

Exercise sheet 12

The minimum passing average is 20 points per sheet.

1. *10 points.* Let $X \in \text{Sch}_{\mathbf{C}}^{\text{ft}}$ and $f : X \rightarrow \mathbf{A}^1$ a regular function. If X is smooth, show that $\phi_f(\underline{R}_X) \in \text{Shv}(X_0)$ is supported on the critical points of f . I.e., its support is contained in $\text{Crit}(f) \cap X_0$, where $\text{Crit}(f) := \{x \in X \mid df_x = 0\}$.

2. *5 points.* Use the contraction lemma to give another solution of Sheet 8, Exercise 3(3).

3. *10 points.* Let $X \in \text{Sch}_{\mathbf{C}}^{\text{ft}}$ and suppose given a \mathbf{C}^* -action on X . Let $\mathcal{F} \in \text{Shv}_c(X)$ be a constructible sheaf. Show that \mathcal{F} is monodromic if and only if \mathcal{F} is conic.

(Hint: Reduce to the assertion that if $\mathcal{F} \in \text{Shv}_c(\mathbf{G}_m)$ is conic, then it is locally constant. Indeed, let U be the open locus where \mathcal{F} is locally constant; since \mathcal{F} is constructible, U is the complement of a finite discrete set of points. Now apply Sheet 11, Exercise 5 to each of those points.)

4. *15 points.* Suppose $R = k$ is a field. The *Euler characteristic* of a perfect complex $K \in \mathbf{D}(k)$ is defined by $\chi(K) := \sum_{i \in \mathbf{Z}} (-1)^i \dim_k H_i(K)$.

Let $X \in \text{Sch}_{\mathbf{C}}^{\text{ft}}$ and $\mathcal{F} \in \text{Shv}_c(X; k)$ a constructible k -linear sheaf. The *Euler characteristic* of \mathcal{F} is the Euler characteristic of the complex $\Gamma(X, \mathcal{F}) \in \mathbf{D}(k)$. (Note that the latter is perfect because \mathcal{F} is constructible, and hence $a_*(\mathcal{F})$ is constructible where $a : X \rightarrow \text{Spec}(\mathbf{C})$.)

Suppose X is a smooth irreducible curve. Show that

$$\chi(X, \mathcal{F}) = \chi(X, \underline{R}_X) \cdot \chi(\eta^* \mathcal{F}) - \sum_{x \in X} \chi(\phi_{t_x}(\mathcal{F}))$$

where $\eta^* \mathcal{F} \in \text{Shv}(\{\eta\}; k) \simeq \mathbf{D}(k)$ is the stalk of \mathcal{F} at the generic point $\eta \in X$, and for every $x \in X$, t_x is a local coordinate at x (see Sheet 11).