Exercise sheet 5

The minimum passing average is 20 points per sheet.

- 1. 5 points.
 - (1) Show that if X is a connected topological space and $U \subseteq X$ is a connected open, then the restriction map

$$\mathrm{res}: \Gamma(X,\underline{K}_X) \to \Gamma(U,\underline{K}_X)$$

induces an isomorphism $H^0(X, \underline{K}_X) \simeq H^0(U, \underline{K}_X)$ for every complex $K \in \mathbf{D}(R)$.

- (2) Show that this need not hold if U is not connected.
- 2. 5 points. Let R be a commutative ring and $x \in R$ an element. Let $K \in \mathbf{D}(R)$ be the complex represented by the chain complex $K_{\bullet} \in \mathrm{Ch}(R)$ with $K_0 = R$, $K_1 = R$, differential $d_1 : K_1 \to K_0$ given by the multiplication by $x \mod x : R \to R$, and all other terms zero. Describe the underlying type $K^{\circ} \in \mathbf{H}$ in terms of the underlying type R° (which is discrete, i.e., a set). (Hint: describe K as a co/fibre of a morphism in $\mathbf{D}(R)$.)
- 3. 15 points. Let $\mathbf{C}^* = \mathbf{C} \setminus \{0\}$ be the punctured complex plane.
 - (1) Let $U_{+} \subseteq \mathbf{C}^{*}$ and $U_{-} \subseteq \mathbf{C}^{*}$ be the complements of $\{z \in \mathbf{C}^{*} \mid \operatorname{Re}(z) \leq 0\}$ and $\{z \in \mathbf{C}^{*} \mid \operatorname{Re}(z) \geq 0\}$, respectively. Use Čech descent for the open cover $\mathbf{C}^{*} = U_{+} \cup U_{-}$, and the equivalence $\operatorname{Loc}^{\diamond}(X) \simeq \operatorname{Loc}^{\diamond}(\operatorname{pt})$ for a contractible space X, to compute $C^{\bullet}(\mathbf{C}^{*}; R) = \Gamma(\mathbf{C}^{*}; \underline{R}_{\mathbf{C}^{*}})$.
 - (2) Let $\mathcal{F} \in \operatorname{Loc}^{\diamond}(\mathbf{C}^*)$ be a locally constant sheaf on \mathbf{C}^* . Consider its monodromy representation, which encodes a complex $K \in \mathbf{D}(R)$ (the stalk at some point x) together with an automorphism $T: K \xrightarrow{\sim} K$ (the parallel transport with respect to a loop generating $\pi_1(\mathbf{C}^*, x)$). Compute the complex of global sections $\Gamma(\mathbf{C}^*, \mathcal{F})$, using descent as in part (i) but taking the potentially nontrivial monodromy T into account.

1

¹This is the Koszul complex $Kosz_R(x)$.