Exercise sheet 4

The minimum passing average is 20 points per sheet.

- 1. 5 points. Let R be a commutative ring, and consider the forgetful functor $\mathbf{D}(R) \to \mathbf{H}$, $K \mapsto K^{\circ}$, sending a complex to its underlying homotopy type. Recall that this functor is limit-preserving.
 - (1) Show that $K \mapsto K^{\circ}$ is not conservative. That is, given a morphism $\phi : K \to L$ in $\mathbf{D}(R)$, the invertibility of $\phi^{\circ} : K^{\circ} \to L^{\circ}$ need not imply invertibility of ϕ .
 - (2) Show that the functors

$$\mathbf{D}(R) \to \mathbf{H}, \quad K \mapsto (K[-i])^{\circ}$$

are jointly conservative as i ranges over nonnegative integers.

(3) Let X be a topological space and $\mathcal{F} \in \mathrm{PShv}(X; R)$. Show that \mathcal{F} is a sheaf if and only if the **H**-valued presheaves

$$U \mapsto (\Gamma(U, \mathcal{F})[-i])^{\circ}$$

are sheaves for all $i \ge 0$.

- 2. 10 points. Let X = [0,1] be the closed unit interval and $i : \{0,1\} \hookrightarrow X$ the inclusion of the boundary. Show that $i^!(R_X) \simeq 0$.
- 3. 15 points. Let X be a locally compact Hausdorff space. Show that if $X = Y \cup Z$ where Y and Z are closed subsets, then there is a long exact sequence

$$\cdots \xrightarrow{\partial} \mathrm{H}^{\mathrm{BM}}_*(Y \cap Z) \to \mathrm{H}^{\mathrm{BM}}_*(Y) \oplus \mathrm{H}^{\mathrm{BM}}_*(Z) \to \mathrm{H}^{\mathrm{BM}}_*(X) \xrightarrow{\partial} \mathrm{H}^{\mathrm{BM}}_{*-1}(Y \cap Z) \to \cdots$$

- 4. 5 points. Recall that $\operatorname{Perf}(R) \subseteq \mathbf{D}(R)$ is the smallest full subcategory which contains R, and is closed under finite colimits, shifts, and direct summands. Show that a complex $K \in \mathbf{D}(R)$ belongs to $\operatorname{Perf}(R)$ if and only if it can be represented by a chain complex $K_{\bullet} \in \operatorname{Ch}(R)$ which is bounded and has all terms K_n finitely generated projective as R-modules.
- 5. 10 points.
 - (1) Show that the tensor product on $\mathbf{D}(R)$ restricts to $\mathrm{Perf}(R)$: if $K, L \in \mathbf{D}(R)$ are both perfect, then the tensor product $K \otimes L \in \mathbf{D}(R)$ is also perfect.
 - (2) Assume that R contains no nontrivial idempotents. Given a perfect complex $K \in \operatorname{Perf}(R)$, show that the following two conditions are equivalent: (a) K is invertible, i.e., there exists an object $L \in \operatorname{Perf}(R)$ such that $K \otimes L \simeq R$; and (b) K is isomorphic to M[n] where $M \in \operatorname{Mod}_R$ is an invertible R-module (i.e., a finitely generated projective R-module of rank one) and $n \in \mathbf{Z}$.
- 6. 5 points. Let X be a topological space. Show that if X is a disjoint union of n points, then $\operatorname{Loc}^{\diamond}(X)$ is equivalent to a product of n copies of $\mathbf{D}(R)$. Show that even if X is connected, then $\Gamma(X,-):\operatorname{Loc}^{\diamond}(X)\to\mathbf{D}(R)$ need not be an equivalence.
- 7. 10 points. The fundamental groupoid $\Pi_1(X)$ of a topological space X is the category whose objects are points $x \in X$ and morphisms $x \to y$ are equivalence classes of paths $\gamma : [0,1] \to X$ with $\gamma(0) = x$, $\gamma(1) = y$, modulo endpoint-preserving homotopy. The composition law is defined by concatenation of paths.

Consider the punctured complex plane $\mathbf{C}^* = \mathbf{C} \setminus \{0\}$. Compute $\Pi_1(\mathbf{C}^*)$ as follows:

- (1) Show that \mathbf{C}^* deformation-retracts onto the unit circle $\{z \in \mathbf{C} : |z| = 1\}$. In particular, all points of \mathbf{C}^* are path-connected.
- (2) Show that $\pi_1(\mathbf{C}^*, 1)$ is cyclic, generated by the loop

$$\gamma(t) = e^{2\pi i t}, \qquad t \in [0, 1].$$

Conclude that $\Pi_1(\mathbf{C}^*)$ is equivalent to the groupoid $B\mathbf{Z}$, which has a single object *, $\operatorname{Hom}(*,*) = \mathbf{Z}$, and the composition law is addition.

(3) Describe the data encoded by a functor $\Pi_1(C^*) \to \mathbf{D}(R)$.