## Exercise sheet 2

The minimum passing average is 20 points per sheet.

- 1. 10 points. Let  $K_{\bullet} \in Ch(R)$  be a chain complex of R-modules, representing an object  $K \in \mathbf{D}(R)$ . Suppose  $K_{\bullet}$  is bounded, i.e. there exist integers a < b such that  $K_i = 0$  for all  $i \notin [a, b]$ . Show that K can be described by starting with the object  $Q_a := K_a$ , taking the cofibre  $Q_{a+1} := Cofib(d : K_{a+1} \to K_a)$ , and iterating inductively until one obtains  $K \simeq Q_b$ .
- 2. 10 points. Let  $K_{\bullet} \in Ch(R)$  be an (unbounded) chain complex of R-modules, representing an object  $K \in \mathbf{D}(R)$ . For each  $n \geq 0$ , denote by  $K(n)_{\bullet}$  the truncated complex concentrated in degrees [-n,n]:  $K(n)_i = K_i$  if  $i \in [-n,n]$  and  $K(n)_i = 0$  otherwise. Show that there are morphisms  $K(m)_{\bullet} \to K(n)_{\bullet}$  whenever  $m \leq n$ , and the colimit  $\lim_{\longrightarrow n} K(n)_{\bullet}$ , taken in  $\mathbf{D}(R)$ , is canonically isomorphic to K. You may assume the result of the next exercise.
- 3. 10 points. Use the fact that filtered colimits in Ch(R) preserve quasi-isomorphisms to show that if  $\{(K_{\alpha})_{\bullet}\}_{\alpha}$  is a filtered diagram in Ch(R), representing a filtered diagram  $\{K_{\alpha}\}_{\alpha}$  in  $\mathbf{D}(R)$ , then the colimit in Ch(R) is also the colimit  $\varinjlim_{\alpha} K_{\alpha}$  formed in  $\mathbf{D}(R)$ . (You may assume that the diagram is indexed by the natural numbers, i.e. by the category  $\{0 \to 1 \to 2 \cdots\}$ , as opposed to a general filtered category.)
- 4. 10 points. Using the universal characterization of the derived tensor product, compute  $\mathbf{Z}/m\mathbf{Z} \otimes_{\mathbf{Z}}^{\mathbf{L}}$   $\mathbf{Z}/n\mathbf{Z} \in \mathbf{D}(\mathbf{Z})$  in two cases: (1)  $\gcd(m,n)=1$ ; (2) m=n. (Hint: Note that  $\mathbf{Z}/n\mathbf{Z}$  is isomorphic in  $\mathbf{D}(\mathbf{Z})$  to the cofibre of the multiplication by n map  $n: \mathbf{Z} \to \mathbf{Z}$ .)
- 5. 10 points. Let  $\mathcal{C}$  be an R-linear cocomplete  $\infty$ -category. Given two objects C and D of  $\mathcal{C}$ , there exists a mapping complex  $\underline{\mathrm{Maps}}_{\mathcal{C}}(C,D) \in \mathbf{D}(R)$  refining the mapping type  $\mathrm{Maps}_{\mathcal{C}}(C,D) \in \mathbf{H}$ . Specifically,  $\underline{\mathrm{Maps}}_{\mathcal{C}}(-,-): \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathbf{D}(R)$  is uniquely characterized by the fact that it sends colimits in the second argument to colimits and colimits in the first variable to limits, and satisfies  $\mathrm{Maps}_{\mathcal{C}}(K \otimes C,D) \simeq \mathrm{Maps}_{\mathbf{D}(R)}(K,\underline{\mathrm{Maps}}_{\mathcal{C}}(C,D))$  functorially in  $K \in \mathbf{D}(R)$ .

Use this characterization to show that (1) the underlying type of  $\underline{\mathrm{Maps}}_{\mathfrak{C}}(C,D)$  is indeed  $\mathrm{Maps}_{\mathfrak{C}}(C,D)$ ; (2) for the R-linear  $\infty$ -category  $\mathfrak{C}=\mathbf{D}(R)$ , the mapping complex is the same as the internal Hom in  $\mathbf{D}(R)$ .

Generally, we will simply write  $Maps_{\mathfrak{C}}(C,D)$  for the mapping complex; this will not lead to much confusion.

- 6. 15 points. Let X be a topological space and  $K \in \mathbf{D}(R)$  a complex. Consider the constant sheaf  $\underline{K}$ , by definition the localization  $L(K_{cst})$  of the constant presheaf.
  - (1) Show that  $K_{cst}$  need not be a sheaf, i.e., that the unit map  $K_{cst} \to \underline{K}$  is not an isomorphism.
  - (2) Let X be the infinite disjoint union  $\coprod_n$  pt, indexed by natural numbers  $n \ge 0$ . Describe the sheaf  $\underline{K}$  in this case.
  - (3) For a general topological space X, show that  $\underline{K}$  is given by  $\Gamma(U,\underline{K}) \simeq \prod_{\pi_0(U)} K$ , the product over the connected components of U, for every open  $U \subset X$ .

1

<sup>&</sup>lt;sup>1</sup>The expression  $K \otimes C$  uses the action of  $\mathbf{D}(R)$  on  $\mathcal{C}$ .