Exercise sheet 6

The minimum passing average is 20 points per sheet. This sheet is due by the morning of **Tuesday 12/9**.

- 1. 10 points. Let X = [0, 1] be the unit interval.
 - (1) Let $\mathcal{F} \in \operatorname{Shv}(X)$ be a locally constant sheaf which is discrete, i.e., $\mathcal{F} \in \operatorname{Loc}^{\diamond}(X)_{[0,0]}$. Show that there exists a finite open cover $X = \bigcup_{1 \leq i \leq n} U_i$ such that each $\mathcal{F}|_{U_i}$ is constant, satisfying moreover the following properties:
 - (a) Each U_i is an open interval.
 - (b) $0 \in U_1$, and for i > 1 each $U_i \cap U_{i-1}$ is a nonempty open interval.
 - (c) Each union $V_i := U_1 \cup U_2 \cup \cdots \cup U_i$ is an open interval.
 - (2) Show that for each i, the commutative square of restriction maps

$$\Gamma(V_i, \mathcal{F}) \longrightarrow \Gamma(V_{i-1}, \mathcal{F})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Gamma(U_i, \mathcal{F}) \longrightarrow \Gamma(U_i \cap V_{i-1}, \mathcal{F})$$

is a pullback square in $\mathbf{D}(R)$, and all arrows are isomorphisms.

- (3) Deduce that \mathcal{F} is constant on X.
- 2. 10 points. Let $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ and let $f: S^1 \to S^1$ be the map $z \mapsto z^n$. Compute the monodromy of the sheaf $f_*(\underline{R})$.
- 3. 10 points. Suppose given a pullback square of topological spaces

$$X' \xrightarrow{g} Y'$$

$$\downarrow^{p} \qquad \downarrow^{q}$$

$$X \xrightarrow{f} Y.$$

Prove the following special cases of the base change isomorphism $\operatorname{Ex}_!^*: g_!p^* \simeq q^*f_!$.

- (1) If f = j and g = j' are open embeddings, show that there is a canonical isomorphism $\operatorname{Ex}_!^* : j_!' p^* \to q^* j_!$.
- (2) If f = i and g = i' are closed embeddings, so that $i_* \simeq i_!$, $i'_* \simeq i'_!$, show using the localization triangle that there is a canonical isomorphism $\operatorname{Ex}_*^* : q^*i_* \to i'_*p^*$.