Exercise sheet 3

The minimum passing average is 20 points per sheet.

1. 20 points. Let $K \in \mathbf{D}(\mathbb{R})$ be a complex. Given an integer $k \geq 0$, consider the diagram

as in the lecture. Recall that the morphism d is the diagonal $a \mapsto (a, \dots, a)$.

(1) Define precisely the cosimplicial structure in (0.1). For any morphism $\alpha : [m] \to [n]$ in the simplex category Δ , describe the induced map

$$\alpha^* : \mathbf{K}^{\oplus k^{m+1}} \longrightarrow \mathbf{K}^{\oplus k^{n+1}}.$$

In particular, verify that the two coface maps

$$d^0, d^1 : \mathcal{K}^{\oplus k} \rightrightarrows \mathcal{K}^{\oplus k^2}$$

are given by

$$d^{0}(a_{1},\ldots,a_{k}) = \begin{bmatrix} a_{1} & a_{1} & \cdots & a_{1} \\ a_{2} & a_{2} & \cdots & a_{2} \\ \vdots & \vdots & & \vdots \\ a_{k} & a_{k} & \cdots & a_{k} \end{bmatrix}, \qquad d^{1}(a_{1},\ldots,a_{k}) = \begin{bmatrix} a_{1} & a_{2} & \cdots & a_{k} \\ a_{1} & a_{2} & \cdots & a_{k} \\ \vdots & \vdots & & \vdots \\ a_{1} & a_{2} & \cdots & a_{k} \end{bmatrix}.$$

- (2) Let $K : pt \to \mathbf{D}(R)$ denote the constant functor sending the unique object of the trivial category pt to K. Define $\widetilde{K} : \Delta \to \mathbf{D}(R)$ to be the right Kan extension of K along the functor $pt \to \Delta$ that picks out the object $[0] \in \Delta$. Show that \widetilde{K} coincides with the cosimplicial diagram $K^{\oplus k^{\bullet+1}}$, by using the pointwise formula for right Kan extensions.
- (3) Deduce that the totalization of $K^{\oplus \bullet + 1}$, i.e., the limit of \tilde{K} , is the same as the limit of the constant functor $K : pt \to \mathbf{D}(R)$. In other words, (0.1) is a limit diagram.
- 2. 10 points. In the situation of Exercise 1, let K_• ∈ Ch(R) be a termwise projective chain complex representing K. Form the bicomplex obtained by applying the normalized chain complex functor of Dold–Kan to the cosimplicial object (K_•)^{⊕k•+1} in Ch(R). Show that the total complex of this bicomplex represents the totalization of (0.1). (This gives a different proof that (0.1) is a limit diagram.)
- 3. 10 points. Let X and Y be topological spaces. Show that the functor

$$PShv(X \sqcup Y) \rightarrow PShv(X) \times PShv(Y),$$

given informally by $\mathcal{F} \mapsto (\mathcal{F}|_X, \mathcal{F}|_Y)$, is an equivalence. Show that it restricts to an analogous equivalence on Shv. (Hint: begin by describing the category $Op(X \sqcup Y)$.)

4. 20 points. Let X be a topological space and $\mathcal{F} \in \text{Shv}(X)$ a sheaf. The stalk of \mathcal{F} at a point $x \in X$ is the complex

$$\mathcal{F}_x := \varinjlim_{\mathbf{U} \ni x} \Gamma(\mathbf{U}, \mathcal{F}) \in \mathbf{D}(\mathbf{R}),$$

where the colimit is taken over all open neighbourhoods U of x. The germ of a section $s \in \Gamma(U, \mathcal{F})$ is its image $s_x \in \mathcal{F}_x$.¹ The support of \mathcal{F} is the subset $Supp(\mathcal{F}) \subset X$ containing all points $x \in X$ such that $\mathcal{F}_x \not\simeq 0$ in $\mathbf{D}(R)$. The support of a section $s \in \Gamma(U, \mathcal{F})$ is the subset $Supp(s) \subset X$ containing all points $x \in X$ such that $s_x \not\simeq 0$.

(1) Show that $Supp(\mathcal{F})$ need not be a closed subset of X, but that Supp(s) is always closed.²

1

¹If K is a complex, the notation $s \in K$ means that s is a point in the underlying type of K, i.e., a morphism $R \to K$ in $\mathbf{D}(R)$.

 $^{^{2}}$ 2025-11-05: The statement has been corrected.

(2) Let x be a point and $i_x : \{x\} \hookrightarrow X$ the inclusion. Show that there is a canonical isomorphism $\Gamma(\{x\}, i_x^*(\mathcal{F})) \simeq \mathcal{F}_x$

in $\mathbf{D}(\mathbf{R})$.

- (3) Given a complex $K \in D(R)$, recall that the skyscraper \underline{K}_x at a point $x \in X$ can be identified with $i_{x,*}(K)$. Compute the stalks $(\underline{K}_x)_y$ for $y \neq x$ and for y = x, and describe $Supp(\underline{K}_x)$. (Warning: if X is not T_1 , you will see that the support may not be just the point $\{x\}$.)
- 5. 20 points. Let X be a topological space.
 - (1) Show that for every $\mathcal{F} \in Shv(X)$, there is a canonical map

$$\Gamma_c(X, \mathcal{F}) \to \Gamma(X, \mathcal{F})$$

which is invertible if X is compact.

- (2) Show that the canonical map $\Gamma_c(U \sqcup V, \mathcal{F}) \to \Gamma_c(U, \mathcal{F}|_U) \oplus \Gamma_c(V, \mathcal{F}|_V)$ is invertible if $X = U \sqcup V$.
- (3) Assume X is Hausdorff. For any $K \in \mathbf{D}(R)$ and any point $x \in X$, show that the compactly supported global sections of the skyscraper sheaf are given by $\Gamma_c(X, \underline{K}_x) \simeq K$.
- (4) For any $K \in \mathbf{D}(R)$ and any open $U \subset X$, show that $\Gamma_c(X, \operatorname{cst}_X^U(K))$ is isomorphic to K if U is relatively compact in X, and 0 otherwise.
- 6. 10 points. Let $f: X \to Y$ be a morphism of topological spaces. For any finite set $[n] \in \Delta$ and any collection of sheaves $\{\mathcal{G}_i\}_{i \in [n]}$ on Y, construct a canonical isomorphism

$$f^*(\bigotimes_i \mathfrak{G}_i) \simeq \bigotimes_i f^*(\mathfrak{G}_i).$$

- 7. 15 points.
 - (1) Let X be a discrete topological space. For every $K \in \mathbf{D}(R)$, show that there are canonical isomorphisms

$$\begin{split} \Gamma(\underline{\mathbf{K}}_{\mathbf{X}}) &\simeq \prod_{x \in \mathbf{X}} \mathbf{K}, \\ \Gamma_c(\underline{\mathbf{K}}_{\mathbf{X}}) &\simeq \bigoplus_{x \in \mathbf{X}} \mathbf{K}. \end{split}$$

In particular, the forget supports map $\Gamma_c(\underline{K}_X) \to \Gamma(\underline{K}_X)$ is invertible if and only if either X is finite, or $K \simeq 0$.

(2) More generally, let $f: X \to Y$ be a morphism of discrete spaces. Given a sheaf $\mathcal{F} \in \text{Shv}(X)$, describe the *- and !-pushforwards

$$f_*(\mathcal{F}), f_!(\mathcal{F}) \in \text{Shv}(Y).$$

- 8. 20 points. Let X = (0,1) with the usual topology.
 - (1) Show that any compact closed subset $A \subset (0,1)$ is contained in some smaller open interval (a,b) which is relatively compact.
 - (2) For every $K \in \mathbf{D}(R)$, show that $R\Gamma_c(X, \underline{K}) \simeq K$.