}} \mathcal{C}_*(\mathcal{X}) \to 0$$

is not exact.

- 2. 5 points. Let F and G be functors $\mathcal{C} \rightrightarrows \mathcal{D}$ between two ordinary categories. Show that natural transformations $F \Rightarrow G$ are in bijection with morphisms of simplicial sets $\varphi : \Delta^1 \times N(\mathcal{C}) \to N(\mathcal{D})$ such that $d^0(\varphi) = F$ and $d^1(\varphi) = G$.
- 3. 15 points. Show that a simplicial set X is the nerve of a category (resp. nerve of a groupoid) if and only if it has the lifting property for inclusions $\Lambda_i^n \hookrightarrow \Delta^n$, for 0 < i < n (resp. for $0 \le i \le n$). Here Λ_i^n is the subset of Δ^n obtained by removing the interior and the face opposite the *i*th vertex; see [Cis, 1.4.5.3].
- 4. 5 points. Show that the assignment $X \mapsto c(X)$, sending a set to the associated constant simplicial set, is fully faithful. Show that c admits a left adjoint, given by $X \mapsto \pi_0(X) := \text{Coeq}(X_1 \rightrightarrows X_0)$, where the arrows are the face maps d^0 , d^1 .
- 5. 15 points. Show that the functor $N: Cat \rightarrow sSet$ determined by the nerve is fully faithful.
- 6. 5 points. Let X be a topological space and $x \in X$ a point. Consider the homotopy pullback

$$\begin{array}{ccc} \operatorname{pt} \times_{\mathbf{X}} \operatorname{pt} & \longrightarrow \operatorname{pt} \\ \downarrow & & \downarrow^{x} \\ \operatorname{pt} & \stackrel{x}{\longrightarrow} & \mathbf{X} \end{array}$$

in the ∞ -category **H**. Describe the points of the type pt \times_X pt.

7. 10 points. Let \mathcal{C} be a stable ∞ -category and suppose we have an exact triangle

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

in C. Construct the boundary map $\partial: \mathbb{Z} \to X[1]$, and show that

$$\mathbf{Z}[-1] \xrightarrow{\partial} \mathbf{X} \xrightarrow{f} \mathbf{Y} \quad \text{and} \quad \mathbf{Y} \xrightarrow{g} \mathbf{Z} \xrightarrow{\partial} \mathbf{X}[1]$$

are exact triangles in C.

8. 20 points. Let \mathcal{C} be a stable ∞ -category. Let $f: X_{0,1} \to X_{1,1}$ and $g: X_{1,0} \to X_{1,1}$ be morphisms in \mathcal{C} , and denote by P the pullback $X_{0,1} \times_{X_{1,1}} X_{1,0}$. Show that there is a canonical isomorphism

$$P \simeq Fib(f - g: X_{0,1} \oplus X_{1,0} \to X_{1,1})$$

- in \mathcal{C} . (Comparing the *points* of the two types will earn 5 points.)
- 9. $20 \ points$. State and prove the dual statement of the previous exercise. (Doing both exercises 8 and 9 will earn 30 points total.)

References

[Cis] D.-C. Cisinski, Higher categories and homotopical algebra.